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Abstract: A new method is proposed for recovering 3D human poses in video sequences taken from a single 
uncalibrated camera. This is achieved by exploiting two important constraints observed from human bipedal 
motion: coplanarity of body key points during the mid-stance position and the presence of a foot on the 
ground – i.e. static foot - during most activities. Assuming 2D joint locations have been extracted from a 
video sequence, the algorithm is able to perform camera auto-calibration on specific frames when the 
human body adopts particular postures. Then, a simplified pin-hole camera model is used to perform 3D 
pose reconstruction on the calibrated frames. Finally, the static foot constraint which is found in most 
human bipedal motions is applied to infer body postures for non-calibrated frames. We compared our 
method with (1) “orthographic reconstruction” method and (2) reconstruction using manually calibrated 
data. The results validate the assumptions made for the simplified pin-hole camera model and reconstruction 
results reveal a significant improvement over the orthographic reconstruction method. 

1 INTRODUCTION 

Recovery of 3D posture sequences provides 
essential information for the analysis of human 
behaviour and activity. Although computer vision 
systems have been proposed, they either rely on 
controlled environments involving several cameras 
or are limited to specific human activities. 
Therefore, they cannot be used in most real-life 
applications, such as the detection of antisocial 
behaviours from images captured from a CCTV 
camera, where only data recorded by a single 
uncalibrated camera are available. Consequently, 
human pose recovery from a single uncalibrated 
camera is still one of the major challenges facing the 
computer vision community. 

The goal of pose recovery is to localise a 
person’s joints and limbs in either an image plan (2D 
recovery) or a world space (3D recovery), which 
usually results in the reconstruction of a human 
skeleton. In this work, we concentrate on 3D pose 
recovery. The success of pose recovery is measured 
in terms of posture error，i.e. the average Euclidean 
distance between corresponding joints of the 
recovered and actual postures by aligning two bodies 
with optimal scaling, translation, and rotation. This 

metric reflects the real dissimilarity between two 
postures.  

In this paper, we propose a novel method for 
estimating a 3D pose from 2D joint locations using a 
single uncalibrated camera. Assuming 2D positions 
of these key points have been extracted from a video 
sequence, we are able to perform camera auto-
calibration for some key frames automatically 
selected in the sequence (Kuo et al., 2007). This 
exploits a human bipedal motion constraint that 
certain body joints become coplanar within a motion 
cycle. This provides sufficient knowledge for 
reconstruction of a 3D figure in a world space using 
a pin-hole camera model. In order to recover poses 
for other frames, another human bipedal motion 
constraint, i.e. the presence of a foot on the ground – 
i.e. static foot - during most activities, is exploited to 
propagate 3D posture reconstruction from one frame 
to the next.  

The structure of this paper is organised as 
follows. After presenting relevant literature review, 
we detail in Section 2 our pose recovery algorithm. 
Then, experiments to validate our method with 
quantitative results are given in Section 3. Finally, 
conclusions and future work are addressed in 
Section 4. 
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1.1 Related Work 

Since geometric camera calibration reveals the 
relationship between the 3D space that is viewed by 
the camera and its projection on the image plane, it 
is a key for the reconstruction of a 3D articulated 
structure. The common practice for calibrating 
cameras is to obtain point correspondences between 
a known calibration pattern and its projection on the 
image (Tsai, 1987). Although such process is 
straightforward, it is very often unpractical as 
cameras often change position, their number may be 
very large or physical access to them is impossible. 
In order to deal with this issue, Taylor offered a pose 
recovery method which does not require any camera 
calibration (Taylor, 2000). He exploits an 
orthographic projection model that assumes 3D 
objects are very far away from the camera thus the 
depth of their surface points are almost constant. 
Although it has been widely used (Mori and Malki, 
2002, Mori and Malki, 2006, Remondino and 
Roditakis, 2003), as we shall see in our result 
section, accuracy is compromised by such a strong 
assumption. Inspired by Taylor’s work (Taylor, 
2000), our method does not required any manual 
camera calibration and relies on the location of 2D 
image key points, i.e. joints, as an input. However, it 
uses bipedal motion constraints to recover more 
accurately 3D poses.  
The extraction of 2D joint positions from an image 
has been a very active field of research (Ren et al., 
2005, Kuo et al., 2008, Balan and Black, 2006, 
Urtasun et al., 2006). Ren et al. extracts body 
segments by exploiting parallelism and pairwise 
constraints of the body parts (Ren et al., 2005). Kuo 
et al. extended this approach by adding other image 
cues, i.e. colour and motion, which are informative 
regarding body part location (Kuo et al., 2008). 
Others use a Wandering-Stable-Lost framework to 
track 2D body parts/key points through the 
sequences (Balan and Black, 2006, Urtasun et al., 
2006).  

