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Abstract: We introduce a framework for analyzing symmetry of 2D and 3D objects using elastic deformations of their
boundaries. The basic idea is to define spaces of elastic shapes and to compute shortest (geodesic) paths
between the objects and their reflections using a Riemannian structure. Elastic matching, based on optimal
(nonlinear) re-parameterizations of curves, provides a better registration of points across shapes, as compared
to the previously-used linear registrations. A crucial step of orientation alignment, akin to finding planes
of symmetry, is performed as a search for shortest geodesic paths. This framework is fully automatic and
provides: a measure of asymmetry, the nearest symmetric shape, the optimal deformation to make an object
symmetric, and the plane of symmetry for a given object.

1 INTRODUCTION

Symmetry is an important feature of an object and in
symmetry analysis one asks questions of the type: Is
a given object symmetric? What is the level (quan-
tification) of asymmetry in an object? What is the
nearest symmetric object for a given asymmetric ob-
ject and how far is it? How to minimally deform an
object to make it symmetric? What are the planes(s)
of symmetry of a given symmetric object? And so on.
Such an analysis plays an important role in several
applications, including object design, manufacturing,
packaging, segmentation (Simari et al., 2006), view
selection (Thrun and Wegbreit, 2005), model reduc-
tion (Mitra et al., 2006), medical diagnosis, and sur-
gical planning. Reflection symmetry occurs in many
biological objects, and is an important part of how
we as humans perceive them. Symmetry analysis can
also play an important role in medical diagnostics, for
example, when the level of asymmetry in an organ re-
lates to its health. The procedures for quantification of
asymmetry, estimation of symmetry hyperplane, and
symmetrization of objects are also gaining attention
in 3D graphics, object recognition, indexing and re-
trieval.

In this paper we will consider both 2D and 3D ob-

jects, and we will restrict to the shapes of their bound-
aries for symmetry analysis. For the 2D case, we
will study a variety of objects from public databases,
but for the 3D case we will focus on shapes of facial
surfaces. Symmetry of faces has large relevance in
multiple contexts. For example, in orthodontics, see
for example (Tomaka, 2005), that symmetry analysis
can help plan surgical interventions in the craniofa-
cial area and to monitor their long-term effects. The
detection of facial landmarks can benefit from a sym-
metry analysis. An important component of cosmetic
facial surgeries is to enhance facial symmetries, long
considered a factor in improving appearances. A sur-
geon can be guided by the optimal deformation of a
face that will make it symmetric.

By definition, a solid or a surface is reflection-
symmetric if its reflection, with respect to a certain
plane, is identical to it. Consequently, classifying an
object as symmetric or not, or measuring the level of
its asymmetry, can be reduced to the task of comput-
ing differences in shapes between two objects: the
original one and its mirror reflection. Several recent
efforts in shape analysis have focused on symmetry
detection of 2D and 3D shapes (Mitra et al., 2006),
(Martinet et al., 2006), (Kazhdan et al., 2004). The
general framework used is as follows: Letβ be an ob-
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ject (curve, surface, etc) in an appropriateR
n andRbe

a plane of reflection inRn. R will be denoted by the
vectorv∈ R

n perpendicular toR. Assuming thatβ is
centered in that coordinate system, define a measure
of asymmetry as:

ρ(β) = argmin
v∈Rn

‖β−H(v)β‖2, H(v) = (I −2
vvT

vTv
), (1)

where‖ · ‖ is the two norm integrated over the points
in the object.H(v) is the Householder reflection op-
erator which rotates any vector into its reflection in a
plane orthogonal tov. In caseρ(β) is zero, the ob-
ject is said to be symmetric and the correspondingv
provides the the plane of symmetry. Zabrodsky et al.
(Zabrodsky et al., 1995) suggested a slightly differ-
ent formulation where they find the nearest symmetric
object to the given object. That is, define

SD(β) = argmin
v∈Rn,s.t. H(v)α=α

‖β−α‖2 . (2)

This idea has been called the symmetry distance
(Zabrodsky et al., 1995). Mitra et al. (Mitra et al.,
2007) formulate the search for symmetrization defor-
mation in a similar way, but based on points sampled
from the original model. Sun et al. (Sun and Sherrah,
1997) proposed a method to detect symmetry based
on the Extended Gaussian Image (EGI).

