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Abstract: A method for gauging the appropriate scale for foreground-background discrimination in Scale-Space 
theory is presented. Otsu’s Threshold (OT) is a statistical parameter generated from the first two moments 
of a histogram of a signal / image. In the current work a set of OT is derived from histograms of derivatives 
of image having Scale-Space representation.  This set of OT, when plotted against corresponding scale, 
generates a Threshold Graph (TG). The TG undergoes an exponential decay, in the absence of foreground 
and exhibits inflection(s) in the presence of foreground.  It is demonstrated, using synthetic and natural 
images, that the maxima of inflection indicate the scale and threshold (OT) appropriate to interface edges.  
The edges identified by thresholding at scale and threshold given by inflection of OT correspond to 
foreground-background interface edges. The histogram inherently imbeds the TG with underlying image 
signal parameters like background intensity range, pattern frequency, foreground-background intensity 
gradient, foreground size etc, making the method adaptable and deployable for unsupervised machine vision 
applications.  Commutative, separable and symmetric properties of the Scale-Space representation of an 
image and its derivatives are preserved and computationally efficient implementations are available. 

1 INTRODUCTION 

Scale-Space theory for image processing constitutes 
an important component of early vision (Lindberg, 
1994). However, any pragmatic implementation of 
Scale-Space theory requires ascertaining the 
appropriate scale (Lindberg, 1994). This is a trivial 
task for well posed problems like in medical 
imaging where abundant apriori information (size, 
position, color, shape etc) is accessible. However, 
deciding the appropriate scale by machine vision is 
ill-posed for (a) images without access to apriori 
information e.g. in exploratory robotics wherein the 
environment changes continuously and 
unexpectedly, (b) evolutionary images like dynamic 
textures, anomaly detection in granite, wood, or in 
mining where apriori information is rendered 
redundant owing to evolution with each frame or 
image.  

In addition to the problem of identifying the 
appropriate scale, there is often a requirement for 
identifying the foreground within an image. In this 
paper a novel method is proposed to identify both 

the appropriate scale as well as the foreground in the 
image at that scale by using the same parameter. The 
parameter used is Otsu Threshold (Otsu, 1979) for 
segmenting the image. This paper has following 
contributions: 

(a) Surveys contemporary methods for scale 
identification and establishes the need to 
identify scale relevant to the whole image 
rather than local entities like pixels, edges, 
blobs etc. 

(b) Proposes a novel method wherein scale is 
determined in response to global 
characteristics of image as opposed to local 
properties of images.  

(c) Validates the method on a range of image 
parameters on synthetic and natural images 
and backgrounds. 

2 SCALE IDENTIFICATION 

Pioneering work by (Witkin, 1981), (Koenderink, 
1984) and (Lindberg, 1994) has lead to Scale-Space 
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theory. The basic tenant of this theory is to imbed a 
signal (image) into one-parameter of derived signals 
(images), the Scale-Space where the parameter 
denoted scale describes the image at the current 
level of scale. The image L(x,y) when expressed as a 
function of scale (t) is represented as L(x,y; t) and is 
obtained by convolving the image L(x,y) with a 
Gaussian kernel G(x,y;t) centered at point P(x,y) and 
having a variance t 
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2.1 Scale Identification Methods  

(Lindberg, 1994) describes the problem of 
establishing an appropriate scale in the absence of 
apriori as intractable. Although models emulating 
mammalian vision take cognizance of the need to 
establish an appropriate scale they do not 
exclusively address this need, but rather skirt 
around it by using large scales (Malik. and 
Perorna, 1990) or contextual scales (Ren et al, 
2006).  (Lindberg, 1994) addresses scale 
identification in two different ways.  

The first one involves a 4-Dimensional 
structure composed of a scale-space-blob 
generated from data driven structure detection in 
images.  This structure is tracked over multi scales 
with the hypothesis that prominent structures 
persist across scales. Blobs are derived at different 
scales using monotonic gradients from local 
extrema and are then analyzed for their effective 
scale range using blob-descriptors like volume, 
contrast and area, and blob-events like 
annihilation, creation, merging and splitting.  

