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Abstract: In this paper, we propose a scheme for detecting the information-hiding in multi-class JPEG images by 
combining expanded Markov process and joint distribution features. First, the features of the condition and 
joint distributions in the transform domains are extracted (including the Discrete Cosine Transform or DCT, 
the Discrete Wavelet Transform or DWT); next, the same features from the calibrated version of the testing 
images are extracted. A Support Vector Machine (SVM) is applied to the differences of the features 
extracted from the testing image and from the calibrated version. Experimental results show that this 
approach delivers good performance in identifying several hiding systems in JPEG images. 

1 INTRODUCTION 

To enable covert communication, steganaography is 
the technique of hiding data in a digital media. 
Digital image is currently one of the most popular 
digital media for carrying covert messages. The 
innocent image is called carrier or cover; and the 
adulterated image carrying some hidden data is 
called stego-image or steganogram. In image 
steganography, the common information-hiding 
techniques implement information-hiding by 
modifying the pixel values in space domain or 
modifying the coefficients in transform domain. 
Some other information hiding techniques include 
spread spectrum steganography (Marvel et al., 
1999), statistical steganography, distortion, and 
cover generation steganography (Katzenbeisser and 
Petitcolas, 2000), etc.  

The objective of steganalysis is to discover the 
presence of hidden data. To this date, some 
steganographic embedding methods such as LSB 
embedding, spread spectrum steganography, and 
LSB matching, etc. (Fridrich et al., 2002), (Harmsen 
and Pearlman, 2004), (Harmsen and Pearlman, 
2003), (Ker, 2005), (Liu and Sung, 2007), (Liu et al., 
2006; Liu et al., 2008a, 2008b)  have   been  success- 

fully steganalyzed. 
JPEG image is one of the most popular media on 

the Internet and easily used to carry hidden data; 
many information-hiding methods and/or tools on 
the Internet implement hiding message in JPEG 
images, therefore, it’s important for many purposes 
to design a reliable algorithm to decide whether a 
JPEG image found on the Internet carries hidden 
data or not. There are a few methods for detecting 
JPEG steganography. One of them is Histogram 
Characteristic Function Center Of Mass (HCFCOM) 
for detecting noise-adding steganography (Harmsen 
and Pearlman, 2003) another well-known method is 
to construct the high-order moment statistical model 
in the multi-scale decomposition using wavelet-like 
transform and then apply learning classifier to the 
high order feature set (Lyu and Farid, 2005). Fridrich 
et al. presented a method to estimate the cover-
image histogram from the stego-image (Fridrich et 
al., 2002). Another new feature-based steganalytic 
method for JPEG images was proposed where the 
features are calculated as an L1 norm of the 
difference between a specific macroscopic 
functional calculated from the stego-image and the 
same functional obtained from a decompressed, 
cropped, and recompressed stego-image (Fridrich, 
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2004). Harmsen and Pearlman implemented a 
detection scheme using only the indices of the 
quantized DCT coefficients in JPEG images 
(Harmsen and Pearlman, 2004). Recently, Shi et al. 
proposed a Markov process based approach to 
effectively attacking JPEG steganography, which 
have remarkably better performance than general 
purpose feature sets (Shi et al., 2007). By applying 
calibration to Markov features, Pevny and Fridrich 
merged their DCT features and calibrated Markov 
features to improve the steganalyis performance in 
JPEG images (Pevny and Fridrich, 2007).  

Based on the Markov process based approach 
(Shi et al., 2007) and the calibration version (Pevny 
and Fridrich, 2007), in this article, we expand the 
Markov features to inter-blocks of the DCT domain 
and to the wavelet domain, and design the features 
of the joint distribution on the DCT domain and the 
wavelet domain, and calculate the difference 
between the features from the testing images and the 
same features from the calibrated ones. We 
successfully improve the detection performance in 
multi-class JPEG images.  

The rest of this article is organized as follows: 
the second section expands the Markov features; the 
third presents the features of joint distribution of the 
transform domains; the forth explains the calculation 
of the calibrated version of the images and the 
feature extraction; the fifth introduces experiments 
and compares the detection performances of the 
different feature sets; and followed by our 
conclusions in the sixth. 

2 EXPANING MARKOV 
PROCESS 

2.1 Introduction to Markov Approach  

Shi et al. proposed the Markov process by modeling 
the differences between absolute values of 
neighboring DCT coefficients as a Markov process 
(Shi et al., 2007). The matrix F (u, v) stands for the 
absolute values of DCT coefficients of the image. 
The DCT coefficients in F (u, v) are arranged in the 
same way as pixels in the image by replacing each 8 
× 8 block of pixels with the corresponding block of 
DCT coefficients. Four difference arrays are 
calculated along four directions: horizontal, vertical, 
diagonal, and minor diagonal, denoted Fh (u, v), Fv 
(u, v), Fd (u, v), and Fm (u, v), respectively. 