Since symmetry analysis is intimately tied to
quantification of differences in shapes of objects and
their reflections, one should look more carefully at
how shape quantification is being performed. It is
a common trend in papers on symmetry to use Eu-
clidean norms between points sets to form cost func-
tions. Additionally, the authors have invariably used a
linear registration of points, between the original ob-
ject and its reflection, to evaluate these norms. In con-
trast, the literature in shape analysis of curves sug-
gests a larger variety of metrics and nonlinear reg-
istrations in measuring shapes (Michor and Mum-
ford, 2006). In particular, the use of elastic defor-
mations to compare and analyze shapes is gaining
popularity. Here, the curves are allowed to optimally
stretch/shrink and bend to match one another during
comparisons. Mathematically, this is accomplished
by applying all possible re-parameterizations, includ-
ing nonlinear registrations, on curves to find the opti-
mal registration. In this paper, we utilize the frame-
work of Joshi et al. (Joshi et al., 2007a), on elastic
shape analysis of curves, for performing symmetry
analysis of 2D shapes. To extend this idea to sym-
metry analysis of surfaces, we use the approach of
Samir et al. (Samir et al., 2006) where a facial sur-
face is represented as a collection of level curves, and

faces can be elastically compared by comparing the
corresponding curves.

The rest of this paper is organized as follows. We
present the general framework in Section 2, particu-
larize it for 2D shapes in Section 3 and for surfaces in
Section 4.

2 GENERAL FRAMEWORK

We advocate the use of geometric approaches in sym-
metry analysis. In particular, we suggest the use of
elastic shape analysis of curves and surfaces to help
quantify differences between objects and their reflec-
tions. A geometric approach for shape analysis in-
volves: (i) defining a space of shapes using their
mathematical representations, (ii) imposing a Rie-
mannian structure on it, and (iii) numerically com-
puting geodesic paths between arbitrary shapes. Care
is taken to remove symmetry-preserving transforma-
tions from the representation using algebraic equiva-
lences.

More precisely, one starts with a space, sayC , of
mathematical representations of objects, e.g. closed
curves, and studies its differential geometry to iden-
tify tangent spacesTC . Then, choosing a Riemannian
metric – a positive-definite, bilinear, symmetric form
on tangent spaces – one can define lengths of paths
on C . Given any two objects, i.e. two elements ofC ,
one can use a numerical approach to find a shortest
geodesic path between them. Letdc denote the length
of this geodesic.

Symmetry of a curve or a surface is invariant to its
translation, scaling, rotation, and re-parametrization.
Scaling and translation are usually accounted for in
definingC , but the other two are handled explicitly as
follows. One defines the action of the rotation group
SO(n) and the re-parametrization groupΓ on C , and
defines the orbits of objects under these actions as
equivalence classes. In other words, for aq ∈ C, if
[q] is the set of all variations ofq obtained by rotat-
ing and re-parameterizing it, then[q] is defined to be
an equivalence class. The set of all such equivalence
classes is the quotient spaceS = C /(SO(n)×Γ). The
distance between any two elements ofS , say[q1] and
[q2], is the length of the shortest geodesic inC be-
tween elements of those two sets:

ds([q1], [q2]) = inf
p1∈[q1],p2∈[q2]

dc(p1, p2)

= inf
p2∈[q2]

dc(p1, p2) . (3)

The last equality assumes thatSO(n) andΓ act onC
as isometries. The distanceds is invariant to rotation,
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translation, scaling, and re-parametrization of the ob-
jects. How can this distance be used to measure the
symmetry of an object? The answer comes from the
following result.

Theorem 1. 1) 2D Case. Assuming a simple, closed
curveβ is bounded, and̃β is an arbitrary reflection of
β, then the distance ds betweenβ andβ̃ is zero if and
only if β is symmetric.
2) 3D Case. For a two-dimensional surface S inR3,
if the distance ds between S and any of its reflection
S̃ is zero, then there exists a rigid motion taking S to
S̃. In fact, this rigid motion is a composition of a re-
flection in some plane, and a rotation around an axis
perpendicular to that plane.

We note that this theorem actually holds for any
bounded point set inR2 or R

3, although in this paper
we are concerned only with curves and surfaces.

This motivates the use of elastic distanceds as a
measure of asymmetry in an object. If an object is
perfectly symmetric, the distanceds, between itself
and its arbitrary reflection, will be zero. If it is not
symmetric then we can useds as a measure of asym-
metry in that object. In the next two sections, we par-
ticularize this idea to analyze symmetries of 2D and
3D shapes.