Most pose reconstruction methods rely either on 
multiple cameras (Bhatia et al., 2004, Izo and 
Grimson, 2007), and/or assume specific types of 
activities (Bhatia et al. 2004, Elgammal and Lee, 
2006, Tian et al., 2004, Lim et al., 2006, Ek et al., 
2008). Moreover, some of them require manual 
initialisation of their 3D tracker (Balan and Black, 
2006, Urtasun et al., 2006, Martinez-del-Rincon et 
al., 2008). Therefore, all these constraints 
dramatically limit the practical applications of those 
systems. 

Our approach exploits general constraints 
imposed by human bipedal motion. They include the 
presence of at least one foot on the ground during 
most activities; this constraint has already been used 
successfully in 2D body tracking (Martinez-del-
Rincon et al., 2008). These bipedal constraints are 
much less restricting than assuming a specific type 
of motions (e.g., walking). In this work, we use such 
constraints for camera self-calibration from 
observing human motion to derive 3D poses for key 
frames (Kuo et al., 2007) and further infer 3D poses 
between key frames.  

2 METHODOLOGY 

2.1 3D Human Pose Recovery 

Our goal is to recover 3D human postures in video 
sequences by exploiting human bipedal motion 
constraints. We propose a 3D pose estimator which 
generates possible 3D poses from 2D joint positions 
in the input image sequence. Then the most proper 
pose is selected by taking into account learned 
human motion models. Figure 1 illustrates the flow 
of our 3D human pose recovery. It requires an image 
processing task of detection of “image key points” 
related to postures i.e., 2D body joints, from the 
video. The 3D pose estimator, which is based on 
pin-hole projection, then transforms 2D images 
points to a set of 3D poses in real world, using the 
constraints of human bipedal motion. Based on the 
motion models which are learnt from dynamics and 
further constraints of human motion, the most likely 
pose can be selected among the proposed 3D poses.  

Because the task of obtaining key body points 
from the image has been tackled in our previous 
paper (Kuo et al., 2008) and a paper dealing with 
pose selection is in preparation, in this work, we will 
concentrate on the 3D pose estimator which covers 
the pose reconstruction by exploiting human bipedal 
motion constraints. 

2.2 3D Pose Estimator 

The 3D pose estimator generates a set of 3D pose 
proposals from 2D joint positions based on the pin-
hole projection model. First, postures are estimated 
automatically for a set of key frames where camera 
auto-calibration can be performed. Then, the other 
postures are recovered by propagating the 
parameters of the pin-hole projection model 
obtained for the key frames to other frames by 
introducing a constraint of bipedal motion. 
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Figure 1: 3D pose recovery pipeline. 

The key frames are specific frames when the 
human body adopts particular postures where five 
points are coplanar. Using those points a coplanar 
calibration model can be used to estimate the camera 
parameters (Tsai, 1987).  
     Figure 2 shows an in-depth insight of the 3D pose 
estimator. Firstly the sequence with extracted key 
body points is used to perform “camera auto-
calibration” (see Section 2.2.1).  This is an iterative 
process to select the key frames and to estimate 
calibration parameters, i.e. focal length and camera 
relative position. This also generates a 3D coplanar 
model representing the 3D configuration of the set 
of coplanar body joints at key frames (Figure 3).  

Secondly, the pin-hole projection model is 
employed to reconstruct 3D postures for the 
calibrated key frames. The projection line of each 
key body point on the image can be established 
using the estimated focal length. Their 
corresponding 3D points can be located on the 
projection lines according to the camera relative 
position and the body model. The body model is a 
3D skeletal representation of a human body (see 
Figure 3) which consists of 15 joints: shoulders, 
hips, shoulder centre, hip centre, elbows, hands, 
knees, feet and a head. It is constructed from the 
calibrated 3D coplanar model with known body 
ratios. Since this problem is ill-constrained 
( 32 ℜ→ℜ ), multiple postures are generated. A pose 
selection mechanism is then required to extract the 
correct posture. The pin-hole based reconstruction 
will be detailed in Section 2.2.2.  