( , ) ( , ) ( 1, )hF u v F u v F u v= − +                (1) 

( , ) ( , ) ( , 1)vF u v F u v F u v= − +                        (2) 

( , ) ( , ) ( 1, 1)dF u v F u v F u v= − + +                      (3) 

( , ) ( 1, ) ( , 1)mF u v F u v F u v= + − +                      (4) 

Here we just utilize Fh (u, v) and Fv (u, v). The 
four transition probability matrices M1hh, M1hv, 
M1vh, and M1vv are set up as 
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Where uS  and vS denote the dimensions of the 
image and δ = 1 if and only if its arguments are 
satisfied. Due to the range of differences between 
absolute values of neighboring DCT coefficients 
could be quite large, the range of i and j is limited [-
4, +4]. Thus, all Markov features consist of 4 × 81 = 
324 features.  

2.2 Expanding Markov Process  

From our standpoint, the original Markov features 
utilize the relation of neighboring DCT coefficients 
in the intra-DCT-block. Actually, the neighboring 
DCT coefficients on the inter-block have the similar 
relations; we expand the original Markov features to 
the neighboring DCT coefficients on the inter-
blocks.  

2.2.1 Inter-DCT block Markov Process 

In addition to the transition matrices constructed on 
the intra-difference, we also construct the transition 
matrices based on the inter-DCT blocks.  

First, the horizontal and vertical difference arrays 
on the inter-block are defined as follows: 

( , ) ( , ) ( 8, )hD u v F u v F u v= − +                    (9) 

( , ) ( , ) ( , 8)vD u v F u v F u v= − +                  (10) 

The four transition probability matrices M2hh, 
M2hv,  M2vh  and  M2vv  are  constructed as follows. 
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Similar to the original version of Marko feature, the 
range of i and j is [-4, +4].  

2.2.2 DWT Approximate Sub-band Markov 
Process 

We also construct the transition matrices on the 
DWT approximate sub-band. Let WA denote the 
DWT approximation sub-band. The horizontal and 
vertical difference arrays are defined as follows: 

( , ) ( , ) ( 1, )hWA u v WA u v WA u v= − +                    (15) 

( , ) ( , ) ( , 1)vWA u v WA u v WA u v= − +                 (16) 

The four transition probability matrices M3hh, 
M3hv, M3vh, and M3vv are constructed as follows. 
Let Su and Sv denote the size of the WA. 
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Similar to the original version of Marko feature, 
the range of i and j is [-4, +4]. 

3 JOINT DISTRIBUTION 
FEATURES 

Besides the Markov features, we also design the 
following joint distribution matrices U1, U2 and U3 
in the DCT and DWT domains, corresponding to the 
previous Markov features. We modified the 
definitions in (5)-(8), (11)-(14), and (17)-(20), and 
described as follows. 
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4 CALIBRATED FEATURES 
AND FEATURE SELECTION 

Considering the variation of the statistics of the 
features from one image to another, besides 
extracting the joint distribution features, Markov 
features in the DCT and DWT domains and the 
features of EPF, we also extract these features from 
the calibrated version. The calibrated version is 
produced in this way: 
1. Uncompress the JPEG image 
2. Crop the pixels, and the distance of these pixels 

to the boundary is in the range of 0 to 3 
3. Compress the cropped image in JPEG with the 

same compression ratio  
After we extract the features from the calibrated 

version, then we compute the difference between the 
features from the pre-calibrated version and the 
features from the calibrated version. After that, we 
apply support vector machine recursive feature 
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elimination (Guyon et al., 2002) to the identification 
of the detector of the feature set. 

5 EXPERIMENTAL RESULTS 

5.1 Experimental Setup  

The original images are TIFF raw format digital 
pictures taken during 2003 to 2005. These images 
are 24-bit, 640×480 pixels, lossless true color and 
never compressed. According to the method in the 
references (Liu et al, 2008), (Lyu and Farid, 2005), 
we converted the cropped images into JPEG format 
with the default quality 75. In our experiments, 
besides the original 5000 JPEG covers, five types of 
steganograms are incorporated, described as follows: 

1. 3950 CryptoBola (CB) stego-images. 
CryptoBola is available at 
http://www.cryptobola.com/. 

2. 5000 stego-images produced by using F5 
(Westfeld, 2001).   

3. 3596 JPHS (JPHIDE and JPSEEK) stego-
images. JPHS for Windows (JPWIN) is available at:  
http://digitalforensics.champlain.edu/download/jphs
_05.zip/. 

4. 4504 stego-images produced by steghide 
(Hetzl and Mutzel, 2005).  

5. 5000 JPEG Model Based steganography 
without deblocking (MB1) (Sallee, 2004).  

Figure 1 lists some samples of these five types of 
steganograms as well as some cover samples. 

5.2 Steganalysis Performance 

In our experiments, besides the features set 
consisting of the differences of the features from the 
pre-calibrated versions and the features from the 
calibrated versions, we also tested the combination 
of the differences and the features from the pre-
calibrated versions. The first type of feature set is 
denoted DIFF and the second type of feature set is 
denoted as COMB. The original Markov approach, 
denoted Markov, as well as a sub-set of Markov 
features, chosen by ANOVA (the same standard to 
determine the features of DIFF and COMB), are also 
compared.  In each experiment, 50% samples are 
chosen randomly to form a training data set and the 
remaining samples are tested. A Support Vector 
Machine with a Radial Basis kernel Function (RBF) 
(Duda et al., 2001), (Vapnik, 1998) is employed for 
training and testing.  In testing each type of feature 
set, we do the experiment 10 times. Tables 1-1 to 1-
4 lists the average testing accuracy for each type of 

feature set. Table 2 lists the testing accuracy values 
of GA and WA of different feature sets. 