3 SYMMETRY ANALYSIS OF 2D
CURVES

We start this section by summarizing the geometric
shape analysis of planar closed curves. Consider a
closed curve as a mappingβ from S

1 to R
2. To ana-

lyze its shape, we will represent this curve by a func-

tion q : S
1 → R

2, whereq(t) = β̇(t)√
||β̇(t)||

. Here,s∈ S
1,

where‖ · ‖ is the usual two norm inR2. Given aq
function, we can reconstruct the original curve up to a
translation. We narrow our study to closed curves of
length one by defining:

C = {q|
∫

‖q(t)‖dt = 1,
∫

q(t) ||q(t)||dt = 0} . (4)

The first constraint forces the curves to be of length
one and the second constraint ensures their closure.
Shapes of curves are compared using geodesic paths
on C which, in turn, requires a Riemannian struc-
ture. To impose a Riemannian metric onC , de-
fine the inner product: for anyu,v ∈ Tq(C ), 〈u,v〉 =
∫ 2π

0 〈u(t),v(t)〉 dt. For computing geodesic paths on
C , there are a variety of numerical approaches avail-
able. In this paper we use a path-straightening ap-
proach, where the given pair of shapes is connected

by an initial arbitrary path inC and that path is itera-
tively “straightened” until it becomes a geodesic. For
details of implementation, please refer to the paper by
Joshi et al. (Joshi et al., 2007a). Letdc(q1,q2) be the
length of geodesic connectingq1 andq2 in C .

Since the symmetry ofβ is considered invariant
to its rotation or re-parametrization, our measure of
asymmetry should also be invariant to these trans-
formations. (Note that translation and scaling of a
curve have already been removed when curves are
represented as elements ofC .) The rotation of a
curve is represented by a 2× 2 matrix, an element
of SO(2), while a re-parametrization is a diffeomor-
phismγ : S

1 → S
1, an element ofΓ, the space of all

such diffeomorphisms. Define the actions ofSO(2)
andΓ onC as follows:

SO(2) × C → C , (O,q) = {Oq(t)|t ∈ [0,1]}
Γ × C → C , (γ,q) = {

√

γ̇q(γ(t))|t ∈ [0,1]}
It can be shown that these two group actions com-
mute and, hence, we can define the quotient space
with respect to their direct product according toS =
C /(SO(2)×Γ). The orbit of a shape, represented by
q, is given by:

[q] = {
√

γ̇Oq(γ(t))|O∈ SO(2),γ ∈ Γ} ,

and this denotes the equivalence class of all rotations
and re-parameterizations ofq. The set of all such
equivalence classes isS .

To compute distances between any two elements
of S , one has to find the shortest path between the
two corresponding orbits. This length of this shortest
path is:

ds = inf
O∈SO(2),γ∈Γ

dc(q1,
√

γ̇Oq2(γ)) . (5)

This minimization requires search over all rotations
and re-parameterizations ofq2 so that it best matches
q1. Note that ifq2 is a reflection ofq1, then the op-
timization overSO(2) is similar to the one in Eqn.
1, except that the Euclidean norm is replaced by the
geodesic distancedc. The other difference from that
equation is the optimization overγ, which allows for
nonlinear registration between the two shapes. How
to solve this optimization problem? Joshi et al. (Joshi
et al., 2007b) describe a technique that uses gradients
to search overΓ but uses an exhaustive search over
SO(2) to minimize the cost function. We refer the
reader to that paper for details.

To analyze the level of asymmetry of a closed
curve β, we obtain a reflectioñβ = H(v)β, where

H(v) = (I −2vvT

vTv
), for anyv ∈ R

2. Denote the rep-

resentation ofβ in C by q and that ofβ̃ by q̃. Let
ψ : [0,1] 7→ S be the geodesic path betweenq and q̃
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bone bird bottle brick camel cat car carriage

chopper crown fountain stef rat fork tool flatfish glass

Figure 1: Seventeen 2D shapes used in experiments on symmetry.
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Figure 2: In each row, the left panel showsβ and β̃, the middle panel shows geodesicψt between them, and the last panel
shows the optimalγ for their matching.

constructed using optimization techniques presented
in (Joshi et al., 2007b); we haveψ(0) = q andψ(1) =
q̃. ψ provides important information about the sym-
metry ofβ:

1. Measure of Asymmetry. Define the length of the
pathψ as a measure of asymmetry ofβ:

ρ(β) = ds(q,H(v)q)) , for any v∈ R
n . (6)

2. Nearest Symmetric Shape. The halfway point
along the geodesic, i.e.ψ(0.5), is perfectly sym-
metric. Amongst all perfectly symmetric shapes,
it is the nearest toq in S .

3. Deformation for Symmetrization. The velocity
vector ψ̇(0) provide a deformation (vector) field
onβ than transformsβ into the nearest symmetric
shape.

Next we present some experimental results on
measuring asymmetry on some 2D shapes taken from
one of the Kimia databases. We have used seven-
teen curves from different shape classes; these curves
are shown in Figure 1. Based on their appearances,

one can see that some curves show strong symmetries
while others look far from symmetric.