Finally, to recover postures for non-key frames, 
the bipedal constraint of the static foot is used. 
Human biomechanics reveals that at any moment at 
least one foot is in contact with the ground in most 
types of bipedal motion. This static foot exists 
because the body requires at least one limb to 
support its weight. Motion is achieved by switching 
weight support to the other foot. Both feet can only 
be off ground for a short moment if any, e.g. 
running. This static foot constraint can be exploited 
for pose recovery, since knowledge of the 3D 
posture at one frame also provides the 3D 
coordinates of one foot in the next frame. Therefore, 
postures can be propagated from the reconstructed 

key frames to their neighbouring frames. The detail 
of this posture propagation using a static foot will be 
discussed in Section 2.2.3.  

Key frames

Para
mete

rs

 
Figure 2: Details of 3D pose estimator. 

 
Figure 3: Body model (red) and key points of the coplanar 
model (green circles). 

2.2.1 Camera Auto-Calibration  

In order to perform 3D pose reconstruction based on 
pin-hole projection, it is necessary to estimate the 
camera calibration parameters. In order to make this 
task automatic, the camera model needs to be 
simplified. We assume the principal axis goes 
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through the centre of the image and there is neither 
lens distortion nor skew. The validity of these 
assumptions will be accessed in our result section. 
     The required projection parameters are the focal 
length and the camera relative position to the body. 
They are estimated by using the camera auto-
calibration method proposed in (Kuo et al., 2007). 
This can summarised as follows. It is based on 
Tsai’s coplanar calibration method (Tsai, 1987) 
where a set of 3D coplanar points and their projected 
locations on the image plane are required. A study of 
human biomechanics reveals that the shoulders and 
hips are expected to be coplanar at some time during 
a cycle of bipedal motion, i.e. mid-stance position. 
As a result, key points on (but not limited to) the 
shoulders and hips are suitable for coplanar 
calibration. Therefore, the automatic identification 
of the coplanar instances and the 3D structure of the 
key points can achieve camera auto-calibration. The 
core of this auto-calibration method lies on the 
observation that a smaller variation of the focal 
length estimates indicates the smaller error in 
coplanarity of the key points and the 3D coplanar 
model, which results in more accurate calibration. 
Tsai’s coplanar calibration estimates the focal length 
by solving an over-determined linear system, which 
yields 10 estimates of the focal length. The variation 
of these 10 estimates is used in (Kuo et al., 2007) to 
reflect errors in coplanarity and 3D representation of 
the key points. Therefore, the key frames and the 
coplanar model (which is part of the body model) 
can be selected by minimising standard deviation of 
the focal length estimates through frames of the 
sequence and coplanar model space. Apart from the 
key frames and a coplanar model being identified, 
focal length and the camera relative position to the 
body in terms of rotation and translation parameters 
are also estimated from this auto-calibration process. 
Since the coplanar model has been identified, a body 
model is built using the shoulder length, hip length 
and spine length which are extracted from the 
coplanar model to estimate the size of the limbs 
(lower/upper arms/legs) and the head  (Figure 3). 

2.2.2 3D Human Body Reconstruction using 
Pin-Hole Projection Model 

The pin-hole projection model, as illustrated in 
Figure 4, is employed for 3D pose reconstruction. 
This method relies on the determination of the 
projection line of each image point. Then, along the 
projection line the corresponding 3D point needs to 
be localised using the known distances between its 
neighbouring points as a constraint. This can be 

achieved using the parameters estimated from auto-
calibration, i.e., focal length, camera relative 
position and the body model. Since the 3D positions 
of shoulder and hip points were already estimated in 
the calibration process – they form the required 3D 
coplanar model - (see Section 2.2.1), only limbs 
(upper/lower arms/legs) and the head need to be 
reconstructed. Their positions are calculated piece-
wisely from the points of the coplanar model (i.e., 
shoulders or hips) towards the limbs’ distal ends, by 
applying Equation (1).  

