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Abstract: This paper describes a new sleep monitoring system for home use. The basic system consists of a wearable 
physiological sensor and PC software for analyzing sleep quality from user’s wrist motion and heart rate 
variability. Different from a conventional sleep monitoring device used in a hospital, the sensor is so small 
and easy-to-use that a normal person can use it at home. This means that the system is useful for a sleep 
specialist who wants to check a patient's daily sleep pattern. The system can also be used for self-care. We 
have developed a wrist-watch-shaped physiological sensor that monitors user’s wrist motion and pulse wave 
interval. We have also developed the algorithm for computing the quality of sleep from these physiological 
data on PC. Although sleep is a kind of brain activity and our sensor can not directly measure it, the output 
of our algorithm is close to medically evaluated sleep quality. We performed dozens of comparison 
experiments and found that its accuracy was about 73.5% on average. The value of the accuracy is enough 
for assessing a normal person’s sleep quality. 

1 INTRODUCTION 

In recent years, many people have been suffering 
from sleep disorder caused by mental stress, 
irregular lifestyle or shift work. However, it is not 
easy to determine the quality of sleep because deep 
sleep is not always good sleep and shallow sleep is 
not always bad sleep. For example, it is natural that 
a person cannot sleep well because of jet lag. 
However, a person who is always sleepy in the 
daytime for a period exceeding one month might 
have a health problem. Therefore, it is important for 
a doctor to check a patient’s sleep habits for several 
days in order to diagnose and cure his/her sleep 
disorder properly. Moreover, it is necessary for a 
person to check his/her own sleep habits and to 
change his/her lifestyle (self-care). 

However, there is no good system to record and 
analyze daily sleep. For example, most medical 
sleep sensors, such as those employed for 
polysomnography (PSG), are for recording many 
kinds of physiological data (EEG, EMG, EOG and 
so on) for only one or two nights, not for recording 
sleep habits with natural state in daily life. It is also 
too difficult for a normal person to handle PSG at 
home because it involves the use of many electrodes 

for measuring the physiological data. A doctor can 
attempt to learn a patient's sleep habits by 
interviewing him or her, but this is an inherently 
unreliable approach. A simple and easy-to-use sleep 
monitoring system that can be used in the home is 
strongly desired in order to get objective data on 
sleep habits. 

In order to develop such a system, we have 
created a wrist-watch-shaped wearable physiological 
sensor that monitors user’s wrist motion and pulse 
wave intervals (Pulse-to-Pulse Intervals: PPIs). The 
sensor can be made small and simple because wrist 
motion and pulse wave can be easily measured 
compared to the case of using PSG. We have also 
developed the algorithm for computing the quality of 
sleep from these physiological data. The algorithm 
can distinguish sleep stage (wake /REM /NREM 
[shallow /deep]) using the relationship between 
autonomic nervous activity and sleep stages. 
Although sleep is a kind of brain activity and our 
sensor cannot directly measure it, the output of our 
algorithm is close to medically evaluated sleep 
quality. 

In the following sections, the way of expressing 
sleep data, related works, our system’s hardware and 
software, and the validation result of the sleep 
estimation are discussed.  
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2 SLEEP DATA 

Generally speaking, sleep is a kind of brain activity 
and its purpose is recovery from brain fatigue. 
Therefore, sleep state is measured mainly by EEG, 
and is classified into several stages. Sleep state is 
roughly divided into REM (rapid-eye movement) 
sleep and NREM (Non-REM) sleep. NREM sleep is 
divided into 4 stages. Stages 3 and 4 of NREM sleep 
are so called deep sleep, and stages 1 and 2 are 
shallow sleep. These stages are decided by a sleep 
specialist using PSG data (Rechtschaffen, 1968), and 
their change is shown in a graph called a hypnogram 
(shown in Figure 1).  

A doctor mainly uses a hypnogram for 
evaluating a person’s sleep quality. For example, the 
doctor checks the quantity of deep sleep if a patient 
complains about oppressive drowsiness in the 
daytime. If the patient frequently wakes up in the 
night and experiences difficulty in breathing, he/she 
might be suffering from sleep apnea syndrome. If 
REM sleep always occurs soon after falling asleep, 
there might be a problem concerning the patient’s 
nervous system. From the viewpoint of healthcare, it 
is important to check the balance of deep sleep, 
REM sleep or sleep cycle. Therefore, a sleep 
monitoring system for home use can also show the 
result of one night’s data in a graph similar to a 
hypnogram. 

 
 
 
 
 
 
 

Figure 1: Sleep hypnogram. 

There are many studies on the relationship between 
physiological parameters and sleep stages. For 
example, Baharav et al. stated that autonomic 
nervous activity level derived from heart rate 
variability (HRV) during sleep changes in response 
to the sleep stages (Baharav, 1995). A value of 
LF/HF shows the activity of the sympathetic nerve. 
During a REM sleep, a value of LF/HF and the 
variability of that are large, and the value of LF/HF 
decreases during a NREM sleep, particularly in the 
case of deep sleep (Slow Wave Sleep). Since the 
brain stem controls both the cerebrum and the 
autonomic nervous system, it may be possible to 
estimate the sleep stage using HRV. 