Covers 

CB stego-images 

F5 stego-images 

 
JPWIN stego-images 

Steghide stego-images 

MB1 stego-images 

Figure 1: Some samples of the six types of JPEG images. 

Generally, for an N-class classification problem, 
the testing samples are m1, m2, …, mN, respectively, 
corresponding to class 1, class 2, …, and class N. 
The numbers of the correct testing samples are t1 for 
class 1, t2 for class 2, …, and tN for class N. The 
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general testing accuracy (GA) and weighted testing 
accuracy (WA) are defined as follows: 

1
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N
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m
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and  1/ 6,  1,  2,  ..., 6iw i= = . 

Table 1.1: The testing results of the feature set of DIFF. 

Table 1.2: The testing results of the feature set of COMB. 

Table 1.3: The testing results of the subset of Markov 
features that is chosen by ANOVA. 

Table 1.4: The testing results of the whole Markov 
features. 

 

Table 2: Average Testing accuracy (%) of GA and WA. 

Feature Set GA WA 
DIFF 91.3 90.6 

COMB 92.1 91.4 
Markov-subset 86.6 85.5 

Markov 85.1 83.9 

5.3 Comparison of Binary 
Classification Performances 

According to the results shown in table 1, the 
detection performances of Markov features and the 
COMB features are both close to or reach 100% in 
detecting F5 and CB. We focus on the comparison 
of the binary testing accuracy in detecting JPWIN, 
steghide, and MB1. Since the feature selection of 
support vector machine recursive feature elimination 
(SVMRFE) performs well and it is applied to several 
kinds of feature selection (Guyon et al., 2002), (Liu 
et al. 2008a). Here we apply SVMRFE to choose 
feature sets from Markov features and COMB 
feature, respectively, and then apply support vector 
machine to the chosen features sets. Fig. 2 compares 
the detection performances.  

 

 

 

Figure 2: Comparison of detection performances with 
Markov and COMB features. 

Image type JPWIN F5 CB Steghi
de MB1 Cover 

Testing 
accuracy 

(%) 

JPWIN 74.3 1.4 0.1 4.3 0.3 24.0 

F5 0.0 94.7 0.0 0.0 0.1 0.0 

CB 0.0 0.0 99.9 0.1 0.0 0.0 

steghide 2.9 0.1 0.0 85.5 5.3 11.7 

MB1 0.0 1.9 0.0 0.4 93.4 0.3 

cover 22.9 1.9 0.0 9.8 0.9 64.0 

Image type JPWIN F5 CB Steg
hide MB1 Cover 

Testing 
accuracy 

(%) 

JPWIN 69.6 0.0 0.0 0.9 0.1 8.0 
F5 1.3 100 0.1 0.0 1.1 0.9 
CB 0.0 0.0 99.9 0 0.0 0.0 

steghide 2.0 0.0 0.0 89.7 2.1 3.5 
MB1 0 0.0 0.0 0.7 96.7 0.0 
cover 27.1 0.0 0.0 8.7 0.0 87.5 

Image type JPWIN F5 CB Steg
hide MB1 Cover 

Testing 
accuracy 

(%) 

JPWIN 69.8 0 0 0.7 0 5.6 
F5 2.1 100 0.1 0.1 1.8 1.8 
CB 0 0 99.9 0 0 0 

steghide 3.2 0 0 92.3 0.7 4.0 
MB1 0.1 0 0 1.2 97.5 0 
cover 24.8 0 0 5.7 0 88.6 

Image type JPWIN F5 CB Steg
hide MB1 Cover 

Testing 
accuracy 

(%) 

JPWIN 54.8 0.0 0.0 1.6 0.0 8.8 

F5 0.3 99.8 0.0 0.0 0.6 0.5 

CB 0.3 0.0 100 0.1 0.0 0.1 

steghide 5.8 0.0 0.0 80.5 1.2 9.7 

MB1 0.9 0.2 0.0 5.2 97.9 1.0 

cover 38.0 0.0 0.0 12.7 0.3 79.9 
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Apparently, the detection performances on the 
feature sets with COMB features are better than the 
corresponding feature sets with Markov features.  

6 CONCLUSIONS 

In this paper, we expand the well-known Markov 
features into the neighboring on the inter-blocks of 
the DCT domain and the wavelet domain. We also 
propose the joint distribution features of the 
differential neighboring in the DCT domain and the 
DWT domain, and calculate the difference of these 
features from the testing image and the calibrated 
version. We successfully improve the blind 
steganalysis performance in multi-class JPEG 
images. Since different hiding systems show 
different sensitivities to the same feature set, a 
method for selecting the optimal feature set is 
critical to maximize detection performance, and this 
topic is being addressed and it is possible to come 
out in the final version of this manuscript. 
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