
RELATIVE DISTANCE METHOD FOR LOSSLESS IMAGE
COMPRESSION ON PARALLEL ARCHITECTURES

A New Approach for Lossless Image Compression on GPU

Luca Bianchi, Riccardo Gatti, Luca Lombardi
Computer Vision Lab, University of Pavia, Via Ferrata 1, Pavia, Italy

Luigi Cinque
Department of Computer Science, University of Roma “La Sapienza”, Via Salaria 113, Roma, Italy

Keywords: Parallel, Lossless image compression, CUDA, GPU, Relative distance.

Abstract: Computer graphics and digital imaging have finally reached the goal of photorealism. This comes however
with a huge cost in terms of memory and CPU needs. In this paper we present a lossless method for image
compression using relative distances between pixel values belonging to separate and independent blocks. In
our approach we try to reach a good balance between execution time and image compression rate. In a
second step, by considering the parallel characteristics of this algorithm (and nonetheless the trend of multi-
core processor), a parallel version of this algorithm was implemented using Nvidia CUDA architecture.

1 INTRODUCTION

Computer graphics and digital imaging have finally
reached the goal of photorealism. However such
result has been paid with huge costs in terms of
memory requisites and CPU time, especially for
large size images. By the way, there are always a lot
of redundancies in a sequence of bits representing a
non-compressed image. Finding them and
converting sequences of bits into a shorter form is
the type of approach of data compression algorithm
like LZ (Ziv, 1977). The Relative Distance
Algorithm (RDA) presented in this paper, uses a
similar approach by removing redundancy of data
and translating the sequence of image’s bits in a
shorter form. The compression provided by RDA is
lossless.

RDA first divides the image into separate blocks
and then elaborates them independently, both in the
compression and decompression phase (in this paper
it is proposed the use of an 8x8 pixel window).
Thanks to this characteristic it is quite easy porting it
to a multi-processor architecture just by making
every single processor working on a different block
in parallel.

Multi-core architectures are becoming more and
more common even on consumer markets. Every
new processor is equipped with at least two cores (Q
series of Intel and AMD Phenom has up to 4 cores;
IBM Cell processor has 9 cores). GPUs evolution
has been even faster: for example a recent Nvidia
G80 chipset can be considered up to a 16 processor
device (each one with SIMD capabilities). Classic
algorithms that used to work on a single processor
machine need therefore to be arranged to take
advantage of all this new computational capabilities.
Many efforts have been done so far to optimize the
execution of lossless compression algorithms on
different kinds of parallel architectures: LOCO-I
Jpeg-LS (Ferretti, 2004), EREW-PRAM block
matching (Cinque, 2007), with Huffman and
Arithmetic Coding on PRAM model (Howard, 1996)
and with Burrows-Wheeler Transform on NUMA
system (Gilchrist, 2007).

As already noticed RDA is born with parallel
concepts clear in mind. To show the real advantages
of a parallel implementation we compared the
execution time between a single-core and a multi-
core architecture. We have chosen a G80 graphic
card by Nvidia supporting CUDA for drawing a
comparison.

20 Bianchi L., Gatti R., Lombardi L. and Cinque L. (2009).
RELATIVE DISTANCE METHOD FOR LOSSLESS IMAGE COMPRESSION ON PARALLEL ARCHITECTURES - A New Approach for Lossless Image
Compression on GPU.
In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, pages 20-25
DOI: 10.5220/0001767800200025
Copyright c© SciTePress

2 RELATIVE DISTANCE
ALGORITHM (RDA)

The Relative Distance algorithm is a lossless method
for compression that uses local operators to find a
way to rearrange data in a different mode. The main
idea is to analyze the local chromatic characteristics
of an image and compress them according to their
peculiarities. This is made in O(N) time in the
sequential form of the algorithm. The algorithm
operates separately on every single channel (RGB)
of the image. Of course it can be applied to single-
channel images too.

Let’s consider for example a non-compressed 24
bit bitmap image. In a lot of images it can be
observed that the representation of the colour (RGB)
follows local features. For example in a picture of a
landscape we can identify some areas with minimal
colour change (e.g the sky) and areas with large
colour difference in particular near the edge of
objects. In general it can be assumed that the
difference between all pixel values in a small area is
usually small (Storer, 1997).