In the second approach by Lindberg (Lindberg, 
1994) utilizes the principle of non enhancement of 
extrema as applicable to Gaussian differential 
operators. A normalized (with scale) and 
consequently scale invariant Gaussian derivative 
operator is traced for maxima over scales. The 
scale corresponding to the maxima is heuristically 
hypothesized to coincide with the characteristic 
length of corresponding structure in image data. 
For a rigorous mathematical treatment, the reader 
is referred to chapter 13 of (Lindberg, 1994). 

2.2 Drawbacks of Scale Identification 
Methods 

These two methods are based on qualitative 
assumptions and mathematical derivations thereof. 
However these approaches have a “top-down” 
approach in tracing the entities (blob / edge of 
interest), wherein the entities are detected at a finer 
scale and their behavior traced to a coarser level. This 
approach has three drawbacks. 

The first one arises from the use of local properties 
in the initial identification of entity which, in the case 
of blobs, is seeding originating from a blob event and, 
in the case of Gaussian derivative operator, is the edge 
maxima. Both these entities are dependent on local 
spatial properties like the intensity and nearness to 
another entity which often give rise to spurious 
structures. In the case of the Gaussian derivative 
operator, all the edges (including noise) are 
guaranteed a maximum (Lindberg, 1994) over some 
scale; hence the problem of appropriate scale 
identification still persists.  To address this problem a 
ranking mechanism grades the entities based on 
properties of entities like contrast, life, spatial spread, 
volume etc across the scales. The ranking mechanism 
is unreliable as the local properties like the geometry 
of entity will influence both the Scale-Space evolution 
as well as the properties over scale. For example 
response to a Gaussian derivative of a curved edge 
will vary from that of a straight edge and, without 
apriori information on the kind of edge being 
detected, the response will be unreliable and in fact 
can often lead to a choice of improper derivative 
function.  

The second drawback arises from the restricted 
spatial scope of local extrema. Fig 1 (a) shows a 1 
dimensional signal (termed original) comprising of 
local maxima in the vicinity of global minima of the 
signal. The original signal is convolved with 3 
Gaussian kernels as shown in Fig 1(b). The standard 
deviations of the 3 kernels coincide with the spatial 
spread of local extrema (Gauss 1), neighborhood of 
local extrema (Gauss 2) and the global neighborhood 
of local extrema (Gauss 3). The results of convolving 
with Gauss 1, Gauss 2 and Gauss 3 are also shown in 
Fig 1(a) by Result 1, Result 2 and Result 3, 
respectively. The evolution of local maxima is shown 
inside the dotted rectangle of 1(a).  This evolution 
indicates that: 

(a) Local extrema violates the principle of non-
enhancement of extrema, as the intensity of 
local extrema is first reduced and then 
increased with increasing scale. This violation 
is not due to scale increment but due to 
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consideration of local extrema in isolation 
from global neighborhood. 

(b) Evolution of local maxima can have valid but 
conflicting classification depending on the 
scale. E.g. based on Result 1 the local extrema 
can be hypothesized as local maxima and 
based on Result 2 as global minima.  There 
are two solutions to ascertain the appropriate 
classification. The first one (inapplicable in 
current context) is to have apriori information 
on the appropriate scale and the second is to 
have a global analysis rather than a local. 

 

Figure 1: (a) 1D signal with spatial spreads of local 
extrema, local neighbourhood and global neighborhood 
and the results of convolution with Gaussian kernels at b. 
(b) Gaussian kernels corresponding to spatial spread of 
local extrema {Gauss 1, σ = (3-1)/2}, local neighbourhood 
{Gauss 2, σ = (9-1)/2}, global neighbourhood {Gauss 3, σ 
= (25-1)/2}. 

The third drawback arises from a plausibly 
flawed hypothesis due to minimal representation of 
image. The methods (Lindberg, 1994) to identify 
appropriate scale omit the evolution of non-extrema 
neighborhood with scale. This neighborhood is 
quantitatively significant as locating even the first 
cut (zeroth scale) extrema involves discarding 8 
neighboring pixels. Increasing the scale also 
increases the discarded neighborhood due to non-
enhancement property. Hence the important 
structures are generated from a hypothesis based on 
a minimal representation of the image. 