3 RELATED WORKS 

A number of trials have been conducted with a view 
to developing sleep monitors for home use. For 
example, body/wrist motion has been used for 
wake/sleep identification. The amount of activity 
(number of subtle wrist motions per minute) measured 
from acceleration sensors is often used for 
monitoring wake/sleep rhythms (Sadeh, 1989) 
although the sleep stages (ex. REM sleep / NREM 
sleep) cannot be determined from the data. 

More recently, researchers have focused on 
measuring heart/pulse rate and analyzing its 
variability: HRV (Watanabe, 2004, Michimori, 2003 
and Wakuda, 2007). The sleep stages can be 
calculated from HRV if the indices of HRV are 
properly mapped for the sleep stages.  

However, there are two problems in this 
approach. One is that body/wrist motion often 
disturbs heart/pulse sensing and the HRV value can 
not be calculate correctly. The other is that the level 
of autonomic nervous activity differs according to 
age, sex and body/mental condition. For example, 
the autonomic nervous system of the young is 
generally more active than that of the old. Sleep 
stages cannot be classified using static thresholds. 

Our sensor measures both pulse wave interval 
and wrist motion. The wrist motion data are used not 
only for counting the amount of activity, but also for 
detecting errors in HRV data. This solves the first 
problem mentioned above. 

For the second problem, we employ a statistical 
method for deciding sleep stages (Suzuki, 2007). We 
assume that there are several stages in a certain 
period of sleeping time since the sleep stage 
cyclically repeats about every 90 minutes. It means 
that the data of autonomic nervous activity can be 
classified into several groups if we have any 90-120 
minute dataset. In this way, the thresholds for 
dividing sleep stages are changed flexibly along with 
the dataset. 

4 THE OVERVIEW OF THE 
SYSTEM 

4.1 Wearable Physiological Sensor 

Figure 2 shows our wearable physiological sensor. 
The size of the sensor is 50mm*60mm*13mm and 
the weight is only 35g. A rechargeable battery is 
used as an electrical power source. It is possible to 
measure physiological data for over 40 hours after 
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full charge. The sensor incorporates a photoelectric 
pulse wave sensor and a 3-axis accelerometer. 
Besides, it has an external pulse wave sensor. 
Therefore, pulse waves can be measured on the 
user’s wrist or on his/her finger, depending on 
his/her preference. The front panel serves as a wrist-
watch displaying date and time, and as a sensor 
displaying time and the amount of activity. The 
sensor has only two buttons; namely, one is a light 
switch, and the other is a switch to start/end sensing.  

 
Figure 2: Wearable physiological sensor. 

The sensor measures pulse waves and accelerations 
on a user’s wrist and stores the computed pulse-to-
pulse intervals (PPIs) and the amount of activity in a 
flash memory (4MiB). Both analog and digital filters 
are used to remove the fluctuations of the amplitude 
and the basal line of pulse waveform, which makes 
PPIs more precise. As the size of the data measured 
in one night (7 hours) is 256 KiB, the sensor can 
store almost 2 weeks’ data in the flash memory.  
The sampling rate of the pulse wave and 3-axis 
accelerations is 64Hz. However, the resolution of the 
PPI is 0.1 ms by using linear interpolation to detect 
pulse peak.  

The amount of activity is calculated as the 
number that the scalar of the 3-axis acceleration is 
larger than 0.01 G, which is the same as Actigram 
(Cole, 1992). 

The stored PPIs and amount of activity data are 
sent to PC via USB.  

We evaluated the performance. Firstly, the 
correlation coefficient between the amount of 
activity counted by the sensor worn on the left 
forearm and that measured by an actigraph 
(Micromini-Motionlogger Actigraph, Ambulatory 
Monitoring Inc.) worn on the right forearm during 
sleep was 0.95 (average of 3 healthy subjects). 
Figure 3 shows an example of the result. 

 
Figure 3: Actigram during sleep. Upper graph shows the 
result measured by Actigraph and lower graph shows that 
measured by our sensor. 

Besides, the correlation coefficient between the PPIs 
computed by the pulse wave measured by the sensor 
and the R-R intervals computed by a simultaneously 
measured electrocardiogram during sleep was 
evaluated. Single-channel ECG was measured by 
CM5 lead using PSG (Polymate AP1124, TEAC 
Corporation, sampling rate: 1 kHz) simultaneously 
with the PPI measured by our sensor. R-R intervals 
were computed using commercially available R-R 
interval analysis software for the PSG (NoruPro 
Light Systems, Japan). The correlation coefficient is 
0.96 (average of 3 healthy subjects). Figure 4(a) 
shows the correlation plot, and (b) shows the Bland 
& Altman plot between R-R intervals of ECG and 
PPIs. 
 
These values are accurate enough to use the sensor 
as a medical device. 

