Gabriela Csurka, Marco Bressan



We present a technique to generate some popular activity sheets from arbitrary images, in particular user photographs. We focus on activity sheets that are closely linked to coloring and shape completion. We first introduce a baseline approach based on color regions that works well for cartoon-like images and uncluttered hotographs. In more complex scenes, we show how this approach can be integrated with global textural cues for increasing the level of details that can convey semantic information. A final local stage takes advantage of object recognition and scene classification techniques for selective detailing in the foreground background regions. Though the resulting approach can be deployed in a fully automatic fashion, interactivity can be a desirable feature since it allows to account for errors and, more important, increase the level of personalization. We propose three levels of interactivity, depending on the user skills. For all steps of our system and addressed activity sheets we show representative results.


  1. Abbasi, S., Mokhtarian, F., and Kittler, J. (1999). Curvature scale space image in shape similarity retrieval. Multimedia Systems, 7.
  2. Brooks, S. (2006). Image-based stained glass. IEEE Transactions on Visualization and Computer Graphics, 6(12).
  3. Brooks, S. (2007). Mixed media painting and portraiture. IEEE Transactions on Visualization and Computer Graphics, 5(13).
  4. Chetverikov, D. and Szabo, Z. (1999). A simple and efficient algorithm for detection of high curvature points in planar curves. In Workshop of Austrian Pattern Recognition Group.
  5. Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. PAMI, 24.
  6. Csurka, G. and Perronnin, F. (2008). Object class localization and semantic class based image segmentation. In BMVC.
  7. DeCarlo, D. and Santella, A. (2002). Stylization and abstraction of photographs. In SIGGRAPH.
  8. du Buf, H., Rodrigues, J., Nunes, S., Almeida, D., Brito, V., and Carvalho, J. (2006). Painterly rendering using human vision. In VIRTUAL, Advances in Computer Graphics.
  9. Garnica, C., Boochs, F., and Twardochlib, M. (2000). A new approach to edge-preserving smoothing for edge extraction and image segmentation. In ISPRS Symposium, International Archives of Photogrammetry and Remote Sensing.
  10. Haris, K., Efstratiadis, S. N., Maglaveras, N., and Katsaggelos, A. K. (1998). Hybrid image segmentation using watersheds and fast region merging. IEEE TIP, 7(12).
  11. He, X. and Yung, N. (2004). Curvature scale space corner detector with adaptive threshold and dynamic region of support. In ICPR.
  12. Hermann, S. and Klette, R. (2005). Global curvature estimation for corner detection. In Image Vision Computing New Zealand.
  13. Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. PAMI, 20(11).
  14. Jianbo, S. and Jitendra, M. (2000). Normalized cuts and image segmentation. PAMI, 22(8).
  15. Juan, O., Kerivan, K., and Postelnicu, G. (2006). Stochastic motion and the level set method in computer vision: Stochastic active contours. IJCV, 69(1).
  16. Levin, A. and Weiss, Y. (2006). Learning to combine bottom-up and top-down segmentation. In ECCV.
  17. Liu, H.-C. and Srinath, M. (1990). Corner detection from chain code. Pattern Recognition, 23.
  18. Mould, D. (2003). A stained glass image filter. In 14th Eurographics Workshop on Rendering.
  19. Olmos, A. and Kingdom, F. (2006). Automatic nonphotorealistic rendering through soft-shading removal: a colour-vision approach. In ICVVG.
  20. Perona, P. and Malik, J. (1991). Scale-space and edge detection using anisotropic diffusion. PAMI, 12(7).
  21. Reche, P., Urdiales, C., Bandera, A., Trazegnies, C., and Sandoval, F. (2002). Corner detection by means of contour local vectors. Electronics Letters, 38.
  22. Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut: Interactive foreground extraction using iterated graph cuts. In SIGRAPH.
  23. Shotton, J., Winn, J., Rother, C., and Criminisi, A. (2006). Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV.
  24. Sun, J., Jia, J., Tang, C.-K., and Shum, H.-Y. (2004). Poisson matting. In SIGGRAPH.
  25. Tomaz, F., Candeias, T., and Shahbazkia, H. (2003). Improved automatic skin detection in color images. In Digital Image Computing: Techniques and Applications.
  26. Tran, T. T. H. and Lux, A. (2004). A method for ridge extraction. In ACCV.
  27. Vezhnevets, V., Sazonov, V., and Andreeva, A. (2003). A survey on pixel-based skin color detection techniques. In Graphicon.
  28. Viola, P. and Jones, M. (2001). Robust real-time object detection. In CVPR.
  29. Winn, J. and Jojic, N. (2005). Locus: Learning object classes with unsupervised segmentation. In ICCV.
  30. Winnemöller, H., Olsen, S. C., and Gooch, B. (2006). Realtime video abstraction. In SIGGRAPH.
  31. Yang, L., Meer, P., and Foran, D. (2007). Multiple class segmentation using a unified framework over meanshift patches. In CVPR.
  32. Yang, M.-H., Kriegman, D., and Ahuja, N. (2002). Detecting faces in images: A survey. PAMI, 24(1).

Paper Citation

in Harvard Style

Csurka G. and Bressan M. (2009). SPARE TIME ACTIVITY SHEETS FROM PHOTO ALBUMS . In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009) ISBN 978-989-8111-67-8, pages 156-163. DOI: 10.5220/0001799601560163

in Bibtex Style

author={Gabriela Csurka and Marco Bressan},
booktitle={Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)},

in EndNote Style

JO - Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)
SN - 978-989-8111-67-8
AU - Csurka G.
AU - Bressan M.
PY - 2009
SP - 156
EP - 163
DO - 10.5220/0001799601560163