The first step is to divide every single channel of
the image in blocks of dimensions n x n (with n = 8
every block is made of 64 values in the range [0,
255]). For each block is then applied RDA and
estimated the compression rate (see details in next
section). Then the block is split in 4 blocks of 4x4
pixels and again the RDA is applied for the new
ones to check if this operation is able to produce a
better compression. The data produced by the
algorithm are saved in a single stream that contains
all results of every single block in sequence. Two
different types of header (formally called DR64 and
DR16) are used to identify 8x8 blocks from 4x4
blocks sequences. It’s important to note that the
header of each compressed block contains enough
information to evaluate the block size. This is very
helpful during read operations. Some compression
rates showing the capabilities of Relative Distance
approach are reported in section 4.

2.1 Compression of a Single Block

Let’s consider a single 8x8 block of the image. A
pixel matrix P is defined by this block as follows:

)min(' 88 pxM ⋅−= PP (1)

iip p63..0minmin == (2)

pii pp min' −= (3)
In equation (1) every element of M is 1. Every p’i
represents the distance between the element i from

minp. The last step consists in finding the necessary
bits to represent each p’i :

[])'(logmaxmax 263..02log ii p== (4)
The block is then reconstructed with the values

of p’i coded with maxlog2 bits. This value is formally
known as “block distance”.

If 0 ≤ maxlog2 ≤ 2 (the maximum distance is in [0,
4]) the algorithm proceed with DR64 header
recording. Otherwise the block is divided into 4 sub
blocks of 4x4 pixels and the algorithm loops back
for each new subset. In this way the algorithm
checks if a smaller relative distance (and therefore a
better compression) can be obtained through a
smaller subdivision. Then the results are compared
and the best type of coding (DR64 for one 8x8 block
or DR16 for four 4x4 blocks) is chosen. If both types
of coding do not provide advantages, the block is
leaved as it is and a special header (NC64) is used to
identify it among the non-compressed block.

All the information gathered for each block 8x8
of the starting image is then recorded in a binary file.
In this file the ordered sequence of all blocks can be
found starting from the upper left corner to the lower
right corner of the image.

2.2 Header DR64

DR64 header contains the specifics of compression
of all the 64 values of an 8x8 block. The header
looks like this:

1 XXX (3 bit) Minp (8bit)

where the three x values contain the result of
equation (4) and Minp contains the minimum value
of the block. The first bit is set to “1” to recognize
the start of the header. Therefore DR64 length is 12
bits. After that there are the distances of all 64 pixel
belonging to the block expressed with maxlog2 bit.

Table 1 resumes the necessary bits for recording
a block depending on the minimum value found. The
necessary bits for a block are calculated with (5) and
compression ratio with (6) where uncompressed
block size is 512 bits (64x8).

necessary bits = (DR64 bits) + distance * 64 (5)

c.ratio = uncompressed block size / nec. bits (6)

2.3 Header DR16

In DR16 header, as already mentioned, there is the
need to record the information of four different
blocks, each one with its own minimum value and
relative distances. DR16 header is used only if it
provides a better compression (requires less bits)

RELATIVE DISTANCE METHOD FOR LOSSLESS IMAGE COMPRESSION ON PARALLEL ARCHITECTURES - A
New Approach for Lossless Image Compression on GPU

21

Table 1: Dr64 distances coding and compression rates.

Distance Coded
Distance

Necessary
Bits

Compression
Ratio

0 000 12 42.73
1 001 76 6.73
2 010 140 3.65
3 011 204 2.51
4 100 268 1.91
5 101 332 1.54

than DR64. Table 2 resumes all the possible
combination of DR16 header signatures. The correct
coding of DR16 is guaranteed by the uniqueness of
the code created. DR16 header looks like this:

0 db1 db2 db3 db4

Min1 (8 bit)

Min2 (8 bit)

Min3 (8 bit)

Min4 (8 bit)

where dbi fields (the distance of each sub-block)
have different type of values according to Table 2.
The first bit is set to “0” for recognize DR16 from
DR64. Mini contains the minimum value for each
4x4 block. The total size of the 8x8 block is the sum
of the size of the four 4x4 block each one
compressed with different compression ratio.

Table 2: dbi fields in DR16 header.

2.4 Header NC64 (No compression)

If compression with DR64 or DR16 does not
provide any benefit, the best thing to do is to leave
the block 8x8 as it is. It must be preceded anyway
with a special header. The format is the following:

1111 Value1 Value2 Value3 … Value64

2.5 Pseudo Code

This section contains a pseudo code example for
RDA implementation. Remember that this procedure
is the same for all blocks and must be done for all
the channel (RGB) of the image separately.

