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Abstract: We introduce a framework for analyzing symmetry of 2D and 3D objects using elastic deformations of their
boundaries. The basic idea is to define spaces of elastic shapes and to compute shortest (geodesic) paths
between the objects and their reflections using a Riemannian structure. Elastic matching, based on optimal
(nonlinear) re-parameterizations of curves, provides a better registration of points across shapes, as compared
to the previously-used linear registrations. A crucial step of orientation alignment, akin to finding planes
of symmetry, is performed as a search for shortest geodesic paths. This framework is fully automatic and
provides: a measure of asymmetry, the nearest symmetric shape, the optimal deformation to make an object
symmetric, and the plane of symmetry for a given object.

1 INTRODUCTION jects, and we will restrict to the shapes of their bound-
aries for symmetry analysis. For the 2D case, we
will study a variety of objects from public databases,
but for the 3D case we will focus on shapes of facial
surfaces. Symmetry of faces has large relevance in
multiple contexts. For example, in orthodontics, see
for example (Tomaka, 2005), that symmetry analysis
can help plan surgical interventions in the craniofa-
cial area and to monitor their long-term effects. The
detection of facial landmarks can benefit from a sym-
metry analysis. An important component of cosmetic
facial surgeries is to enhance facial symmetries, long
considered a factor in improving appearances. A sur-
geon can be guided by the optimal deformation of a
face that will make it symmetric.
By definition, a solid or a surface is reflection-

Symmetry is an important feature of an object and in
symmetry analysis one asks questions of the type: Is
a given object symmetric? What is the level (quan-
tification) of asymmetry in an object? What is the
nearest symmetric object for a given asymmetric ob-
ject and how far is it? How to minimally deform an
object to make it symmetric? What are the planes(s)
of symmetry of a given symmetric object? And so on.
Such an analysis plays an important role in several
applications, including object design, manufacturing,
packaging, segmentation (Simari et al., 2006), view
selection (Thrun and Wegbreit, 2005), model reduc-
tion (Mitra et al., 2006), medical diagnosis, and sur-
gical planning. Reflection symmetry occurs in many o X : .
biological objects, and is an important part of how s?/mme_trl% i Its r:afleg:tlon, with resplect Ito a certain
we as humans perceive them. Symmetry analysis canP,2ne. 1S 1 entical to it. Consequently, classifying an

also play an important role in medical diagnostics, for ic:?:gt r?insgf{;nmggct)grrgghczr dTg?ﬁgT;gkIZ?ég\:ﬁl 8{
example, when the level of asymmetry in an organ re- Y Y P

lates to its health. The procedures for quantification of ing differences in shapes between two objects: the

ssymmety, estmato ofsymmety hyperlane, an 9101 01 nd s mirr eflecion, Severs ecens
symmetrization of objects are also gaining attention P y y y

. ) ) L . _ detection of 2D and 3D shapes (Mitra et al., 2006),
er}e?:lzlgraphlcs, object recognition, indexing and re (Martinet et al., 2006), (Kazhdan et al., 2004). The

eneral framework used is as follows: e an ob-
In this paper we will consider both 2D and 3D ob- g 1o
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ject (curve, surface, etc) in an approprigfeandR be faces can be elastically compared by comparing the
a plane of reflection ifR". R will be denoted by the  corresponding curves.

vectorv € R" perpendicular t&R. Assuming thaf is The rest of this paper is organized as follows. We

centered in that coordinate system, define a measurepresent the general framework in Section 2, particu-

of asymmetry as: larize it for 2D shapes in Section 3 and for surfaces in
Section 4.

wl

viv

P(B):aigﬂg:inHB—H(V)BH{H(V):(l—z ), (1)

2 GENERAL FRAMEWORK

where|| - || is the two norm integrated over the points

in the object.H(v) is the Householder reflection op-  We advocate the use of geometric approaches in sym-
erator which rotates any vector into its reflection in a metry analysis. In particular, we suggest the use of

plane orthogonal te. In casep(B) is zero, the ob-  elastic shape analysis of curves and surfaces to help
ject is said to be symmetric and the corresponding quantify differences between objects and their reflec-

provides the the plane of symmetry. Zabrodsky et al. tions. A geometric approach for shape analysis in-

(Zabrodsky et al., 1995) suggested a slightly differ- volves: (i) defining a space of shapes using their

ent formulation where they find the nearest symmetric mathematical representations, (ii) imposing a Rie-

object to the given object. That is, define mannian structure on it, and (iii) numerically com-
_ . 2 puting geodesic paths between arbitrary shapes. Care
SD(B) = argmin _|B—af|”. ) is taken to remove symmetry-preserving transforma-

veRN st. H(v)a=a . ’ J . .
tions from the representation using algebraic equiva-

This idea has been called the symmetry distancelences.

