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Abstract: We compare computational results for three procedures for reconstruction and texturing of 3D urban terrain. 
One procedure is based on recently developed “L1 splines”, another on conventional splines and a third on 
“α-shapes”. Computational results generated from optical images of a model house and of the Gottesaue 
Palace in Karlsruhe, Germany are presented. These comparisons indicate that the L1-spline-based procedure 
produces textured reconstructions that are superior to those produced by the conventional-spline-based pro-
cedure and the α-shapes-based procedure. 

1 INTRODUCTION 

Reconstruction and texturing of urban terrain based 
on data obtained from inexpensive cameras on small 
unmanned aerial vehicles (UAVs) are of importance 
for urban planning, civilian emergency operations 
and defense. Due to unstable flight paths and to the 
lack of consistent availability of external references 
such as GPS, such data are often corrupted by large 
amounts of noise and by bias. Geometric point 
clouds created from optical images typically consist 
of data with highly irregular spacing—with sparse 
regions resulting from poorly textured areas right 
next to dense regions. The human eye can often 
discern urban structures under these conditions, 
although automatic procedures for doing so are few 
and far between. 

Urban terrain is particularly challenging to 
model because it has “ubiquitous” discontinuities as 
well as planar regions and regions of slow and rapid 
smooth change. In addition, the data is inherently 3D 

rather than 2.5D, since there are often vertical walls 
and overhanging structures, such as edges of roofs, 
sills of windows and branches of trees in the images. 
Splines of many varieties, including tensor-product, 
polynomial (B-splines), thin-plate, rational and net-
work splines (Bos and Holland, 1996; Brovelli and 
Cannata, 2004; Chui, 1988; de Boor, 1993; Eck and 
Hoppe, 1996; Farin, 1995, 1997; Lee et al., 1997; 
Piegl and Tiller, 1995; Powell, 1997; Späth, 1995) 
perform well on many types of smooth data but pro-
duce nonphysical oscillation near the gradient dis-
continuities in urban terrain and near boundaries 
between regions with sparse and dense data. Trian-
gulated Irregular Networks, or “TINs” (Thurston, 
2003), have been used to model 2.5D terrain with 
considerable success. Both TINs and the related 3D 
approach, often called Triangular Mesh Surfaces 
(TMSs), can model corners and planar regions accu-
rately and with high compression but not regions of 
smooth change. Also, these procedures are sensitive 
to noise and outliers in the data. One often used 
TMS procedure is alpha shapes or, as it is also 
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called, α-shapes (Edelsbrunner and Mücke, 1994), 
will be considered in Sec. 3. Further alternatives for 
terrain modeling such as kriging (Cressie, 1993) and 
wavelets (Chui et al., 1994) have some advantages 
for various types of terrain but are not sufficiently 
accurate and/or efficient for urban terrain. 

Recently, a spline procedure hitherto unexplored 
in the context of urban terrain modeling, one based 
on a new class of splines called L1 splines, was 
proposed (Bulatov and Lavery, 2009). Computati-
onal results for L1 splines in geometric modeling 
(Gilsinn and Lavery, 2002; Lavery, 2001, 2004) and 
in the context of reconstruction and texturing of ur-
ban terrain (Bulatov and Lavery, 2009) indicate 
excellent performance. However, direct comparison 
of the L1 spline reconstruction and texturing 
procedure with alternative procedures has not yet 
been carried out. This paper fills this void by pro-
viding comparison of the L1-spline-based procedure 
with procedures based on conventional polynomial 
splines and on α-shapes.  

Comparing different methods among themselves 
is conceptually best carried out in the context of 
comparison of all of the methods with ground truth. 
In the case of modeling textured objects, however, a 
metric that meaningfully measures changes in geo-
metry, texture and color information is unknown. 
Geometric surfaces can be compared by means of 
metrics such as the standard mean error metric (rms 
metric), an Lp metric or the Hausdorff metric. If 
these metrics are to be applied to texture and color in 
addition to the geometry, they have to be formulated 
in some artificial space involving geometry, bright-
ness and RGB. The mean error metric in such a spa-
ce can easily be shown not to correspond to what hu-
man beings expect. Simple, commonplace examples 
can be constructed to show that the mean error met-
ric can be small when human beings judge the error 
to be large and can be huge when human beings 
judge the error to be small. It is well known that, 
even for the “simple” issue of measuring geometric 
error (ignoring texture and color), the mean error 
metric and the minimax error metric in the vertical 
direction are very poor measures of error. If the error 
is measured not in the vertical direction but rather in 
the direction orthogonal to the surface, the 
improvement (that is, how well the quantitative 
metric expresses what human viewers would judge) 
is not large. The issue of metrics for quantitative 
comparison is a huge and hitherto virtually 
unexplored issue (Lavery, 2006). For this reason, we 
do not attempt to quantify the comparisons presented 
in this article but allow the reader to make 
judgments for her/himself. 