4.2 PC Software 

Figure 5 shows the flow of the algorithm for 
computing sleep stages from the data of PPIs and the 
amount of activity.  
We employ Cole’s algorithm for wake/sleep 
identification from the amount of activity data (Cole, 
1992). This algorithm cannot determine wake/sleep 
in real time, but its accuracy is about 90%. At the 
same time, the indices of autonomic nervous activity 
are derived from frequency analysis of the 
variability of PPIs. Firstly, sampled PPIs’ dataset in 
a minute  is  interpolated at  even intervals  by  cubic 
spline interpolation by the minute. Next, Fast 
Fourier Transformation (FFT) is executed for the 
even-interval PPIs to get the frequency spectrum. In 
the frequency domain, the integral value of the 
power from 0.04Hz to 0.15Hz is called LF (low 
frequency), which shows both sympathetic and 
parasympathetic nervous activities. The integral 
value of the power from 0.15Hz to 0.4Hz is called 
HF (high frequency), which shows parasympathetic 
nervous  activity. Therefore,  we can get the  balance 
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Figure 4: Correlation plot (a) and Bland & Altman plot (b) 
between R-R intervals of ECG and PPIs. 

of sympathetic and parasympathetic nervous activity, 
which is related to sleep stages as we mentioned 
above. In order to classify the sleep stages from the 
dataset of LF and HF values, the k-means clustering 
method is adopted. Firstly, REM/NREM sleep is 
divided from 2-hour data set, and then, shallow/deep 
sleep is divided from its NREM dataset. 

We developed sleep analysis software on 
Windows XP/Vista using this algorithm. The 
program was coded and compiled by Visual Basic 
Ver.6 (Microsoft Corp.).  
 

 
Figure 5: Algorithm for computing sleep stages. 

Figure 6 and 7 are the picture image of the 
software. Figure 6 is one night’s data, which shows 
pulse rate, variability of pulse rate, LF and HF 
trends, amount of activity and the simplified 
hypnogram.  

 

 
Figure 6: Result of one night’s data. 

Figure 7 is a summary of a 2-week hypnogram 
showing sleep habits. This is the most useful 
function for sleep care, which cannot be 
implemented in the conventional sleep monitoring 
systems. 
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Figure 7: Result of summary of a 2-week hypnogram. 

5 VALIDATION OF THE SLEEP 
ESTIMATION 

Correlation between the sleep stage estimated by the 
proposed method using our wearable physiological 
sensor and the sleep stage estimated using PSG by 
sleep specialists was evaluated. EEG, EOG, chin 
EMG, ECG, respiration and SpO2 by PSG 
(Polymate AP1000, TEAC Corporation, Sampling 
rate: 250Hz), the pulse wave and acceleration by our 
sensor was recorded simultaneously in a night (8 
hours). The test was held in two cites (Showa 
University East Hospital, Tokyo, Japan and The 
Institute for Science of Labour, Kawasaki, Japan). 
45 normal healthy subjects (30 males and 15 
females, 19-72 years old) are measured. All subjects 
had informed consent. 

The sleep stages of PSG were distinguished 
manually by sleep specialists (doctor, clinical 
laboratory technologist, or sleep researcher) who 
belong to those cite based on Rechtschaffen & Kales 
method (Rechtschaffen, 1968) by the minute. Our 
sensor also estimated the sleep stages also by the 
minute. 

We defined coincidence ratio as an evaluation 
function to compare the estimation result by our 
sensor with the result by PSG.  

The coincidence ratio is defined as a correlation 
coefficient of moving average of sleep stages (20-
minutes time window) between the stages estimated 
by this method and those from PSG. Table 1 shows 
the result of the comparison.  

Table 1: Result of the comparison. 

 

Figure 8 shows an example of the estimation results. 

 
Figure 8: An example of the estimation results (upper: 
sleep stage distinguished by medical professionals using 
PSG, lower: sleep stage distinguished automatically by the 
sensor). 

6 DISCUSSIONS 

“Beat-to-beat” pulse interval detection is necessary 
to obtain autonomic nervous activity. Our algorithm 
has enough ability to get “beat-to-beat” pulse 
intervals. However, this algorithm is applicable for 
healthy subjects, except for cardiac disease, 
peripheral blood circulation disorder.  

The coincidence ratio of our sleep stage 
estimating algorithm is 0.735. Although it is a rather 
low value, PSG results also varied depending on the 
examiner (variance is about 20%), and therefore it 
seems to be acceptable for home healthcare use. 
However, it is also applicable for healthy subjects, 
except for autonomic nerve disorder, cardiac disease. 

7 CONCLUSIONS 

Measurement of sleep habits is a promising new 
medical field. However, there are no systems 
suitable for it. This is because current sleep 
monitoring systems cannot satisfy the needs for 
accurate analysis of sleep and convenience in use. In 
order to provide a solution, we developed a small 
and easy-to-use sensor device. We also developed an 
algorithm for analyzing sleep stages. We confirmed 
sufficient accuracy in the detection of PPIs by 
comparison with R-R Intervals by ECG, and that in 
the estimation of the sleep stage by comparison with 
the result of PSG. The software can display the sleep 
data of one night and the summary of a 2-week 
hypnogram. This function is useful not only for a 
doctor analyzing a patient's sleep habits, but also for 
a user analyzing his/her sleep. 
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