(Zabrodsky et al., 1995). Mitra et al. (Mitra et al., More precisely, one starts with a space, gayof

2007) formulate the search for symmetrization defor- mathematical representations of objects, e.g. closed

mation in a similar way, but based on points sampled curves, and studies its differential geometry to iden-

from the original model. Sun et al. (Sun and Sherrah, tify tangent space§c. Then, choosing a Riemannian

1997) proposed a method to detect symmetry basedmetric — a positive-definite, bilinear, symmetric form

on the Extended Gaussian Image (EGI). on tangent spaces — one can define lengths of paths
Since symmetry analysis is intimately tied to onc¢. Given any two objects, i.e. two elementsaf

quantification of differences in shapes of objects and one can use a numerical approach to find a shortest

their reflections, one should look more carefully at geodesic path between them. Idetdenote the length

how shape quantification is being performed. It is of this geodesic.

a common trend in papers on symmetry to use Eu-  Symmetry of a curve or a surface is invariant to its

clidean norms between points sets to form cost func- translation, scaling, rotation, and re-parametrization.

tions. Additionally, the authors have invariably used a Scaling and translation are usually accounted for in

linear registration of points, between the original ob- definingc, but the other two are handled explicitly as

jectand its reflection, to evaluate these norms. In con- follows. One defines the action of the rotation group

trast, the literature in shape analysis of curves sug- SQn) and the re-parametrization grofipon ¢, and

gests a larger variety of metrics and nonlinear reg- defines the orbits of objects under these actions as

istrations in measuring shapes (Michor and Mum- equivalence classes. In other words, fog a C, if

ford, 2006). In particular, the use of elastic defor- [q] is the set of all variations of obtained by rotat-

mations to compare and analyze shapes is gaininging and re-parameterizing it, théq is defined to be

popularity. Here, the curves are allowed to optimally an equivalence class. The set of all such equivalence

stretch/shrink and bend to match one another during classes is the quotient space- ¢ /(SQn) x ). The

comparisons. Mathematically, this is accomplished distance between any two elementsotay|q;] and

by applying all possible re-parameterizations, includ- [qp], is the length of the shortest geodesicdnbe-

ing nonlinear registrations, on curves to find the opti- tween elements of those two sets:

mal registration. In this paper, we utilize the frame- ]

work of Joshi et al. (Joshi et al., 2007a), on elastic ds([on), [02]) = inf dc(p1, P2)

shape analysis of curves, for performing symmetry Pacla], Pzl

analysis of 2D shapes. To extend this idea to sym- pzlg[];z] de(p1, P2) - (3)

metry analysis of surfaces, we use the approach of

Samir et al. (Samir et al., 2006) where a facial sur- The last equality assumes tt&®(n) andl" act onc

face is represented as a collection of level curves, andas isometries. The distandgis invariant to rotation,
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translation, scaling, and re-parametrization of the ob-

by an initial arbitrary path i and that path is itera-

jects. How can this distance be used to measure thetively “straightened” until it becomes a geodesic. For
symmetry of an object? The answer comes from the details of implementation, please refer to the paper by

following result.

Theorem 1. 1) 2D Case. Assuming a simple, closed
curvep is bounded, an@ is an arbitrary reflection of

B, then the distancesthetweerf andf is zero if and
only if 3 is symmetric.

2) 3D Case. For a two-dimensional surface S ik?,

if the distance gbetween S and any of its reflection
S is zero, then there exists a rigid motion taking S to
S. In fact, this rigid motion is a composition of a re-
flection in some plane, and a rotation around an axis
perpendicular to that plane.

We note that this theorem actually holds for any
bounded point set iR? or R3, although in this paper
we are concerned only with curves and surfaces.

This motivates the use of elastic distardzeas a
measure of asymmetry in an object. If an object is
perfectly symmetric, the distanak, between itself
and its arbitrary reflection, will be zero. If it is not
symmetric then we can usl as a measure of asym-
metry in that object. In the next two sections, we par-
ticularize this idea to analyze symmetries of 2D and
3D shapes.

3 SYMMETRY ANALYSISOF 2D
CURVES

We start this section by summarizing the geometric

Joshi et al. (Joshi et al., 2007a). ldgtai,q2) be the
length of geodesic connectitng andgy in C.