In Sec.  2, we describe the five steps of the proce-
dure introduced in (Bulatov and Lavery, 2009) and 

define the nonparametric and parametric L1 splines 
that are at the foundation of this procedure. Com-
parisons of this procedure with procedures based on 
conventional splines and on α-shapes are presented 
in Sec. 3. Finally, Sec. 4  provides concluding re-
marks, including information about future directions. 

2 L1-SPLINE-BASED  
PROCEDURE FOR 
RECONSTRUCTION  
AND TEXTURING 

There are five steps in the L1-spline-based procedure 
that we investigate here, namely, 
• Step 1: Creation of the point cloud from the 

optical images 
• Step 2: Generation of a nonparametric 2.5D 

surface from the point cloud 
• Step 3 (iterated): Creation of a parametrized da-

ta set using the latest 2.5D or 3D surface  
• Step 4 (iterated): Generation of a parametric 3D 

surface  
• Step 5: Meshing and texturing of the 3D surface 

 
These steps are outlined in the remainder of this 

section. More detail about these steps can be found 
in (Bulatov and Lavery, 2009). 

Step 1 is carried out by recently developed struc-
ture-from-motion methods (Nistér, 2001, Martinec, 
2006). In the implementation that we use (Bulatov, 
2008), characteristic points are found in periodic in-
tervals and tracked from frame to frame by KLT 
tracking (Lucas and Kanade, 1981). The reconst-
ruction takes place in a projective coordinate system. 
The transformation into a Euclidean coordinate 
system is done by self-calibration; see (Hartley and 
Zisserman, 2000) for further information. The 
results of this step are a point cloud { } 1
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with all mx  and my  in an xy domain 

D and a set of camera matrices. The set of camera 
matrices is reduced by taking approximately every 
tenth camera matrix and corresponding image, items 
that will later be needed for texturing. These images 
will be referred to as “reference images”. 

In Step 2, the nonparametric 2.5D L1 spline 
(smoothing spline) ( , )z z x y=  is created from X as 
the function z that minimizes over a set of C1-
smooth piecewise cubic functions z on D. Here, γ is 
a balance parameter that trades off how closely the 
data points are fitted vs. the tendency of the surface 
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to be close to planar segments, mw  is a weight and ε 
is a regularization parameter. 

Let ( )ˆ ˆ ˆ, ,m m mx y z  denote the point on the L1 spli-

ne ( , )z x y  closest to ( ), ,m m mx y z  and let ˆm mu x=  

and ˆm mv y= . The parametrized data set of Step 3 is 

{ }( , , ), ( , , ), ( , , ) 1

M
m m m m m m m m m m

u v x u v y u v z
=

. The para-

metric 3D spline ( )( , ) ( , ), ( , ), ( , )  u v x u v y u v z u v=x  
of Step 4 minimizes a functional that consists of 
functional (1) with x and y replaced by u and v plus 
twelve additional expressions in which z (with or 
without subscript) is replaced by x, y, x + y, x – y, x 
+ z, x – z, y + z, y – z, x + y + z, x + y – z, x – y + z 
and x – y – z. Steps 3 and 4 are now repeated twice. 
On each iteration, a new parametrization is determi-
ned by finding, for each data point ,mx the point ˆ mx  
on the 3D L1 spline surface ( , )u vx  that lies closest 
to .mx Defining new independent variables u, v as 

ˆm mu x=  and ˆ ,m mv y=  the new parametrized data 

set is { }( , , ), ( , , ), ( , , ) .1

M
m m m m m m m m m m

u v x u v y u v z
=

 
To create a triangular mesh for ( , )u vx , we use 

planar triangles in xyz space that correspond to tri-
angles in the parametric uv domain D. We subdivide 
D into equally spaced rectangular cells R in u and v 
and consider for every rectangle R the set Rx = 

{ }ˆ ( , ), ( , )m m m mu v u v R∈x  of points projected ortho-
gonally onto the surface. The spatial center of R is a 
multipoint that is assumed to be observed in every 
reference image that observes any of the points in 

Rx . We use Delaunay triangulation of multipoints, 
which allow reducing the number of triangles to 
around 0.05M, where M is the number of data 
points. As an optional step, we refine the triangula-
tion using edge-flipping algorithms (Quak and Schu-
maker, 1991) in order to make the triangle edges 
correspond to the changes of the normals of the 
multipoints. 