0)1(,1 =−− −− tttt LPP  (1) 

0)(cos2 )1(,
2

1
2

1
2 =−+− −−− tttttt LDDDD θ  (2) 

Where Pt-1 is a 3D body key point (e.g., the left 
shoulder, Pl_shdr, see Figure 4) whose coordinates are 
already known, and Pt is the point which is to be 
reconstructed (e.g., the left elbow, Pl_elb, see Figure 
4). Lt,,(t-1) is the expected segment length between 
two successive key points. 

Pt and Pt-1’s projection lines can be established 
by connecting the optical centre, O, and their 
corresponding image points, pt and pt-1. Since Pt is 
constrained on its projection line, its location can be 
computed by using Equation (2) which considers the 
trigonometry  of the triangle △O- Pt-1-Pt. Dt and Dt-1 
denotes the distance of Pt to O and Pt-1 to O; θ is the 
angle between these two projection lines (see Figure 
4). Since Dt-1, θ and Lt,(t-1) are known, Dt can be 
solved to locate Pt. As the problem is ill-constrained 
( 32 ℜ→ℜ ), the quadric formulation of Equation (2) 
gives us two Pt locations. This is because it cannot 
distinguish, from a 2D image point, whether the 
corresponding 3D point is closer or further away 
from the camera than its neighbouring point, unless 
some depth information is provided. As a 
consequence, a number of 210 poses will be 
generated (5 coplanar points have been located 
uniquely by the calibration). The pose selection (see 
Figure 1) will then determine the most proper 3D 
posture for this frame among these pose proposals. 
To evaluate our reconstruction, in this paper, we 
assume pose selection is a solved problem. 

2.2.3 Reconstruction Propagation using 
Static Foot Points 

The propagation of 3D reconstruction relies on the 
static foot constraint which is observed in most 
bipedal motions where generally at least one foot 
stays on the ground to support body weight. 
Identification of static foot locations in a sequence is 
the key to propagate the estimated postures from the 
key frames to non-key frames. The 3D coordinates  
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Figure 4: Pin-hole projection model for 3D pose 
reconstruction applied to the reconstruction of the left arm. 

of a stationary key point identified in a previous 
frame is used as the starting point of pin-hole pose 
reconstruction for the current frame. Walking, as an 
example, requires that one leg always stays on the 
ground while the other is swinging and there is a 
short period of “double support” during which the 
legs exchange the motion. Therefore the posture can 
be propagated continuously from one static foot to 
the other via the “double support” period. This 
posture propagation can also be used in motions 
which contain “off-ground” moments (such as 
running or dancing) where pose interpolation is 
required to fill the temporal gaps.   

The static foot can be identified effectively and 
accurately by comparing speed of foot points 
between consecutive frames. Equation 3 makes a tri-
nary decision (left foot, right foot or none) of the 
static foot for the current frame It by computing the 
displacement of the left and right feet between the 
previous and next frames, It-1and It+1. It-1

LF(x, y), 
It+1

LF(x, y), It-1
RF(x, y) and It+1

RF(x, y) denote the 
locations of the left and right foot points in the 
previous and next frames and Euclidean distance is 
used to compute the displacement between two 2D 
points. If the displacement of the right foot is greater 
than the left one, the left foot is determined as the 
static foot (i.e., SF(t)= left foot) and vice versa, 
provided the speed of the foot is below a threshold, 
Thr.  
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If  (D(t)<0  && |It-1

LF(x, y)- It+1
LF(x, y)|<Thr)  

SF(t) =left foot 
else if (D(t)>0  && |It-1

RF(x, y)- It+1
RF(x, y)|<Thr)  

SF(t) = right foot 
else 

SF(t) =  None 
 

(3) 

If a static foot is identified, the pin-hole 
reconstruction (see Section 2.2.2) can be performed 
for non-key frames. This is a recursive process that 
propagates the postures from the key frames in both 
forward and backward directions in time. In each 
direction, we firstly reconstruct the frame next to the 
key frames whose static foot 3D position has been 
identified so that it can be used as a seed of the pin-
hole reconstruction for this frame. The 
reconstruction starts from the static foot 3D point 
and estimates the 3D positions of the keen and hip of 
the same leg. It then estimates the 3D position of 
another leg, and followed by the spin, shoulders, 
head and arms. Once this frame is reconstructed, its 
static foot position can be passed on to its adjacent 
frame that will be reconstructed in the same manner. 
Since there are multiple key frames within a given 
sequence, a linear combination of the propagated 
postures from each key frame is calculated to 
generate the final one. Weights are introduced to 
penalise postures which are temporally further away 
from their key frames. 