Since the symmetry o is considered invariant
to its rotation or re-parametrization, our measure of
asymmetry should also be invariant to these trans-
formations. (Note that translation and scaling of a
curve have already been removed when curves are
represented as elements of) The rotation of a
curve is represented by ax22 matrix, an element
of SQ2), while a re-parametrization is a diffeomor-
phismy: St — S, an element of, the space of all
such diffeomorphisms. Define the actionsSi¥(2)
andl” on ¢ as follows:

SQ2)
M x

x ¢—c, (0,q)={0qt)[t e [0,1]}

c—c, (va)={V¥avt)lte 01}

It can be shown that these two group actions com-
mute and, hence, we can define the quotient space
with respect to their direct product accordingste=
c/(SQ2) x ). The orbit of a shape, represented by
g, is given by:

[a] = {\/YOq(y(t))|0 € SO2),ye T},

and this denotes the equivalence class of all rotations
and re-parameterizations gf The set of all such
equivalence classes s

To compute distances between any two elements
of §, one has to find the shortest path between the
two corresponding orbits. This length of this shortest

shape analysis of planar closed curves. Consider apathis:

closed curve as a mappiffigfrom S! to R?. To ana-
lyze its shape, we will represent this curve by a func-

tionq: S — R?, whereq(t) = ﬁg()t)u . Here;sc S1,
where|| - || is the usual two norm iiR?. Given aq

function, we can reconstruct the original curve up to a
translation. We narrow our study to closed curves of
length one by defining:

c={al [ lla®ldt=1, [ a(t) ia(t)1dt=0} . (4

The first constraint forces the curves to be of length

ds= dc(qs, \/—Vqu(y)) . (5)
This minimization requires search over all rotations
and re-parameterizations gf so that it best matches
g1. Note that ifgy is a reflection ofgz, then the op-
timization overSQ(2) is similar to the one in Eqn.

1, except that the Euclidean norm is replaced by the
geodesic distancé.. The other difference from that
equation is the optimization ovgr which allows for
nonlinear registration between the two shapes. How
to solve this optimization problem? Joshi et al. (Joshi

inf
0eSsq2),yel

one and the second constraint ensures their closure®t @l., 2007b) describe a technique that uses gradients
Shapes of curves are compared using geodesic pathgo search ovef but uses an exhaustive search over

on ¢ which, in turn, requires a Riemannian struc-
ture. To impose a Riemannian metric @n de-

fine the inner product: for any,v € Tq(C), (u,v) =

()Z’T(u(t),v(t)) dt. For computing geodesic paths on

¢, there are a variety of numerical approaches avail- H
able. In this paper we use a path-straightening ap-

SQ(2) to minimize the cost function. We refer the
reader to that paper for details.

To analyze the level of asymmetry of a closed
curve B, we obtain a reflectio8 = H(v)B, where
(V)= (I - 2%), for anyv € R2. Denote the rep-
resentation of3 in ¢ by q and that off3 by §. Let

proach, where the given pair of shapes is connectedy : [0,1] — s be the geodesic path betwegmand q
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chopper | crown | fountain stef rat fork tool flatfish glass

Figure 1: Seventeen 2D shapes used in experiments on syynmetr
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Figure 2: In each row, the left panel sho@sand f3 the middle panel shows geodegic between them, and the last panel
shows the optimay for their matching.

constructed using optimization techniques presentedone can see that some curves show strong symmetries
in (Joshi et al., 2007b); we hayg0) = g andy(1) = while others look far from symmetric.

d. Y provides important information about the sym- Our approach is to take a curgk select an ar-

metry of: bitrary reflector inR?, and form a new curv@ by
1. Measureof Asymmetry. Define the length of the  applying that reflector of8. Shown in the left col-
pathy as a measure of asymmetryff umn of Figure 2 are four examples of such random re-
flections. The last shape is an artificially constructed
P(B)=ds(a,H(v)q)) , forany ve R".  (6) shape with perfect sypmmetry, just to t{zst the algo-
2. Nearest Symmetric Shape. The halfway point rithm. Then, we compute geodesic pat_hs ibetween
along the geodesic, i.ep(0.5), is perfectly sym- e shapes of andd; the representatives @ and
metric. Amongst all perfectly symmetric shapes, B in ¢. Four examples of these paths are shown in
it is the nearest tqin . the middle colurr_m of Figure 2. The lengths of these
3. Deformation for Symmetrization. The velocity paths,p(B). provide the level of asymmetry of these
vector (0) provide a deformation (vector) field

shapes. For the seventeen shapes shown in Figure 1,
: .~ the values op(B) are shown in Figure 3. The bottle

on 3 than transform§ into the nearest symmetric

shape.

and the fork are the most symmetric objects while the
fountain, the flatfish, the glass, and the tool are quite
Next we present some experimental results on close. On the other extreme, the cat and the chop-
measuring asymmetry on some 2D shapes taken fromper are the most asymmetric shapes. One can say that
one of the Kimia databases. We have used seven-the cat is almost ten times as asymmetric as the bot-

teen curves from different shape classes; these curvedle. To put these numbers in perspective, this measure
are shown in Figure 1. Based on their appearancesfor the artificially constructed shape in the top right
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of Figure 2 is found to be.0814. This value can be

0.9
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fountain

fgazﬁ%ﬂas
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fork
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lb 1‘2
Figure 3: The values op(B) for the 17 shapes shown in
Figure 1.