For(channel = 1 to N) {

for(block[8x8] = 1 to N){
maxDist8x8=findMaxDist(block[8x8]);
If (maxDist8x8 < 4) {

 recordDR64();
}
else {

numBitDR64 =
(DR64headerBit)+64*maxDist8x8;

numBitDR16 = 0;
for(block[4x4] = 1 to 4) {

maxDist4x4=findMaxDist(block[4x4]);
numBitDR16 +=
 (DR16HeaderBit)+16*maxDist4x4;

}
if(numBitDR16 > numBitDR64)
 recordDR64();
else
 if(numBitDR16 < sizeNotCompressed)
 recordDR16();

else
 recordNC64();

}
}

}

}

In this example code findMaxDist(block[]) function
returns the results of equation (4). “DR64headerBit”
is always 12 (according to Table 1),
“DR16headerBit” depends on the distance
(according to Table 2) and “sizeNotCompressed” is
the size of the block without compression (8 bit * 64
pixel).

3 RDA ON CUDA

The characteristics of Relative Distance algorithm
makes it very suitable for an implementation on a
multi-processor machine. Its main quality is the fact
that every block is totally independent from the
others. Therefore we can work, both in compression
and in decompression stage, on more than one block
in parallel. In theory, the more processors we have
the fast will be the algorithm steps. For providing

Distance Coded Distance db
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111100
8 111101

VISAPP 2009 - International Conference on Computer Vision Theory and Applications

22

some benchmark of the algorithm in a multi-
processor situation, a porting for G80 Nvidia graphic
cards featuring CUDA (Computer Unified Device
Architecture) was realized.

3.1 CUDA Specifications

Today’s GPUs offer incredible resources for both
graphics and non-graphics processing. The GPUs in
particular are well-suited for problems that can be
expressed in a data-parallel form. CUDA
architecture was introduced by Nvidia on G80
graphic card series as a data-parallel computing
device for managing computations on GPU (Nvidia
2008). The GPU is considered as a device capable of
executing a very high number of threads in parallel.
It operates as a coprocessor to the main CPU (or
host) but it has its own DRAM (referred as device
memory) separated from the CPU RAM (referred as
host memory). Transfer of data between them is
made by high-performance DMA access.

The device is implemented as a set of SIMD
(Single Instruction Multiple Data) multiprocessors.
Each multiprocessor supplies a set of local 32-bit
registers and a parallel data cache (or shared
memory), a read only constant cache and a texture
cache that are shared between all the processors.

A function that is executed on the device as many
different threads is called “kernel”. In the parallel
version of RDA every kernel will contain all the
steps required for compressing or decompressing a
single block of pixels.

3.2 Optimize RDA for CUDA

For using CUDA full computing capabilities, there
is the need to write a general “kernel” that operates
on different sets of input data. Every kernel is loaded
in a thread and a grid of threads is then sent to the
GPU multiprocessors for execution. Reference to
input data could be made by using thread IDs. In this
way a multiprocessor that is running a thread with
(ThreadIDx, ThreadIDy) is working to the block
having coordinates (X,Y). Since CUDA usually
works in an almost random order, there is not the
certainty that the blocks will be executed in a pre-
established way. As a consequence the file
containing the compressed data must be organized in
an appropriate way.

In a standard sequential form of the algorithm
(working on a single processor) the file is organized
as a list of blocks (each one with its correct header)
and the program reads, executes and writes every
single block starting from the first to the last one.

In random parallel execution condition we need
to read from memory the correct set of input data
related to each block of coordinates (X,Y). Since all
blocks have different size in bits due to different
compression rate and header length, there is the need
to arrange the order of the file both in compression
and decompression phase. Let’s consider
compression stage first. The steps of the algorithm
are:

1. Load uncompressed data to device memory.
2. Run RD kernel on each block.
3. Transfer results file to host memory.
During step 2 each processor has to share both

input and output data. While reading input data do
not create problems cause it is performed in different
and independent parts of the original image, the
output data have a big problem: it is impossible to
know the final data size of compressed block and
therefore each thread does not know where to write
down results (because we are in a random parallel
thread execution). A way to solve this problem is to
separate each block information in different but
consecutive memory location:

1. Header type bit list (0 = DR64, 1 = DR16).
2. Blocks minimum values.
3. Blocks dp
4. Pixel in every blocks expressed with dp bits

In this way each processor knows exactly where
its results have to be written, because the length of
each one of this vector can be known a priori. All
these vectors are created as unsigned char vectors
and then cleaned out of useless data before starting
memory transfer from device to host. Vectors #2 and
#3 will be created with a size of 4 * (number of
image’s block). In this way it is possible to write
down 4 different data if a DR16 header occurs.