2.3 Proposed Method 

In the current paper a “bottom-up” approach will be 
presented. In view of the drawbacks of establishing  
the optimum scale using local methods, the authors 
contend, that since incremental scales affect the 
extrema as well as the accompanying neighborhood, 
the impact of increasing Gaussian scales needs to be 
observed globally (entire image or a section of image 
that extends beyond the spatial extent of local feature) 
and not locally. To facilitate a global observation of 
the Scale-Space representation of entire image, it is 
desirable to have an image feature which can: 

(a) Encompass the entire image. 
(b) Embed underlying image signal features. 
(c) Exist at all scales. 
(d) Quantitatively identify the appropriate scale. 
(e) Segregate important structures in the image. 
Usage of Otsu’s threshold as an image parameter 

for scale determination addresses the above 
requirements. Otsu’s threshold is calculated at 
increasing scales from magnitude of Sobel edge of 
image,  for identifying appropriate scale. Gray level 
Image Histograms derived from Scale-Space 
representation of images satisfies requirements (a) to 
(c). Otsu Threshold (Otsu, 1979) bifurcates an image 
thereby addressing requirement (e). Section 3 
illustrates compliance with requirement (d) by 
creation of peaks when Otsu’s Threshold is plotted 
against increasing scale. These peaks can be uniquely 
located and quantitatively defined. 

 

Figure 2: Visual representation of Otsu’s Threshold. 

Otsu’s threshold (Otsu, 1979) is statistically 
generated from a normalized histogram for L gray 
levels in an image. Each gray level represents the 
pixels at that gray level as a percentage of total 
pixels in the image. This normalized histogram is 
bifurcated into two hypothetical classes C0 and C1 
at a hypothetical threshold k.  Hypothetical threshold 
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(k), Mean and Standard Deviations of classes 
)( 000 σμ ±C and )( 111 σμ ±C are shown in Fig 2. 

The maximum of Between Class Variance (BCV) 
determines the appropriate threshold. BCV is 
defined as: 
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(1st Order cumulative Moment upto level k 
of histogram) 
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Normalised probability at level i ; 
ni  : number of pixels at level i; 
N : Total pixels in image 

 

   (10) 

While the Otsu’s algorithm segregates the image, it 
does not classify foreground and background of 
segregated image in the absence of apriori 
information. Different segregation methods would 
be required for separating a darker foreground as 
compared to a brighter foreground for the same 
background. Usage of magnitude of Sobel edges in a 

image leads to uniformity of classification as the 
problem of distinguishing a foreground from 
background is transformed into one wherein 
interface (foreground-background) edges are 
required to be segregated from non-interface edges.  

This method assumes that non-interface edges 
originate from homogenous textures (Foreground or 
Background) whereas interface edges arise from 
heterogeneous textures (Foreground and 
Background). It is therefore justifiably assumed that 
interface edges exhibit greater magnitude of gradient 
as compared to foreground-foreground or 
background-background edges, thus generating a 
group of edges amenable to segregation. Usage of 
first order derivative (sobel edges of an image) 
preserves the scale-space properties associated with 
zeroth order signal (original image) (Lindberg, 
1994).  

This approach addresses all the issues associated 
with scale identification listed in section 2.2 as the 
histograms are generated from magnitude of edges of 
entire image. The important structures are then 
segregated by bifurcation of the histograms. Since 
these structures originate from global calculations 
rather than local, they are relatively impervious to the 
local properties. The structures so obtained originate 
w.r.t. background and consequently do not require 
relative grading algorithms. 

