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Abstract: The development of new interaction paradigms requires a natural interaction. This means that people should 
be able to interact with technology with the same models used to interact with everyday real life, that is 
through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision 
based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to 
use the hand as a “natural” 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D 
marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a 
monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered 
backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their 
results are combined to obtain a constrained stereoscopic problem. The system has been implemented and 
thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with 
objects in a virtual reality application. We also provide results about the performances of the tracker, which 
demonstrate precision and robustness of the proposed system. 

1 INTRODUCTION 

In the recent years there has been a growing interest 
in the scientific and industrial communities to 
develop innovative devices allowing a natural 
interaction with machines, and recent products, like 
the Nintendo Wii console and the Microsoft Surface, 
try to introduce novel habits for computer users. 
From this point of view, one of the most natural 
ways to interact with objects is using our bare hands. 
In real world, we use our hands to touch, grasp and 
move the objects and we typically use our fingers to 
point at something. Acting in the same way on the 
objects, allows people to transfer already acquired 
abilities to the interaction with the computer and to 
expand possibilities and complexities in human-to-
computer communication.  

Several commercial gesture based devices exist 
at present. They usually require extraneous wearable 
hardware, such as markers or sensing gloves. These 
solutions provide high quality results but they are 
expensive, intrusive and they could disturb the 
movements of the user.  

On the contrary, vision based techniques could 
offer a simple, expressive, and meaningful manner 
to interact with the computer. These techniques are 

cost-effective and non invasive, and they have been 
used in many contexts.  

In this paper, we propose a simple, fast and 
robust hand tracking system that can be used to 
develop a “natural” 3D mouse. The output of the 
tracker is the position of a 3D marker and an 
indication of the actual posture of the hand, which 
can be used to mimic the click of the mouse buttons. 
Our system uses two video cameras and the 
proposed approach separates the elaboration of the 
two image streams, refining the results in a merging 
stage at the end of the process. In more details, for 
each image stream, we evaluate the perceived hand 
posture and the 2D position, on the image plane, of 
the reference point. The results are then combined in 
order to evaluate the final 3D marker position and 
hand posture. 

Experimental results demonstrate that the 
proposed system is fast, robust and computationally 
manageable on medium level computers. The paper 
is organized as follows. In Section 2, we describe 
our approach. Section 3 evaluates the experimental 
results. Concluding remarks are reported in Section 
4.
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1.1 Related Works 

The general approach to vision based hand tracking 
usually requires three main processes: hand 
segmentation, hand tracking and gesture estimation. 
Colour is the most common image clue for feature 
extraction (Bradski, 1998), (Chen, Fu and Huang, 
2003), (Pantrigo, Montemayor and Sanchez, 2005). 
Other visual cues, like motion, edges and shading 
have been proposed in order to reduce influences of 
varying illumination and cluttered background (Cui 
and Weng, 2000), (Liu and Jia, 2004). Recent results 
in integrating different visual information offer more 
robust solutions (Akyol and Alvarado, 2001), (Shan 
Lu et al, 2003). 

Several approaches have been applied to the 
tracking problem: a review of the most popular 
algorithms is presented in Mahmoudi and Parviz 
(2006). The CAMShift algorithm (Bradski, 1998) is 
a robust nonparametric technique derived form 
Mean Shift (Cheng, 1995). Improvements of 
CAMShift algorithm can be found in Liu et al. 
(2003), Zhai et al.  (2005). The Condensation 
algorithm (Isard and Blake, 1998)  is a powerful 
stochastic approach based on Monte Carlo method 
that has been applied to several challenging 
environments, such as wearable computers (Liu and 
Jia, 2004) and real-time humanoid interaction 
(Gumpp et al, 2006). Improvements of Condensation 
are Icondesation (Isard and Blake, 1998), particle 
filtering (Weiser and Brown, 1995), (Shan et al, 
2004), smart particle filtering (Bray, Koller-Meier 
and Van Gool, 2004) and local search particle filter 
(Pantrigo, Montemayor and Sanchez, 2005). 
Articulated and deformable 3D hand model driven 
techniques have also been proposed by Stenger, 
Mendonca and Cipolla (2001), (Heap and Hogg, 
1996). 