Figure 4: Representation of facial surfaces as indexed col-
lection of closed curves iR3,

represented as a collectian c, and the elastic dis-
tance between any two facial surfaces is given by:
ds(S1,S) = 32 ds(A), where

ds(A) de (0, VYOR(Y)) -

inf
0eSQ(3),yel

(7)

Hereq; andg? areq representations of the curve’s
andc%, respectively. According to this equation, for
each pair of curves ity and S, c% and cf, we ob-

treated as a numerical error in measuring symmetry of tain an optimal rotation and re-parametrization of the

perfectly symmetric objects. The last column shows
the optimalys that resulted from optimal alignment
of curves with their reflections (Egn. 5). For a per-
fectly symmetric shapeis identity, while for largely
asymmetric shapes optimgd are quite nonlinear.

4 SYMMETRY ANALYSISOF
SURFACES

To analyze the symmetry of a surface is much more
complicated due to the corresponding difficulty in an-

alyzing shapes of surfaces. The space of parameteri
zations of a surface is much larger than that of a curve,

and this hinders an analysis of symmetry in a way
that is invariant to parametrization. (Recall from pre-
vious sections that invariance to parametrization re-
quires solving an optimal re-parametrization of one
object, in order to best match the other.) One solu-
tion is to restrict to a family of parameterizations and

perform shape analysis over that space. Although this

can not be done for all surfaces, it is natural for cer-

tain surfaces such as the facial surfaces as describe

next.

Using the approach of Samir et al., we can repre-
sent a facial surfac8 as an indexed collection of fa-
cial curves, as shown in Figure 4. Each facial curve,
denoted byc,, is obtained as a level set of the (sur-
face) distance function from the tip of the nose; it
is a closed curve ifR®. The treatment of symme-
tries of closed curves iR3 is similar to that of planar
curves described in the previous section. As earlier,

second curve. To put together geodesic paths between
full facial surfaces, we need a single rotational align-
ment between them, not individually for each curve as
we have now. Thus we compute an average rotation:

O = averagé0,} ,

using a standard approach, and applo S to align
it with S;. This global rotation, along with optimal
re-parameterizations for eaah provides an optimal
alignment between individual facial curves and re-
sults in shortest geodesic paths between them. Com-
bining these geodesic paths, for a8, one obtains
geodesic paths between the original facial surfaces.
We apply this idea for symmetry analysis of facial
surfaces. We take a surfaBand form its reflection
in an arbitrary plane. Then, we extract facial curves
out of each surface and use these curves, as described
above, to form a geodesic path between the facial sur-
faces. Shown in Figure 5 is an example of a geodesic
path between a face, distorted by a smile, and its re-
flection. For illustration, we show the geodesic using
both the rendered surfaces (top) and the facial curves

ébottom). In this case, the measure of asymmetry is

ds(S,9) = 0.0210.

In Figure 6, we present some additional examples
of symmetrizing facial surfaces. From top to bottom,
the measure of asymmetry in these faces.@207,
0.0147, 00156, and @195.

5 SUMMARY

let ds denote the geodesic distance between closedWe have presented a framework for analyzing sym-

curves inR3, when computed on the shape space
s =c¢/(SQQ3) xI), wherec is same as Eqgn. 4 ex-
cept this time it is for curves iiR3. A surfaceSis

198

metries in 2D and 3D objects. This framework is
based on elastic deformations of objects in a fashion
that is invariant to rigid transformations and global



ON ANALYZING SYMMETRY OF OBJECTS USING ELASTIC DEFORMATIONS

plalalalalals
A

Figure 5: The geodesic path between a face and its reflection.

Figure 6: Examples of symmetry analysis of faces: geodesieden faces and their optimally aligned reflections.

scaling. The use of nonlinear registration techniques Science Policy Office. The scientific responsibility
help improve the quantification of differences be- rests with its author(s). This research was also sup-
tween shapes of objects and their reflections. This ported in part by the ANR project under FAR3D
framework provides a measure of asymmetry, the ANR-07-SESU-004, and CPER Nord-Pas de Calais
nearest symmetric object, and a deformation field for ambient intelligence.

symmetrizing an object.
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