As benchmarks highlight (section 4) memory
transfer is a big problem in CUDA approach and
takes more than 90% of total execution time in
compression phase. Since it is better making a
unique large transfer instead of a set of many small
transfers, image data has to be moved from and to
the device memory all at once. That’s the reason
because memory clean out of unnecessary data is
very important before starting the transfer between
devices. When compressed data is available to host
memory a file is written maintaining the block
information division. This helps in decompression
phase where the first step is to reconstruct the four
vectors. In fact decompression stage operates in a
very similar way:

1. Load compressed data to device memory.
2. Division of the data in 4 vectors.
3. Run RD kernel on each block.

RELATIVE DISTANCE METHOD FOR LOSSLESS IMAGE COMPRESSION ON PARALLEL ARCHITECTURES - A
New Approach for Lossless Image Compression on GPU

23

Again, by maintaining the division between
block’s information every thread reads different and
precise memory locations without overlap memory
access.

4 RESULTS

RDA has very few and simple execution steps that
can provide very fast performance even on low-end
computers. For benchmarking we used a standard set
of images supplied by Kodak that range between
every color sample and chromatic characteristic.
These images reproduce different subjects and
situations and can provide a good model of a generic
collection of pictures. The file size of every original
picture is 1.179.702 byte. As compression ratio (c.
ratio) we define the amount given by the ratio
between the original size and the compressed file
size. On Table 3 compression ratio of RDA is
compared with compression ratio of the well-known
JPEG2000-LS (Christopoulos 2000).

Table 3: Compression ratio of RDA vs JPEG2000-LS.

Image c. ratio RDA c.ratio JPEG2000-LS
Kodim01 1.22 2.27
Kodim02 1.55 2.54
Kodim03 1.75 3.05
Kodim04 1.52 2.51
Kodim05 1.23 2.13
Kodim06 1.40 2.45
Kodim07 1.58 2.85
Kodim08 1.19 2.10
Kodim09 1.60 2.67
Kodim10 1.57 2.65
Kodim11 1.44 2.56
Kodim12 1.63 2.83
Kodim13 1.16 1.93
Kodim14 1.31 2.28
Kodim15 1.67 2.61
Kodim16 1.53 2.77
Kodim17 1.52 2.65
Kodim18 1.32 2.08
Kodim19 1.43 2.42
Kodim20 2.10 2.95
Kodim21 1.45 2.40
Kodim22 1.43 2.23
Kodim23 1.74 2.75
Kodim24 1.40 2.35

On average RDA gives a compression ratio of 1.49
while JPEG-LS gives a compression ratio of 2.41.
The main reason of this result is that RDA is not
adaptive to account for high detailed areas.

4.1 Execution Time

In table 2 are reported the total execution time for an
operation of compression and for an operation of
decompression of images with increasing resolution
size. We considered for testing an Intel Q6600 CPU
and an Nvidia 8800GTX with 768M on board ram.

Table 4: Execution time x86 vs GPU.

Table 5: Nvidia 8800 detailed compression benchmark.

As benchmarks highlight there is a great
improvement in speed between sequential and
parallel execution of the algorithm. However even in
the sequential form, a compression of a 1920x1440
image takes only 770 ms and its decompression
takes only 680 ms. This shows clearly how this
algorithm is performing well on all architectures.
On Nvidia G8800 GTX a compression needs on
average 50% time less. But as table 5 point out, the
total time needed for computation is only a very
small part if compared to the total execution time.
Regardless, on CUDA architectures memory
transfers from device to host are usually slower than
memory transfers from host to device and this helps
out to achieve an awesome total execution time of
101 ms for a decompression of a 1920x1440 image.
The reason is that there is not need to send back the
decompressed image to the main system memory
since it’s already in the framebuffer ready for
visualization on screen. On Table 6 are reported the
comparisons between RDA and JPEG2000-LS
parallel GPU implementation (Wong, 2007). RDA
clearly gives better performances than JPEG2000-

Image Size Intel q6600 Nvidia 8800
Compr. Decompr. Compr. Decompr.