As for the gesture estimation problem, a good 
survey on the subject is Erol et al., (2007). We can 
have partial pose approaches (Oka, Sato and Koike, 
2002), (Letessier and Bèrard, 2004), which are 
usually based on rough models of the hand and 
cannot reconstruct all the degrees of freedom (DOF) 
of the hand, and full DOF approaches, usually 
exploiting complex 3D models (Drummond and 
Cipolla, 2002), and performing single frame pose 
estimation offering the advantage of self-initializing 
and re-initializing algorithms, capable of handling 
fast hand motion where time coherence is an useless 
clue (Stenger et al., 2004), (Tomasi, Petrov and 
Sastry, 2003). 

2 THE MULTIPLE CAMERA 
APPROACH TO HAND 
TRACKING 

The goal of our work is to develop a simple and 
effective input device which allows a “natural” way 
of interacting with the computer using the bare 
hands. In our scenario, a single user sitting at a 
desktop interacts with a VR application picking 3D 
points, selecting and moving objects in the 
environment or changing the view on the simulated 
world. To perform these tasks, the 3D counterpart of 
a desktop mouse, that is a device capable of moving 
a 3D marker in the environment and to issue 
commands by pushing some buttons, could be 
sufficient. From the point of view of the user, which 
is immersed in a virtual environment where the 
objects are floating in front of his eyes, the most 
natural way to select an object would be by touching 
it, to change its position by moving it with the hand, 
and picking a location by pointing it.  To select a 
different view of the scene, a commonly used 
approach is the virtual trackball paradigm: the 
objects are enclosed in a glass ball which can be 
rotated around its centre to change the world view.  
Again, a natural way to perform this operation 
would be to touch the glass ball and rotate it with the 
hand. Therefore, the position of the forefinger tip 
can be used as a “natural” 3D marker that can be 
controlled moving the hand (Figure 1a-b). A simple 
way to simulate the click of the mouse could be to 
associate the event to a specific, and comfortable, 
hand posture. For instance, when the forefinger is 
extended, such a posture could be the one where also 
the thumb is stretched out (Figure 1c-d). Thumb-
index enslaving is not a problem for ergonomy, 
since Olafsdottir (2005) shows that the indices of 
digit interaction does not depend whether the thumb 
is one of the involved digits. 
 

 
Figure 1: Interaction with the virtual environment. 

 
The click of a second button, e.g. the right 

button, could then be mimicked with another 
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posture. We experienced that extending another 
finger is not comfortable for the user, while it is 
much easier to close the hand. Using this posture, 
the forefinger tip cannot be used anymore as 3D 
marker, and another reference point, for instance the 
centre of the palm, can be chosen. 

The proposed hand tracking system uses two 
cameras to reconstruct the (x,y,z) position of the 
marker and of the hand posture. The two cameras 
are located on the sides of the desktop where the 
user sits and are positioned and oriented in order to 
observe a common area, the active area, where the 
user can move its hand.  

Our approach works in two phases. First, the 
information about 2D marker position and perceived 
hand posture are extracted from each image stream 
separately. Then, these data are combined in order to 
obtain precise 3D information. The rationale of this 
approach is that the 2D information can be obtained 
in a fast and reliable way, and that processing 
separately the two image streams allows the two 
threads to be executed in parallel on multi-cpu or 
multi-core based architecture, guaranteeing a 
substantial improvement of the execution times.  

The result is a simple and computationally fast 
system, which is very robust against noise and 
cluttered backgrounds. The outline of the proposed 
hand tracking system is the following. 

After initializing some of the parameters used by 
the system, the two image streams are processed 
separately. This step involves three processes: 

1. Detection/ tracking: identifies in the 
incoming image the user hands and 
tracks it along the video sequence. 

2. Segmentation: extracts the silhouettes of 
the hand from the incoming image. 

3. Recognition: identifies the posture of the 
hand and the 2D marker position. 

Finally, stereoscopy is used to combine 2D 
information and to obtain the required 3D marker 
posture and hand gesture. In the following, the 
single components of these processes will be 
described in details. 