 In order to texture a triangle T, we first compute 
the intersection of the set of reference images for all 
three vertex-multipoints. If this intersection is non-

empty, any reference image of the set can be used to 
texture T. If the intersection is empty, we proceed as 
follows to choose the image for texturing: Let g  be 
the center of gravity of T, P be the camera matrix 
corresponding to the camera located at t  and ,T Px  
be the vertices T projected by P into the correspon-
ding image I. We also define y  to be the points in 
space visible in I, the projections in I of which are 
near the projection of g  in I. The images for which 
either the angle β between the normal of T and the 
vector tg  or the minimal distance of ,T Px from the 
image border or the difference between | |tg and | |ty  
exceeds a given threshold are rejected. From the rest 
of the images, we take the one with the smallest 
value of | |tg (1 – cos β). The triangles for which all 
images were rejected are textured by a constant, 
neutral color. 

3 COMPARISON OF  
L1-SPLINE-BASED 
PROCEDURE WITH  
OTHER PROCEDURES 

In this section, we compare computational results for 
the L1-spline-based procedure of Sec. 2 with compu-
tational results for procedures based on conventional 
splines and α-shapes. 

For the computational experiments, we chose all 
parameters and items as in (Bulatov and Lavery, 
2009). The computational grid was an equally spa-
ced grid with 30 cells in each horizontal direction. 
The L1 splines and conventional splines were con-
structed using Sibson elements (Lavery, 2001). The 
weights wm were 1 divided by the number of points 
in each of the four triangles in a rectangular Sibson 
element. The balance parameter γ was 0.7 for the 
nonparametric spline and the first parametric spline 
and 0.8 for the second and third parametric spline. 
For further details, see (Bulatov and Lavery, 2009). 

The procedure based on conventional splines is 
the same as that stated in Sec. 2 except that the 
absolute values in the minimization principles are 
replaced by squares and wm, γ, 1 – γ and ε are also 
squared. Comparison of the L1-spline-based proce-
dure with a procedure based on conventional splines 
is of interest because conventional splines are com-
monly used in geometric modeling and because all 
of the differences in the results can be directly attri-
buted to the differences in the properties of L1 and 
conventional splines. 
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Comparison with the procedure based on α-sha-
pes is also valuable because α-shapes are commonly 
used for modeling irregular 3D objects. In α-shapes, 
given a point set X, a triangle T with vertices in X is 
added to the list of triangles if and only if there is no 
point of X in the open ball of radius α through the 
vertices of T. Since α-shapes are subsets of 
Delaunay triangulations and the number of possible 
α-shapes is finite, the process of computing α-shapes 
is fast (Edelsbrunner and Mücke, 1994). The proce-
dure based on α-shapes is the same as that stated in 
Sec. 2 except that Steps 2–4 and the triangulation 
portion of Step 5 are replaced by triangulation by α-
shapes. The values of α for which the best results 
were obtained are (0.5-2.0)·104σ, where σ is the 
standard deviation of the dataset coordinates.   

In Figure 1 and Figure 2, we present optical 
images of a model house and of the Gottesaue Pa-
lace in Karlsruhe, Germany. The data set House was 
reconstructed with 83 camera positions and some 
10000 3D points. Bundle adjustment was run after 
Euclidean reconstruction. The data set Gottesaue 
was reconstructed with 339 camera positions and 
some 40000 points.  

Figure 3 and Figure 4 show the point clouds that 
result from Step 1 of the procedure described in Sec. 
2  above together with some of the camera positions. 
Note the abruptly changing nature of the point cloud, 
with adjacent sparse and dense regions. It is 
particularly challenging to reconstruct the sparse 
regions. In Figure 5 and Figure 6, we present the 
scenes reconstructed and textured by the L1-spline-
based procedure of Sec.  2. Texturing was performed 
using 594 and 1342 multipoints and 10 and 29 
reference cameras for House and Gottesaue, res-
pectively. Note the sharp illumination changes in the 
transition from the walls to the ground in the 
colormap for Figure 6. In Figure 7 and Figure 8, we 
show the triangular meshes and textured views of 
buildings reconstructed by the conventional-spline-
based procedure described at the beginning of the 
present section. Finally, in Figure 9 and Figure 10, 
we present, for two characteristic values of α, the 
meshes and final results for the buildings reconstruc-
ted and textured by the α-shapes procedure. The 
computational results make clear the advantages of 
the L1-spline-based procedure vs. the alternative pro-
cedures based on conventional splines and α-shapes. 
Note by comparing Figure 6 and Figure 8 the nume-
rous extraneous, nonphysical peaks (oscillation) that 
plague the conventional spline and the completeness 
with which the L1 spline eliminates these non-
physical peaks while retaining representation of 
elevated physical objects such as the house beside 
the palace on the left of Figure 2. Note also by 
comparing Figure 6 with Figure 10 the inability of 

α-shapes to produce a meaningful surface without 
nonphysical holes when the data are noisy and 
irregularly spaced and the ability of the L1 spline to 
produce an excellent, hole-free surface under the 
same circumstances. 