Our approach is to take a curveβ, select an ar-
bitrary reflector inR

2, and form a new curvẽβ by
applying that reflector onβ. Shown in the left col-
umn of Figure 2 are four examples of such random re-
flections. The last shape is an artificially constructed
shape with perfect symmetry, just to test the algo-
rithm. Then, we compute geodesic paths inS between
the shapes ofq and q̃, the representatives ofβ and
β̃ in C . Four examples of these paths are shown in
the middle column of Figure 2. The lengths of these
paths,ρ(β), provide the level of asymmetry of these
shapes. For the seventeen shapes shown in Figure 1,
the values ofρ(β) are shown in Figure 3. The bottle
and the fork are the most symmetric objects while the
fountain, the flatfish, the glass, and the tool are quite
close. On the other extreme, the cat and the chop-
per are the most asymmetric shapes. One can say that
the cat is almost ten times as asymmetric as the bot-
tle. To put these numbers in perspective, this measure
for the artificially constructed shape in the top right
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of Figure 2 is found to be 0.0814. This value can be
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Figure 3: The values ofρ(β) for the 17 shapes shown in
Figure 1.

treated as a numerical error in measuring symmetry of
perfectly symmetric objects. The last column shows
the optimalγs that resulted from optimal alignment
of curves with their reflections (Eqn. 5). For a per-
fectly symmetric shapeγ is identity, while for largely
asymmetric shapes optimalγs are quite nonlinear.

4 SYMMETRY ANALYSIS OF
SURFACES

To analyze the symmetry of a surface is much more
complicated due to the corresponding difficulty in an-
alyzing shapes of surfaces. The space of parameteri-
zations of a surface is much larger than that of a curve,
and this hinders an analysis of symmetry in a way
that is invariant to parametrization. (Recall from pre-
vious sections that invariance to parametrization re-
quires solving an optimal re-parametrization of one
object, in order to best match the other.) One solu-
tion is to restrict to a family of parameterizations and
perform shape analysis over that space. Although this
can not be done for all surfaces, it is natural for cer-
tain surfaces such as the facial surfaces as described
next.

Using the approach of Samir et al., we can repre-
sent a facial surfaceSas an indexed collection of fa-
cial curves, as shown in Figure 4. Each facial curve,
denoted bycλ, is obtained as a level set of the (sur-
face) distance function from the tip of the nose; it
is a closed curve inR3. The treatment of symme-
tries of closed curves inR3 is similar to that of planar
curves described in the previous section. As earlier,
let ds denote the geodesic distance between closed
curves inR

3, when computed on the shape space
S = C /(SO(3)×Γ), whereC is same as Eqn. 4 ex-
cept this time it is for curves inR3. A surfaceS is

Figure 4: Representation of facial surfaces as indexed col-
lection of closed curves inR3.

represented as a collection∪λcλ and the elastic dis-
tance between any two facial surfaces is given by:
ds(S1,S2) = ∑λ ds(λ), where

ds(λ) = inf
O∈SO(3),γ∈Γ

dc(q
1
λ,

√

γ̇Oq2
λ(γ)) . (7)

Hereq1
λ andq2

λ areq representations of the curvesc1
λ

andc2
λ, respectively. According to this equation, for

each pair of curves inS1 andS2, c1
λ andc2

λ, we ob-
tain an optimal rotation and re-parametrization of the
second curve. To put together geodesic paths between
full facial surfaces, we need a single rotational align-
ment between them, not individually for each curve as
we have now. Thus we compute an average rotation:

Ô = average{Oλ} ,

using a standard approach, and applyÔ to S2 to align
it with S1. This global rotation, along with optimal
re-parameterizations for eachλ, provides an optimal
alignment between individual facial curves and re-
sults in shortest geodesic paths between them. Com-
bining these geodesic paths, for allλs, one obtains
geodesic paths between the original facial surfaces.

We apply this idea for symmetry analysis of facial
surfaces. We take a surfaceS and form its reflection
in an arbitrary plane. Then, we extract facial curves
out of each surface and use these curves, as described
above, to form a geodesic path between the facial sur-
faces. Shown in Figure 5 is an example of a geodesic
path between a face, distorted by a smile, and its re-
flection. For illustration, we show the geodesic using
both the rendered surfaces (top) and the facial curves
(bottom). In this case, the measure of asymmetry is
ds(S, S̃) = 0.0210.

In Figure 6, we present some additional examples
of symmetrizing facial surfaces. From top to bottom,
the measure of asymmetry in these faces is 0.0217,
0.0147, 0.0156, and 0.0195.

5 SUMMARY

We have presented a framework for analyzing sym-
metries in 2D and 3D objects. This framework is
based on elastic deformations of objects in a fashion
that is invariant to rigid transformations and global
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Figure 5: The geodesic path between a face and its reflection.

Figure 6: Examples of symmetry analysis of faces: geodesic between faces and their optimally aligned reflections.

scaling. The use of nonlinear registration techniques
help improve the quantification of differences be-
tween shapes of objects and their reflections. This
framework provides a measure of asymmetry, the
nearest symmetric object, and a deformation field for
symmetrizing an object.
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