3 EXPERIMENTAL RESULTS 

3.1 Dataset and Experimental Settings 

The algorithm was tested on the HumanEva (HE) 
dataset (http://vision.cs.brown.edu/humaneva), which is 
used as benchmark for pose recovery. It provides 
motion capture and video data which were collected 
synchronously. Therefore, motion capture data 
provide 3D ground truth of human poses: since 
cameras are calibrated, 3D data points can be 
projected on the image plane so that 2D locations of 
key body points in the sequences are available for 
pose recovery algorithms. Moreover, a standard set 
of error metrics is defined to evaluate pose 
estimations (Sigal and Black, 2006).  

To validate our proposed method, two other pose 
recovery techniques are also evaluated: 
Reconstruction using orthographic projection 
(Taylor, 2000),which is one of the most popular 3D 
pose recovery method for uncalibrated cameras, and 
pin-hole reconstruction using the calibration data 
and body model directly provided by the HE. In 
order to validate the assumption made for our 
simplified camera model, in the later case, we 
neglect lens distortion and skew, and set the image 
centre as the principal centre. To make an unbiased 
comparison between these two methods and our 
proposed method, all experiments are conducted 
with known body ratio (this is obtained from the 
HE) and known depth relations between pairs of key 
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points, i.e. front or back, as a substitute for the pose 
selection. 

A sequence of “walking in a circle”-- S2 Walking 
(C1) in the HE-- is selected as a testing sequence. 
Since the original sequence is quite long, only one 
complete walking circle is used, i.e. frame 340 to 
760. The sequence was chosen to include a variety 
of walking postures, i.e. a complete circle, seen from 
different distances and view angles.  

3.1.1 Orthographic Reconstruction 

This method proposed by Taylor (Taylor, 2000) 
does not require calibration since it assumes the 
object to be reconstructed is far away from the 
camera so that the Z coordinates (the depth) are 
almost constant for all the points on the object. Since 
this method requires the user selects a suitable 
scaling factor, it only recovers the posture (i.e., 
relative positions of the key body points), but not the 
actual size of the human subject. Therefore, 
Procrustes Analysis (Seber, 1984) is performed to 
facilitate the comparison between the reconstructed 
body and the motion capture data, which is our 
ground truth. Procrustes Analysis determines a linear 
transformation (translation, rotation, and scaling) of 
the reconstructed body to best match to the ground 
truth by minimising Root-Mean-Square error 
(RMS). Reconstruction errors of this method are 
showed in Figure 6 (blue) and Table 1 (first 
column). 

3.1.2 Pin-Hole Reconstruction using 
Parameters Supplied from the Dataset 

To validate the assumption of the simplified 
calibration model used in the proposed method, 
poses are reconstructed using the pin-hole projection 
model with a number of parameters directly 
provided from the HE dataset. These include camera 
calibration parameters, i.e. focal length, camera 
relative position to a key point of the subject (the 
shoulder centre), subject’s body model and relative 
depth information of adjacent points. Lens distortion 
and skew are not considered, and it is assumed the 
principal axis of the camera goes through the centre 
of the image. As a result, the pin-hole reconstruction 
can be seeded from the known shoulder centre. 
Positions of the other key points are obtained by 
using projection lines and by taking into account the 
body model and relative depth information. 
Procrustes Analysis is performed to allow 
comparison with motion capture data. The results of 
this method is showed in Figure 6 (red) and Table 1 
(second column) 

3.2 Evaluation of Pose Reconstruction    

The auto-calibration process identified four key 
frames, frame 359, 529, 614, 693, within the target 
walking circle (See Figure 7 for original key frame 
postures). Thus, their postures were estimated and 
propagated to other frames using identified static 
foot points. The final posture estimates are produced 
by combining propagated poses produced by each 
key frame as described in Section 2.2.3. Figure 5 
shows the RMS errors of propagated postures from 
each key frame and their combined postures.  

