Dave Rudolf, David Mould



This paper presents an automatic animation system for jellyfish that accounts for interaction between the organism and its surroundings. We endeavor to model the jellyfish’s morphology, as well as its achieved thrust. We physically simulate the elastic body of the jellyfish and its surrounding sea water. We use a modified immersed boundary method to combine spring-mass systems and a grid-based semi-Lagrangian fluid solver. The resulting simulations are efficient with an acceptable compromise in physical accuracy. We reduce our model for axially symmetric species to 2D, and extrapolate the results to 3D. We add detail to the 3D shape with noise that is inspired by empirical observations of real jellyfish. We also suggest suitable contraction functions so that our virtual jellyfish propells itself within the water in a manner similar to the real organism. The resulting system is capable of animating jellyfish in real-time on modest desktop hardware.


  1. Acheson, D. J. (1990). Elementary Fluid Dynamics. Oxford: Oxford University Press.
  2. Arai, M. N. (1997). A Functional Biology of Scyphozoa. London: Chapman and Hall.
  3. Beer, R. D., Quinn, R. D., Chiel, H. J., & Ritzmann, R. E. (1997). Biologically inspired approaches to robotics: what can we learn from insects? Commun. ACM, 40(3), 30-38.
  4. Dabiri, J. O. & Gharib, M. (2003). Sensitivity analysis of kinematic approximations in dynamic medusan swimming models. Journal of Experimental Biology, 206, 3675-3680.
  5. Dean, T. & Wellman, M. (1991). Planning and Control. San Francisco: Morgan Kaufmann Publishers.
  6. Desbrun, M. & Gascuel, M.-P. (1996). Smoothed particles: a new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics workshop on Computer animation and simulation 7896, (pp. 61-76)., New York, NY, USA. Springer-Verlag New York, Inc.
  7. Gladfelter, W. B. (1972). Structure and function of the locomotory system of polyorchis montereyensis (cnidaria, hydrozoa). Helgolaender Wiss. Meeresunters, 23, 38- 79.
  8. Griebel, M., Dornseifer, T., & Neunhoeffer, T. (1998). Numerical Simulation in Fluid Dynamics: a practical introduction. Philadelphia: Society for Industrial and Applied Mathematics.
  9. Hodgins, J. K., Wooten, W. L., Brogan, D. C., & O'Brien, J. F. (1995). Animating human athletics. In Proceedings of SIGGRAPH 7895, (pp. 71-78). ACM Press.
  10. McQueen, D. M. & Peskin, C. S. (2000). Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity. In Mechanics for a New Millennium: Proceedings of the International Conference on Theoretical and Applied Mechanics (ICTAM), (pp. 429-444).
  11. Megill, W. M. (2002). The biomechanics of jellyfish swimming. Ph.D. Dissertation, Department of Zoology, University of British Columbia.
  12. Michiel van de Panne, E. F. (1993). Sensor-actuator networks. In Proceedings of SIGGRAPH 7893, (pp. 335- 342)., New York, NY, USA. ACM Press.
  13. Miller, G. S. P. (1988). The motion dynamics of snakes and worms. In Proceedings of SIGGRAPH 7888, (pp. 169-173). ACM Press.
  14. Perlin, K. (2002). Improving noise. In Proceedings of SIGGRAPH 7802, (pp. 681-682)., New York, NY, USA. ACM Press.
  15. Peskin, C. (2002). The immersed boundary method. Acta Numerica 11, 479-517.
  16. Pixar Animation Studios, W. D. P. (2003). Finding Nemo motion picture. DVD.
  17. Rasmussen, N., Nguyen, D. Q., Geiger, W., & Fedkiw, R. (2003). Smoke simulation for large scale phenomena. ACM Trans. Graph., 22(3), 703-707.
  18. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., & Fedkiw, R. (2008). Two-way coupling of fluids to rigid and deformable solids and shells. In SIGGRAPH 7808: ACM SIGGRAPH 2008 papers, (pp. 1-9)., New York, NY, USA. ACM.
  19. Shih, C. T. (1977). A Guide to the Jellyfish of Canadian Atlantic Waters. Number 5. Ottawa, Canada: National Museum of Natural Sciences.
  20. Stam, J. (1999). Stable fluids. In Proceedings of SIGGRAPH 7899, (pp. 121-128)., New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.
  21. Stockie, J. M. & Wetton, B. R. (1999). Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes.
  22. Terzopoulos, D., Platt, J., Barr, A., & Fleischer, K. (1987). Elastically deformable models. In Proceedings of SIGGRAPH 7887, (pp. 205-214). ACM Press.
  23. Tu, X. & Terzopoulos, D. (1994). Artificial fishes: Physics, locomotion, perception, behavior. Computer Graphics, 28(Annual Conference Series), 43-50.
  24. Wu, J. & Popovic, Z. (2003). Realistic modeling of bird flight animations. ACM Trans. Graph., 22(3), 888- 895.

Paper Citation

in Harvard Style

Rudolf D. and Mould D. (2009). INTERACTIVE JELLYFISH ANIMATION USING SIMULATION . In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009) ISBN 978-989-8111-67-8, pages 241-248. DOI: 10.5220/0001792402410248

in Bibtex Style

author={Dave Rudolf and David Mould},
booktitle={Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)},

in EndNote Style

JO - Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)
SN - 978-989-8111-67-8
AU - Rudolf D.
AU - Mould D.
PY - 2009
SP - 241
EP - 248
DO - 10.5220/0001792402410248