640x480 100 ms 100 ms 38 ms 18 ms
800x600 170 ms 160 ms 58 ms 29 ms
1024x768 250 ms 220 ms 98 ms 37 ms
1280x960 380 ms 320 ms 147 ms 55 ms
1600x1200 560 ms 480 ms 226 ms 74 ms
1920x1440 770 ms 680 ms 326 ms 101 ms

Image Size
Nvidia 8800 – Compression

Memory Transfer
Time Computation Time

640x480 36.63 ms 1.36 ms
800x600 56.90 ms 1.68 ms
1024x768 96.64 ms 2.21 ms
1280x960 143.50 ms 2.99 ms

1600x1200 221.92 ms 4.34 ms
1920x1440 320.91 ms 5.93 ms

VISAPP 2009 - International Conference on Computer Vision Theory and Applications

24

LS especially with low resolution images. RDA can
perform the compression of around 20 image/second
and the decompression of around 40 image/second if
the resolution is 800x600.

Table 6: Benchmark on Nvidia G80: RDA vs JPEG-LS.

This results shows that RDA approach is a good
candidate for real-time compression and
decompression problem.

5 CONCLUSIONS

Relative distance algorithm for image compression
proved to be a good compromise between sufficient
compression ratio and very fast performance thanks
to its algorithm structure that suits very well to
multi-core parallel architectures. Future works will
address the problem of reaching a better
compression ratio by making better compression
rates even when the image has lots of non
homogeneous areas. This can be done with the use
of a dynamic block size.
Moreover RDA approach will be considered for
inter-frame compression of movie files. It’s not
difficult to find sequences where the actors are
speaking in front of the camera or the scene is quite
stand-still. When this happen some areas are not
changing too much their colours between frames. If
we define blocks not on a single image but between
frames of a video sequence, RDA can be applied on
them quite easily. This application will be discussed
in future works.

ACKNOWLEDGEMENTS

This work has been partially supported by FIRB
Project RBIN043TKY.

REFERENCES

Christopoulos C., Ebrahimi T., Skodras A., 2000. The
JPEG 2000 Still Image Coding System: an Overview.

In IEEE Transactions on Consumer Electronics. Vol.
16, num. 4, p. 1103-1127.

Cinque L., De Agostino S., 2007. A parallel decoder for
Lossless Image Compression by Block Matching. In
Proceedings of the 2007 Data Compression
Conference. DCC. IEEE Computer Society, p 183-
192.

Ferretti M., Boffadossi M., 2004. A parallel Pipelined
Implementation of LOCO-I for JPEG-LS. In
Proceedings of the Pattern Recognition, 17th
international Conference on (Icpr’04). Vol. 1, p. 769-
772.

Gilchrist J., Cuhadar A., 2007. Parallel Lossless Data
Compression Based on the Burrows-Wheeler
Transform. In Proceedings of 21st international
Conference on Advanced Networking and
Applications. AINA. IEEE Computer Society, p. 877-
884.

Howard P.G., Vitter J.S., 1996. Parallel Lossless Image
Compression Using Huffman and Arithmetic Coding.
In Inf. Process. Lett., p. 65-73.

Kodak test images: http://r0k.us/graphics/kodak
Nvidia Corporation, 2008. Cuda Programming Guide,

Version 2.0.
Storer J.A., 1996. Lossless Image Compression Using

Generalized LZ1-Type Methods. In Proceedings of the
Conference on Data Compression. DCC. IEEE
Computer Society, p. 290-299.

Wong T.T., Leung C.S., Heng P.A., Wang J., 2007.
Discrete Wavelet Transform on Consumer-Level
Graphics Hardware. In IEEE Transaction on
Multimedia. Vol. 9, No. 3, p. 668-673.

Ziv J., Lempel A. 1977. A universal algorithm for
sequential data compression. In IEEE Trans. on
Inform. Theory. Vol. IT-23, no. 3, p. 337-343.

Image Size Nvidia 8800GTX – Compression
RDA JPEG2000-LS

640x480 38 ms 516 ms
800x600 58 ms 560 ms
1024x768 98 ms 600 ms
1280x960 147 ms 721 ms

1600x1200 226 ms 828 ms
1920x1440 326 ms 969 ms

RELATIVE DISTANCE METHOD FOR LOSSLESS IMAGE COMPRESSION ON PARALLEL ARCHITECTURES - A
New Approach for Lossless Image Compression on GPU

25