3 ALGORITHM & PROPERTIES: 
THRESHOLD GRAPH (TG) 

Otsu’s threshold is calculated for first derivative of 
the Gaussian smoothed image for each scale to 
generate a Gaussian Smoothed Derivative Image 
(GSDI). Specifically, magnitudes of Sobel’s edges 
are used as a first derivative of Image.  The 
algorithm for plotting the Threshold (Steps 1, 2), 
identifying the optimum scale (step 3) and 
identifying important structure in the GSDI (Step 5) 
is outlined in Algorithm 1. 

Algorithm 1: 
1. Convolve the image with Gaussian Kernel of 

increasing scale. For each scale : 
a. Calculate the histogram from Magnitude 

of Sobel edges.  
b. Calculate OT from the histogram. 
c. Record OT against the scale. 

2. Plot OT against the scales. 
3. Identify the scale at which local maxima 

exists in the TG. For all the results presented 
in this paper the local maxima was identified 
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by the maximum of difference operator (∇ ). 
Difference operator is defined as 

)1()()(2 −−=∇ <<= kTkTkLk  (11) 

Where 
L is the maximum scale under consideration 
T (k) represents the Otsu’s threshold at scale k 
The optimum scale k* is given by the 
maximum positive difference operator: 

)](max[)( *
2 kkLk ∇=∇ <<=                    (12) 

If 0)( >∇ k  
4. Absence of any positive Difference Operator 

indicates absence of a foreground entity. 
5. If an optimum scale with corresponding OT is 

identified, the image is segmented by 
Thresholding the GSDI with OT.  

Note 1: Steps 3, 4 in algorithm 1 demonstrate that 
the process of detecting maxima and scale can be 
automated. The steps are not exhaustive and 
replaceable by other methods (beyond the scope 
of current paper) to detect maxima in signals.  

3.1 Background Intensity Variation 

The tiles in the Fig 3 are from images (Syn 1, 2, 3, 4, 
5 and 6) of dimensions 640X480 with the intensities 
as listed in Table 1. The gradient magnitude between 
foreground and background of three sets of 
complimentary images (Syn 1, 4; 2, 5; 3, 6) is 
identical although the gradient direction of FG and 
BG is reverse. The TGs of complimentary sets of 
synthetic GSDIs are shown in Fig 4. Each 
complimentary pair has identical TG which leads to 
following two deductions: 

(a) OT decay is exponential and proportional to 
the magnitude of gradient.  

(b) Decay is independent of gradient direction. 

Table 1: Intensities of Syn 1 to 6. 

Image: 
(Syn) 1 2 3 4 5 6 

Foreground 
Intensity 

0 0 0 255 255 255 

Background 
Intensity 

85 170 255 170 85 0 

 
Figure 3: Tiles of Synthetic Images. (a) Syn 1 (b) Syn 2 
(c) Syn 3 (d) Syn 4 (e) Syn 5 (f) Syn 6. 
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Figure 4: TG of Pairs Syn (1,4), (2,5), (3,6). 

3.2 Background Intensity Variation 

Tiles and TG from synthetic images Syn 10, 11, and 
12 are shown in Fig 5. In each image pattern 
wherein the intensity is same but the frequency of 
background is varied. TG indicates that the OT 
decays with minor variations in decay rate due to 
background frequency. 

Figure 5: Top Row(Left to Right) – Tiles of Synthetic 
Images Syn 10,11 and 12. Bottom Row – TG of Syn 10,11 
and 12. 
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3.3 Foreground Frequency Variation 

In synthetic Images Syn 13, 14, 15 the background 
pattern comprises of square clusters of intensity 170 
against a backdrop of intensity 85. The foreground 
comprises of cluster of four squares of intensity 255 
and a size of 4 pixels each. These foreground 
clusters are separated by distance of 8, 16 and 24 for 
Syn 13, 14 and 15 respectively as illustrated by tiles 
in first column of Figure 6. The TG due to 
Algorithm 1 is shown in Figure 7. 

Figure 6: Top, Middle and Bottom Row: Images Syn 13, 
14 and 15. First, Second and Third Column: Tiles of 
Synthetic Image, Thresholded Images at Lower Inflection 
point and Upper Inflection point. 

Figure 7: TG of Syn 13, 14 and 15. 