2.1 Initialization 

Initialization is an offline process that involves 
several system’s parameters.  

First, the camera needs to be calibrated. This 
process establishes a relation between the image 
planes of the cameras and a fixed reference system 
in the 3D world. In this work we used the approach 
described in the Open Computer Vision Library 
(n.d.).  

Second, since the tracking algorithm uses a 
probability distribution image of the chromatic 
components of the objects to be tracked, a reference 
colour model needs to be initialized. In this case, we 
are interested in detecting skin-like pixels. It has 
been demonstrated (Bradski, 1998) that different 
skin colour models are not needed for different races 
of people. This fact allows building a priori a skin 
model that can be used to identify the hand. This is 
modelled with a simple chromaticity histogram, 
created interactively by selecting a part of the image 
corresponding to the hand. The RGB values of the 
pixels of the selected region are converted into the 
Hue Saturation Value (HSV) colour system, 
allowing to create a simple colour model taking 1D 
histograms from the hue channel.  

2.2 Single-stream Processing 

Single stream processing is based on the approach 
presented by Bottino and Laurentini (2007). It 
combines several computer vision algorithms, in 
order to exploit their strengths and to minimize their 
weakness.  

2.2.1 Detection/ Tracking 

The detection/tracking module is a state machine, 
whose state diagram is shown in Figure 2. In the 
detection state, the input image is processed until a 
hand enters the image. Then, in the tracking state, 
the hand is tracked until it exits the image.  

 
Figure 2: Detection/ tracking module. 

This module uses two different algorithms: Mean 
shift (Cheng, 1995) for object detection and 
CAMShift (Bradski, 1998) for object tracking. 

The input of both algorithms is a probability 
image, where pixels more likely to belong to the 
searched object have a higher value. This probability 
image is obtained by back projecting on the image 
the chromaticity histogram evaluated during the 
initialization step. The probability image is then 
filtered, as suggested by Bradski (1998), in order to 
ignore pixels whose hue value is not reliable. An 
example of an image frame and its corresponding 
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probability image is shown in Figure 3a and Figure 
3b. 

Mean shift uses a search window, whose size is 
fixed, which is iteratively moved along the image 
“climbing” the probability distribution until the 
optimum is reached. At each step, the centre of mass 
of the search windows is evaluated and the search 
window is centred on it. In our implementation, in 
order to avoid systematic errors, the initial position 
of the search window is randomly set in several 
positions of the image. The final location giving the 
best score is chosen (Figure 3c and Figure 3d). To 
find when an object is detected, the percent of 
object-like pixels in the search window is compared 
with a pre-defined threshold. 

CAMShift is a generalization of the Mean shift. 
While Mean shift is designed for static distributions, 
CAMShift is designed for dynamically changing 
distributions, such as those occurring in video 
sequences where the tracked object moves, so that 
size and location of the probability distribution 
change in time. Hence, at every iteration, also the 
size of the search windows is adapted to the 
incoming distribution. Again, to find when an object 
is lost, the percent of object-like pixels in the search 
window is compared with a pre-defined threshold.  
The output of this module is a flag indicating if the 
object has been detected and the region R where it is 
located. 

 
Figure 3: a) An incoming image and b) the corresponding 
histogram back projection. c) The initial detection region. 
d) The Mean Shift moves the R region to the optimum. 

2.2.2 Segmentation 

The segmentation module, given position and 
dimension of R, extracts the silhouette of the hand 
from the probability image. First, the probability 
image is thresholded in order to obtain a binary 
image. Then, morphological operators are applied to 

remove spurious pixels and holes are removed with 
a flood fill algorithm. Finally, the bounding box of 
the main connected component contained in the 
search window is evaluated. Any further processing 
on the images will take place only on this Region of 
Interest (ROI), reducing the computational burden. 
Other disturbing connected components, not 
belonging to the hand, are discarded (Figure 4). 
 

 
Figure 4: segmentation process. a) source image, b) 
probability image and R region, c) thresholded image, d) 
the main connected component in R and the correspondng 
ROI. 

