QUALITY ASSESSMENT IN COLONOSCOPY - New Challenges Through Computer Vision-based Systems

Fernando Vilariño, Gerard Lacey



The assessment of the quality of the colonoscopic interventions arises as a most relevant issue once the number and the availability of these clinical procedures are increased day by day. The use of the latest computer visionbased techniques can provide the physician with both qualitative and, most important, objectively verifiable quantitative indicators of performance. In this paper we present a study in which we propose the automatic analysis of colonoscopy video for the quality assessment of the intervention from different points of view: 1) We propose the characterization of the different parts of the colon in order to obtain metrics of the time used for navigation, portion of gut analyzed, etc. 2) We analyze the image contents in order to automatically characterize the presence of polyps. 3) We use the information obtained by and eye-tracker in order to assess the physician’s skills.


  1. American Cancer Society (2007). Cancer Facts and Figure. American CancerSociety.
  2. Chaudhuri, B. and Sarkar, N. (1995). Texture segmentation using fractal dimension. IEEE Trans. Pattern Anal. and Mach. Intel., 17:72-77.
  3. Coimbra, M. and Cunha, J. (2006). MPEG-7 visual descriptors: Contributions for automated feature extraction in capsule endoscopy. IEEE Transactions on Circuits ans Systems for Video Technology, 16(5):628-637.
  4. Eddy, D. (1990). Screening for colorectal cancer. Annals of Internal Medicine, 113:373-384.
  5. Fireman, Z., Glukhovsky, A., et al. (2002). Wireless capsule endoscopy. Israel Medical Association Journal, 4:717719.
  6. Gokturk, S. and Tomasi, C. o. (2001). A statistical 3-d pattern processing method for computer-aided detection of polyps in ct colonography. IEEE Transactions on Medical Imaging, 20(12):1251-1260.
  7. Hai, V., Echigo, T., et al. (2006). Adaptive control of video display for diagnostic assistance by analysis of capsule endoscopic images. In ICPR, volume III, pages 980-983.
  8. Hulka, J. and Reich, H. (1994). Textbook of Laparoscopy. W.B. Saunders, Phipladelphia, PA, 2 edition.
  9. Hunter, J. and Sackier, J. (1993). surgery. McGraw-Hill, New York.
  10. Iddan, G. and Meron, G. e. a. (2000). Wireless capsule endoscopy. Nature, 405:4-7.
  11. Karkanis, S., Iakovidis, D., et al. (2001). Detection of lesions in endoscopic video using textural descriptors on wavelet domain supported by artificial neural network architectures. In ICIP, volume II, pages 833-836.
  12. Kato, H. and Baron, J. (2003). Electronic Videoendoscopy. Jpapan: Harwood Academic Publisher.
  13. Kudo, S. and Kashida, H. e. a. (2000). Colonoscopic diagnosisi and management of nonpolypod and early colorectal cancer. World Journal of Surgery, 24(9):1081- 1090.
  14. Li, P., Chan, K., et al. (2005). Learning a multi-size patchbased hybrid kernel machine ensemble for abnormal region detection in colonoscopic images. In CVPR, volume II, pages 670-675.
  15. Liang, J., Higgins, W., et al. (2004). Introduction to the special section on virtual endoscopy. IEEE Transactions on Medical Imaging, 23(11):1333-1334.
  16. Ministry of Health Singapore (1990). MOH Annual Report. Ministry of Health Singapore.
  17. Nagasako, K., Fijimori, Y., et al. (1998). Atlas of gastroenterologic endoscopy by High-Resolution Videoendoscopy. Igaku-Shoin Ltd. Tokyo.
  18. Nagata, S., Tanaka, K., et al. (2000). Pit pattern diagnosis of early colorectal carcinoma by magnifying colonoscopy: clinical and histological implications. International Journal of Oncology, 16(5):927-934.
  19. O'Brien, M., Winawer, S., et al. (1990). The national polyp study: Patient and polyp characteristics associated with high-grade dysplasia in colorectoral adenomas. Gastroenterology, 98:371-379.