In the computational experiments for the sequen-
ce Gottesaue, the L1-spline-based procedure took 
around 2 hours of computing time while the conven-
tional-spline-based and α-shapes-based procedures 
took respectively about 1.5 and 0.5 minutes of com-
puting time. However, the quality of the reconstruct-
ed and textured scenes is inversely correlated to the 
computing time. Even though the α-shapes-based 
procedure performs rather well for the almost noise-
free data set House (Figure 9), it fails completely 
when processing the noisy data set Gottesaue 
(Figure 10) where no bundle adjustment took place. 
The nonphysical oscillations near the gradient dis-
continuities and data outliers are quite apparent in 
the results produced using conventional splines and 
render these results difficult to accept. 

 

 
Figure 1: Optical images from the sequence House. 

 
Figure 2: Optical images from the sequence Gottesaue. 

 
Figure 3: Point cloud for the sequence House together 
with the camera trajectory. 
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Figure 4: Point cloud for the sequence Gottesaue together 
with a part of camera trajectory (placed artificially closer 
to the point cloud). 

 

 
Figure 5: Two views of the triangular mesh and two views 
of the textured reconstruction produced from the sequence 
House by the L1-spline-based procedure. 

 

 

 
Figure 6: Two colormap views of the mesh and view of 
the textured reconstruction produced from the sequence 
Gottesaue by the L1-spline-based procedure. The original 
point cloud is indicated by green points. 

 

 
Figure 7: Two views of the triangular mesh and two views 
of the textured reconstruction from the sequence House 
produced by the conventional-spline-based procedure. 

 

 

 
Figure 8: Two colormap views of the mesh and view of 
the textured reconstruction produced from the sequence 
Gottesaue by the conventional-spline-based procedure. 
The original point cloud is indicated by green points. 

 

COMPARISON OF RECONSTRUCTION AND TEXTURING OF 3D URBAN TERRAIN BY L1 SPLINES,
CONVENTIONAL SPLINES AND ALPHA SHAPES

407



 

 
Figure 9: Two views of the mesh and of the textured re-
construction produced from the sequence House by the α-
shapes procedure. Left α = 1.0·104σ, right α = 2.0·104σ. 

 

 

 

 
Figure 10: Views of the mesh and of the textured 
reconstruction produced from the sequence Gottesaue by 
the α-shapes-based procedure. α = 0.5·104σ above and α = 
2.0·104σ below. 

The high computing time of the L1-spline-based 
procedure is an artifact of its current implementati-
on, which was designed to prove a principle rather 
than to optimize computing time. The computing ti-
me can be reduced by 4 to 6 orders of magnitude by 
using L1 splines calculated by domain decomposi-
tion (Lin et al., 2006) rather than global splines, 
improved gridding and improved software structure, 
which will make the L1-spline-based procedure real-
time or nearly so. The enhanced accuracy that the 
L1-spline-based procedure produces justifies expen-
ding the effort to make these improvements in the L1 
spline algorithm and software. 

4 CONCLUSIONS AND FUTURE 
WORK 

The comparisons presented in this paper indicate 
that the L1-spline-based procedure is an excellent 
path to improving reconstruction and texturing of 
urban terrain and is a significant advance over the 
previous state of the art. This procedure is able to 
handle abrupt changes in the density of the point clo-
ud and is able to produce excellent reconstructions 
even in regions with sparse data. The comparisons 
show the importance of using L1 splines rather than 
conventional splines and α-shapes for processing of 
3D urban scenes. 

Future work on terrain modeling will include im-
proved implementation of the L1-spline-based proce-
dure. In addition to improving the software structure 
in general, we will parallelize the algorithm by 
calculating multiple local L1 splines instead of one 
global spline (“domain decomposition”) and patch 
together the global L1 spline from these local splines. 
This work will be an extension of work in (Lin et al., 
2006). We will also implement adaptive rectangular 
and triangular grids that will assign data points to L1 
spline computational cells in an even manner, that is, 
so that there are roughly equal numbers of data 
points per cell throughout the domain. (At present, a 
few cells contain the bulk of the data points and 
many cells contain few or no data points, a situation 
that arises from the unavoidably irregular nature of 
the point cloud.) These changes will not merely 
reduce the computing time by orders of magnitude 
but will also allow further enhancement of the 
accuracy of the textured reconstruction. With respect 
to performance evaluation, we will carry out further 
experiments for quantitative and qualitative eva-
luation of continuative modifications of the methods 
described in this paper as well as other alternatives 
for terrain modeling. 
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