2.2.3 Recognition 

The input of this process is the silhouette of the 
moving object and the R and ROI regions. The 
output is the 2D position of the marker and the 
posture of the hand. 

A simple 3D model of the hand is used to 
reconstruct the desired information. It is composed 
by one to three ellipsoids, depending on the gesture 
to represent. Each ellipsoid is represented in matrix 
form as x’Qx, where x’ = [x y z 1] and Q is a 
coefficient matrix. Using this representation, every 
transformation (translation, rotation, scaling) can be 
applied to the model with a simple matrix 
multiplication. The model has 7 degrees of freedom, 
3 for the position, 3 for the orientation and 1 for the 
posture, which determines also the number of 
ellipsoids composing the model. The posture can 
assume three discrete values: 0, hand closed 1, hand 
closed with the forefinger extended, and 2, hand 
closed with thumb and forefinger extended. The 
three postures, the shapes of the corresponding 
models and the assigned values are shown in Figure 
5. The projections of the ellipsoids on a plane are 
quadrics and can be obtained, again, with a simple 
multiplication between matrices. Then, knowing the 
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projection matrix obtained from calibration is 
sufficient to project the model on the image plane. 

 
Figure 5: the three hand postures identifiable, the 
corresponding model shape and the assigned value. 

The state of the model is reconstructed using the 
ICondensation algorithm (Liu and Jia, 2004), which 
is a combination of the statistical technique of 
importance sampling with the Condensation 
algorithm (Isard and Blake, 1998). Basically, it tries 
to approximate the unknown statistic distribution of 
the state of a process with a discrete set of samples 
and associated weights. This set evolves iteratively 
from an initial set of random samples, and at each 
step t their weights are updated. From these weights, 
it is possible to predict the probability distribution 
over the search space at time t+1. Thus, samples 
with higher probability are more likely to be 
propagated over time. The process is iterated for a 
predefined number of steps, and the final state is 
given by the weighted sum of the final samples. In 
our case, each sample represents a model state and 
the weighting function is defined from the projection 
of the model on the image plane. Given Is, the result 
of the exor of model projection and silhouette of the 
hand, the weight of the sample s is given by: 

∑ ∈
+

=
sIyx s

s yxI
w

),(
),(1

1        (1) 

The initial set is created from random samples in 
the neighborhood of an initial guess of the hand 
state. This is obtained from an analysis of the 
incoming silhouette, which works as follows. From 
the segmentation process we have the R and ROI 
regions (Figure 6). The palm of the hand as a high 
probability to fall into R, while finger pixels are 
mainly in the area (ROI-R). Therefore, R can be 
used to extract 2D position and orientation of the 
palm.  

The first order moments of R give a reasonable 
indication of the centre of the palm, while dimension 
and orientation of the ellipse corresponding to the 

palm can be deduced from the covariance ellipse 
built on the second order moments. From these 
parameters, we can obtain, given the dimension of 
the user hand, a rough approximation of the distance 
from the camera and of the orientation of the 
ellipsoid corresponding to the 3D palm. An initial 
indication of the hand gesture can be obtained 
analyzing the moments of the ROI region. In 
particular, the third order moments give us an 
indication of the asymmetry of the image along its 
principal axes. A significant asymmetry along the 
major axis is a strong indication of the forefinger 
presence, while a significant asymmetry along the 
minor axis is an indication of the thumb presence. 

 
Figure 6: ROI, external rectangle, and R, inner rectangle. 

 
Figure 7: Marker identification. a) Input data: model (left) 
and silhouette (right). b) The model is used to mask the 
palm. c) Curvature evaluation of boundary points. d) The 
marker is located on the point with maximum curvature. 

The output of Icondensation is then used to 
identify precisely the 2D position of the marker. If 
the posture is 0 (closed hand), the marker is given by 
the centre of the projection of the 3D palm. 
Otherwise, we identify the fingertip projecting the 
palm on the image and using it to mask the region 
corresponding to the forefinger. In case the posture 
is 2, the connected component of interest is the one 
overlapping the projection of the 3D ellipsoid 
corresponding to the forefinger. Identification of the 
marker position is based on the analysis of the local 
curvature of the boundary of the obtained region. 
The farthermost point at maximal curvature away 
from the centre of the projection of the palm is taken 
as the 2D position of the fingertip. An example can 
be seen in Figure 7. 