  20. Pabby, A., Schoen, R., et al. (2005). Analysis of colorectal cancer occurence during surveillance colonoscopy in the dietary prevention trial. Gastrointestinal endoscopy, 61(3):385-391.
  21. Paris Workshop Participants (2003). The Paris endospcopic classification of superficial neoplastic lesions. Gastrointestinal Endoscopy (Supplement), 58(6):3-23.
  22. Paschos, G. (2001). Perceptually uniform color spaces for color texture analysis: empirical evaluation. IEEE Trans. Image Processing, 10:932-937.
  23. Rembacken, B., Fuji, T., et al. (2000). Flat and depressed colonic neoplasms: A pospective study of 1000 colonoscopies in the uk. Lancet, 17:1157-1167.
  24. Saitoh, Y., Waxman, A., et al. (2001). Prevalence and distinctive biologic features of flat colorectal adenomas in a north american population. Gastroenterology, 120:1657-1665.
  25. Srivastava, S., Rodriguez, J., et al. (2005). Analysis of confocal microendoscope images for automatic detection of ovarian cancer. In ICIP, volume I, pages 1113- 1116.
  26. Swain, M. and Ballard, D. (1991). Color indexing. Journal of computer vision, 7(1):11-32.
  27. Thoeni, R. and Laufer, I. (1994). Textbook of gastrointestinal radiology, chapter Polyps and Cancer, page 1160. Philadelphia, PA: Sanders.
  28. Tjoa, M. and Krishnan, S. (2003). Feature extraction for the analysis of colon status from the endoscopic images. BioMedical Engineering OnLine, 2(9).
  29. U.S. Department of Health and Human Services (2003). Cdc, the importance of prevention and early detection cdc. http://www.cdc.gov/cancer/colorectal/.
  30. Vapnik, V. (1995). The nature of statistical learning theory. Springer.
  31. Vilarin˜o, F. (2006). A machine learning approach for intestinal motility assessment with capsule endoscopy. PhD thesis, Dept. Computer Science, Universitat Autonoma de Barcelona, Spain.
  32. Vilarin˜o, F., Lacey, G., et al. (2007). Automatic labeling of colonoscopy video for cancer detection. LNCS, 4477:290-297.
  33. Vilarin˜o, F., Spyridonos, P., et al. (2006). Automatic detection of intestinal juices in wireless capsule video endoscopy. In Pattern Recognition, ICPR, volume 4, pages 719- 722.
  34. Vilarin˜o, F., Spyridonos, P., et al. (2009). Intestinal motility assessment with video capsule endoscopy: Automatic annotation of phasic intestinal contractions. IEEE Trans. on Medical Imaging (in press).
  35. Winawer, S., Fletcher, R., et al. (1997). Colorectal cancer screening: Clinical guideliness and rationale. Gastroenterology, 112:594-642.
  36. Winawer, S., Zauber, A., et al. (1993). Prevention of colorectal cancer by colonoscopy polypectomy. New England Journal of Medicine, 329:977-981.
  37. Won, C., Park, D., et al. (2002). Efficient use of MPEG-7 edge histogram descriptor. ETRI, 24(1):23-30.
  38. Zheng, M., Krishnan, S., et al. (2005). A fusion-based clinical decision support for disease diagnosis from endoscopic images. Computers in Biology and Medicine, 35(3):259-274.

Paper Citation

in Harvard Style

Vilariño F. and Lacey G. (2009). QUALITY ASSESSMENT IN COLONOSCOPY - New Challenges Through Computer Vision-based Systems . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009) ISBN 978-989-8111- 64-7, pages 320-325. DOI: 10.5220/0001780703200325

in Bibtex Style

author={Fernando Vilariño and Gerard Lacey},
title={QUALITY ASSESSMENT IN COLONOSCOPY - New Challenges Through Computer Vision-based Systems},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009)},
isbn={978-989-8111- 64-7},

in EndNote Style

JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009)
TI - QUALITY ASSESSMENT IN COLONOSCOPY - New Challenges Through Computer Vision-based Systems
SN - 978-989-8111- 64-7
AU - Vilariño F.
AU - Lacey G.
PY - 2009
SP - 320
EP - 325
DO - 10.5220/0001780703200325