The results of thresholding the image with the 
Otsu’s threshold at the lower and upper points of 
inflection are shown in second and third column of 
Fig 6. It is observed that the appropriate scale 
respect to the background of the image is given by 
the upper point of inflection. Column 3 of Fig 6 
shows that the thresholded images at upper points of 
inflection give the important structure in the image 
with respect to the background. This quantitative 
event (maxima) enables TG to: 

(a) Detect scale and threshold appropriate to a 
image. 

(b) Identify the important structures (in this case 
represented by edges) in the image.  

A slight shift in the local maxima is observed 
with decrease of the foreground frequency, which 
can be attributed to attrition in the percentage of 
pixels contributing to histogram bin at the 
background-foreground interface. Nevertheless the 
ability of the TG to adapt to the internal structure of 
the image background is illustrated. 

3.4 Foreground Intensity Variation 

 

 

 

 

 

Figure 8: Top Row(Left to Right)- Tiles of Syn 16, 17 and 
18. Bottom Row: TG of Syn 16, 17 and 18. 

Images Syn 16, 17 and 18 shown in Fig 8 have 
the same pattern as the image Syn 13, however the 
foreground intensity is set to 255, 0 and 127 
respectively. Since the background intensity varies 
between 85 and 170, three scenarios are: 
i. Foreground intensity>Background range (Syn 16) 
ii. Foreground intensity<Background range (Syn 17) 
iii. Foreground intensity is within the Background 
range (Syn 18) 

The TGs are depicted in Fig 8. Where the 
foreground intensity is beyond the background 
intensity range, inflection exists in the TG. However 
when the foreground intensity range is confined to 
the range exhibited by the background (TG for Syn 
18) the inflection does not occur; hence the 
important structures are not detected. Absence of 
inflection can be attributed to similar interface 
derivatives as the non-interface derivatives. It is a 
unique case and does not occur frequently, 
especially in natural textures e.g. detecting a grass 
hopper in grass. Natural textures like pebbles, sand, 
water, hay, grass, vegetation, wood, and even 
manmade textures like rugs, carpets usually have 
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background chromaticity which when projected 
onto gray scale has a narrow range. Consequently 
the foreground object’s intensity exists outside the 
background image intensity range.  

3.5 Foreground Size Variation 

Three sets of synthetic images and their TG are 
shown in Fig 9 to 15 where Set 1 corresponds to 
Fig 9 (Syn 19 to 27) and Fig 12 (TG of Syn 19 to 
27); Set 2 corresponds to Fig 10 (Syn 28 to 36) and 
Fig  13 (TG of Syn 28 to 36); Set 3 corresponds to 
Fig 11 (Syn 37 to 45) and Fig 14 (TG of Syn 37 to 
45);. Each set of Synthetic images contains a 
rectangular   foreground   of  varying  sizes  having  

 area 0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64 
times that of the synthetic image. Reduced images 
are shown owing to paucity of space; however the 
background patterns are shown in top row second 
column of Fig 13, 15, 17 respectively for sets 1, 2 
and 3. The thresholded GSDI at the points of 
inflection of TG for all the 3 sets are shown in: 

(a) In 3 cases of background only i.e. Syn 19, 
28 and 37 represented by black lines in 
Fig 14, 16 and 18 there is only decay of 
the TG without any inflection. Remaining 
TG of synthetic images however undergo 
an inflection even on introduction of 
foreground of area 1 % of total image 
area.   

 
Figure 9: Top Row (Left to Right) Shrunk Images Syn 19 to 27. Bottom Row - Results. Bottom Row 1st Column: 
Background Pattern for Syn 19 to 27. 

 
Figure 10:  Top Row (Left to Right) Shrunk Images Syn 28 to 36. Bottom Row - Results. Bottom Row 1st Column: 
Background Pattern for Syn 28 to 36. 

 
Figure 11:  Top Row (Left to Right) Shrunk Images Syn 37 to 45. Bottom Row - Results. Bottom Row 1st Column: 
Background Pattern for Syn 37 to 45. 