A FAST AND ROBUST HAND-DRIVEN 3D MOUSE

571



 

2.2.4 Merging 

The merging process involves two steps: 
• A reconstruction step, where the 3D 

position of the marker and the hand posture 
are reconstructed on the base of the 
information evaluated from the left and 
right images  

• A data filtering step, where a Kalman filter 
is used to smooth the noise in the extracted 
data 

Regarding the first step, the hand posture is 
evaluated by means of the following voting scheme: 

Table 1: The voting scheme used to evaluate the hand 
posture. 

0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

Left Camera Pose

Right 
Camera 

Pose  
 

As a matter of facts, one or more fingers can be 
hidden in one image, but visible in the other. If the 
posture number indicates the number of extended 
fingers, our voting scheme will choose the maximal 
value identified for left and right posture. 

When the posture is 0 or when the forefinger is 
visible in both images, the 3D marker position is 
evaluated intersecting the lines back projection in 
3D the marker positions on the image planes from 
the corresponding optical centres. The line equation 
is evaluated by pseudo inverting the projection 
matrix. Due to the noise introduced by the previous 
reconstruction processes, the lines unlikely intersect 
each other. So we choose as intersection the point at 
minimal distance from both lines.  

When a reference point, such as the fingertip in 
our example, is visible in only one image, the 
marker position can be reconstructed in the 
following way. First, we assume that the forefinger 
tip lies on the principal plane of symmetry of the 
hand. Then we extract the orientation of this plane, 
P, from the model corresponding to the image where 
the forefinger is visible. Finally, we take the plane P’ 
parallel to P and passing through the 3D position of 
the palm centre and we intersect it with the line back 
projecting the visible forefinger tip.  

3 SYSTEM EVALUATION  

The proposed hand tracking device has been 
implemented and tested on a PC with an Intel 
DualCore E6600 CPU, 1GB of RAM. The frame 

grabber used for image capturing is a cost-effective 
PCI capture board and guarantees an overall 240 
color frames per second. The system includes two 
color cameras, with maximal frame rate of 50 fps, 
and 752x582 color images. According to the 
literature on the subject and referring to the available 
commercial products, the device can be evaluated 
according to a set of desirable characteristics. 

3.1 Robustness 

For robustness we mean the quality of being able to 
cope well with variations in the operating 
environment with minimal loss of functionality. 
 
Initialization and Re-initialization. Since the hand 
is continuously entering and exiting the active area, 
the system must guarantee a robust identification of 
the hand presence. In a single image stream, when 
the hand is tracked, the CAMShift algorithm 
provides useful information on the object identified 
in order to understand when it exits the image. At 
the same time, Mean shift can recover very 
efficiently the object as soon as it enters again the 
image. Distributing casually the search window over 
the image allows easily to “hook” the object and 
then to identify its position. Therefore, we can state 
that the system provides robust initialization and re-
initialization of the tracking components at thread 
level, which is reflected into the robustness of the 
two integrated streams. 
 
Cluttered Backgrounds. The system is not sensible 
to non uniform backgrounds or moving objects, 
unless their chromatic distribution is not similar to 
the one of the tracked object. Examples can be seen 
in Figure 3 and Figure 4, where a complex 
background is present. Some small groups of pixels 
not belonging to the hand can be present in the 
probability image, but they are discarded during 
segmentation. For skin-like objects entering the 
image, such as leather tissues, we stress that the 
CAMShift algorithm is very robust against 
distracters. Once CAMShift is locked onto the mode 
of a colour distribution, it will tend to ignore other 
nearby but non-connected distributions.  

It is true, however, that some problems can be 
caused when the disturbing object and the hand form 
a connected component or when a disturbing object, 
whose area is bigger then the identification 
threshold, is detected in the image when no hand is 
present. This produces false hand identification.  
 