Figure 6 and Table 1 show a comparison of our 
proposed method with the reconstructions described 
in Section 3.1.1 and 3.1.2. The result of the pose 
estimation based on manual calibration (Section 
3.1.2) produces an average error of 20.5 mm. This 
validates the assumption of the simplified pin-hole 
projection model used in our proposed method. 
Also, since it is manually calibrated, it is considered 
as the optimal result we could obtain in our method. 
As shown in Figure 6, our proposed method (black) 
clearly outperforms the orthographic reconstruction 
(blue); the average error is reduced by two-third 
(from 235.8 mm down to 79.5 mm, Table 1). 
Statistical analysis in Table 1 also indicates our 
method has reasonable accuracy (average error 79.5 
mm) and is consistent (standard deviation is 41.7 
mm). We also compare our results with the state-of-
the-art; (Husz et al., 2007) worked on similar 
scenarios (single uncalibrated camera with 
unspecified action) and an average error of 200 mm 
was reported. Elgammal and Lee (2006) was able to 
achieve 30 mm error on tracking joints in the same 
sequence. However, their method is activity specific 
(walking) and requires such motion to happen 
cyclically. Further analysis of reconstruction of each 
key frame and its posture propagation is shown in 
Table 2. We notice the reconstruction and 
propagation of the key frame 693 is significantly 
worse than other key frames. Since the posture of 
this key frame is approximately parallel to the image 
plane (see Figure 7), it results in unreliable coplanar 
calibration as shown in (Kuo et al., 2007). 
Moreover, the reconstruction is further deteriorated 
by lens distortion as the subject is positioned near 
the border of the image in this frame. 

 Due to the limited space of the paper, Figure 7 
illustrates only a subset of our reconstructed poses 
against the ground truth. We show the reconstruction 
of 4 key frames and other poses with a variety of 
view angles and distances, including the difficult 
cases where the subject is near the image border or 
the posture is parallel to image plane. 
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4 CONCLUSIONS 

In this paper, we presented a novel 3D pose recovery 
algorithm by exploiting human bipedal motion 
constraints using images from a single uncalibrated 
camera. The algorithm can estimate camera 
calibration parameters from a number of frames (i.e., 
key frames) in the sequence automatically, 
reconstruct the key frames’ postures using a 
simplified pin-hole camera model and infer postures 
for other frames. To achieve this, two constraints 
observed from human bipedal motion were used. 
One is the coplanarity of the body points in the mid-
stance position to perform camera auto-calibration 
and the other refers to the static point of the foot that 
allows pose propagation from one frame to next.  
Our method was validated experimentally. Results 
showed an accuracy of 8 cm, which is usually 
sufficient to label poses for action recognition 
applications. 

We plan to use 2D feature detectors and trackers 
to localise the joints on real video sequences to test 
further our method against noisy feature locations. 
We will also incorporate a pose selection module 
which embeds human motion dynamics and 
constraints to select the most plausible posture 
among the generated 3D pose proposals. 

 
Figure 5: RMS error of our proposed pose recovery 
algorithm. 

 
Figure 6: RMS errors of 3 pose reconstruction algorithms. 

 

 

Table 1: Statistical results of 3 reconstruction algorithms. 

error (mm) 
ortho‐
graphic 

manually 
calibrated   proposed 

average   235.8  20.5  79.5 
max. 363.1 50.0  182.8
min. 153.3 8.0  7.4
s.d.  57 6.9  41.7

Table 2: Statistical results of key frame reconstruction and 
propagation. 

key frame 
reconstruction 
error (mm) 

Average error (mm) 
in propagation  

359 23.0 35.5 
529 67.4 106.3 
 614  46.3  58.0 
693 172.4 189.6 
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Figure 7: Reconstruction results; first row: frame index; second row: associated posture error, (Root-Mean-Square error in 
mm); third row: original images; forth row: reconstructed (solid) and ground truth (dotted) postures observed from the 
original viewpoint; fifth row: reconstructions observed from a novel viewpoint. The first 4 images are the key frames; 
Frame 693 and 450 show poor reconstructions where the subject is located near the borders of the image. 
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