                    
             Figure 12: TG of Syn 19 to 27.             Figure 13: TG of Syn 28 to 36.          Figure 14: TG of Syn 37 to 45.                          
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(b) Intra set points of inflection for all 3 sets 
reveal a decreasing trend (dotted ellipses) 
with increase of foreground area. The 
intra-set trend of decrease of non-
interface class mean (Δμ0) being more 
than increase of interface class mean 
(Δμ1) results in decrease of threshold (k) 
due to equation 13  (Lin,2003)  

2/)( 10 μμ +=k                          (13) 

(c) Inter set points of inflection exhibit an 
increasing range of inflection values with 
respect to scale as shown by the dotted 
ellipses in Fig 12, 13 and 14.  Background 
frequency is decreasing from set 1 to 2 to 
3, hence  threshold’s (k) sensitivity 
increases to term (μ1) in equation 13, 
resulting in increased range of inflection 
values.  

3.6 Natural Images 

Natural scenes comprise of a host of image signal 
distortion factors like ambient light, shadows, 2-D 
representation of 3-D space, occlusion and 
projection of 3-D chromaticity onto grayscale. 
There are image acquisition problems arising out 
of camera position, resolution and digital 
representation which aggravate the difficulty in 
estimation of appropriate scale. In addition a 
singular appropriate-scale as applicable to entire 
image will not exist in images wherein the 
coarseness of back ground pattern changes across 
the  scene. In spite of inherent problems in locating 

 
Figure 15: Top Row (Left to Right)-Natural Images 
Nat01 Nat 02, Thresholded Nat02 at lower and upper 
points of inflection. Middle Row-TG of Nat01, 02, 03 
and 04. Bottom Row (Left to Right)-Natural Images 
Nat03 Nat04, Thresholded Nat04 at lower and upper 
points of inflection.  

the appropriate scale in natural images, OT is fairly 
robust in detecting background-foreground 
interface. Figures 15 to 18 present result of 
applying OT to various backgrounds both in the 
presence and absence of foreground. 

 

Figure 16: Top Row (Left to Right)-Natural Image 
Nat05 Original, and Thresholded at lower inflection 
point, and upper inflection point. Middle Row: Natural 
Image Nat06 Original, Thresholded at lower inflection 
point and upper inflection point. Bottom Row: TG of 
Nat05 and Nat06. 

 
Figure 17: 1st Row (Left to Right)-Natural Image Nat07, 
Nat08, Nat09. 2nd Row: Nat07, Nat08 and Nat09 
Thresholded at lower inflection points. 3rd Row: Nat07, 
Nat08 and Nat09 Thresholded at upper inflection points. 
Bottom Row: Nat10 and TG of Nat07, 08, 09 and 10. 
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Figure 18: Row 1-Nat11, Nat12, Nat13, Row 4-TG of 
Nat11, 12, 13. Column 1 and 2 – Original and 
Thresholded Image (at upper point of inflection). 

4 CONCLUSIONS 

A novel “bottom-up” concept has been presented 
for identifying the important structures and 
appropriate scale using Scale-Space properties of 
images. The method is unsupervised and addresses 
the intractability of scale identification. Synthetic 
images have demonstrated the adaptability of the 
Threshold Graph to variations in the image. The 
results have also been demonstrated on natural and 
manmade textures.  

This paper has dealt with the structures in 
reference to the whole image, but the same 
approach can be spatially reduced to find structures 
in regions of the images. Scale at points of 
inflection can also be used as a parameter in a 
variety of region based algorithms. Noise in results 
can be eliminated by one or combination of 
following 

(a) Utilizing a scale higher than that of the 
inflection, as the important edges will persevere 
across scales.  

(b) Hysteresis thresholding across scales. 
(c) Sequentially thresholding the interface 

edges identified by Otsu’s threshold. 
Future research would be on the pre-processing 

and post-processing required for extending the 
applicability of the TG. Another interesting 
application for which TG can be utilized is in 
establishing equivalence between space and time 

for dynamic textures exhibited by fluids, based on 
the assumption that the deformation of fluids in 
space and time is similar.  
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