Independence from Illumination. The system is 
guaranteed to work for a wide range of variations of 
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illumination intensity since the segmentation process 
is theoretically independent from the illumination 
conditions. However, if the global illumination falls 
below a certain threshold, the segmentation 
algorithm does not give good results anymore. The 
same problem happens when the global level of 
illumination is too high, for instance for direct 
sunlight hitting the working area, since the camera 
saturates. 

3.2 Computational Manageability 

The machine used during the test can be considered 
as a medium cost processing unit (the complete 
system, including capture board and camera has a 
cost lower than 1.500€). Processing the image 
streams at a frame rate of 25 frames/sec, the mean 
latency is 20ms, and each single CPU is used at 30% 
of its capacity. The maximal mean update rate of 50 
updates/sec. A faster computational unit guarantees 
to run the system reliably at 50 Hertz, which is 
adequate to the frequencies of normal gestures in 
human-computer interaction. 

Figure 8: a) The test application. b) Selecting and moving 
3D objects. 

We developed, for test purpose, a simple VR 
application shown in Figure 8. The user can move 
the pointer (represented by a sphere), select and drag 
objects around the virtual world and change the 
user’s view (see Figure 1 for a schematic 
representation).  When the VR application is running 
another 25% of a single core is used. This 
demonstrates that there are resources available for 
other tasks, and that the system can be effectively 
used as an input device for other applications. 

3.3 Performances of the HT System 

Ground truth data was used to derive a quantitative 
measure of tracker’s accuracy. Taken a grid of 
points whose 3D position is known, the accuracy can 
be evaluated through the difference between the 3D 
positions reconstructed from the 2D projections of 
the reference points and the ground truth data. Since 
the accuracy is not constant, the reference points 
must be located throughout the active area, in order 

to evaluate a mean accuracy value. As a result, we 
obtain an accuracy of 1.40 mm RMS. 

The resolution is the minimal difference between 
two 3D positions detectable as different from the 
tracker that is when their projections on the image 
planes are different, the minimal distance being one 
pixel. Therefore the resolution is given by the ray of 
the sphere enclosing all the 3D points obtained by 
back projecting 2D image points at one pixel 
distance point with the reference projection. Also the 
resolution is not uniform in the active area and the 
punctual resolution is computed and averaged over 
the set of reference points. The obtained mean 
resolution is 0.79 mm RMS.  

Jitter and drift can be computed by placing the 
forefinger in a fixed position and computing the 
standard deviation of the reference position. The 
resulting jitter is 0.46 mm RMS, and the drift is null. 
The last result comes from the fact that none of the 
algorithms used introduce any drift in its output. It 
should be also outlined the fact that the jitter is 
lower then the tracker resolution, producing a stable 
output. 

The characteristics of the tracker are summarized 
in Table 2. These results show that the tracker 
provides a sufficient precision for many 
applications. 

 Table 2: Summary of tracker characteristics. 

spatial position (3) Jitter 0.4 mm RMS
hand posture (1) Drift none

Accuracy 1.4 mm RMS Latency 20 ms
Resolution 0.8 mm RMS Update Rate >25 Hz

Tracker          
data

 

4 CONCLUSIONS 

In this paper we have proposed a novel hand 
tracking system that can be used as object 
manipulation interface to use the bare hand for 
navigation, selection and manipulation tasks in 
virtual environments. The system is non intrusive, 
and reconstructs the position of a 3D marker and 
simple hand postures using two separate image 
streams. Each stream is processed separately with a 
monoscopic algorithm, which is very robust against 
noise and cluttered backgrounds. This allows 
reducing computing times parallelizing the 
processing of the two streams on multi-core or 
multi-cpu machines. Information from the two 
image planes are then combined in order to 
reconstruct the required 3D data.   

The system has been implemented, and the tests 
demonstrates that it can run in real time (up to 50 
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samples per second) on today’s desktop computer 
using off-the-shelf hardware components. Moreover, 
the device uses only the 30% of the computing 
resources, allowing the execution on the same 
machine of other applications. As for precision, the 
results are satisfactory, showing an accuracy of 
1.4mm, a resolution of 0.8mm and a jitter of 0.4 
mm. 

At present, the system requires that only one 
hand is present in the active area. As future work, 
we are planning to expand the system in order to use 
both hands for interaction. 
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