A USEFUL LOGICAL SEMANTICS OF UML FOR QUERYING AND
CHECKING UML CLASS DIAGRAM

Thomas Raimbault, David Genest and Stéphane Loiseau
Leria, University of Angers, 2 bd Lavoisier, 49045 Angers Cedex 1, France

Keywords: UML, First Order Logic, Knowledge Representation and Reasoning, Model-Based Reasoning, Knowledge
Engineering, Visual Quering, Visual Checking, Positive Constraints, Negative Constrains.

Abstract: In Knowledge Engineering, UML class diagram is the defacto standard for modeling object oriented systems.
We propose a way for logical reasoning on UML class diagram, concemuegyingand checkingclass
diagram. First, we define an originklgical semanticdo UML class diagram. Our approach differs from
other existing works, because we use a same set of predicates to translate any class diagram instead of other
“ad hoc” approaches. Second, we extend UML, especially vatiable andbicoloration to express query
and constraint into the visual environment of (extended-)UML.

1 INTRODUCTION (extended-)UML.

For this purpose, we propose two contributions.
First, we define for UML class diagram an associated
Logical Form(LF), which is based on first order pred-
'icate logic (FOL). Translating UML class diagram
into FOL (Beckert et al., 2002) or more generally
into languages with inference power (Soon-Kyeong
and Carrington, 2000; Berardi et al., 20853 not a
new idea.However, all these approaches are ad hoc
approachesfor each UML class diagram, a specific
Set of predicates is defined. For instance, in (Beckert
etal., 2002) a clag=rson is translated into a predicate
calledperson. This predicate is useful for logical rea-
soning on only this given class diagram that contains
the classperson. Unfortunately, it is impossible in
FOL to refer to a given predicate using a variable. For
example, it is impossible to query the class diagram
like “Is there a class that has an attribute of string
type?”. The originality of our approach is to consider
the different notations that compose the UML class
diagram language as ordered set of FOL predicates.
Then, we translate specific information of a specific
ever, OCL is only a language with few reasoning tools class diagram as constants incluc_jed in FOL formulas.
and ;/vithout visual representation In othc_ar words, each l_JML class diagram can be_ trans-

\)) T lated into FOL by using the same set of predicates,

The aim of this work is to provide a way for gnq the specifics of a given class diagram are given

logical reasoning on UML class diagram, concem- .y sing constants. Thus, our approach makes pos-
ing querying and checking class diagram. We ex-

tend UML both to associate an original logical se- ~ 1apoyt using Description Logics, like in (Berardi et al.,

mantics of UML class diagram and to express queries 2005), (Rosati, 2007), the difficulty of querying knowledge
and constraints into the visual environment specific to within this logic is discussed.

In Knowledge Engineering, several models and tools
are used to represent and manipulate knowledge
e.g. (Akkerman et al., 1999). For modeling object
oriented systems, the Unified Modeling Language
(Booch et al., 1998) (UML) has been widely accepted
as standard. Currently, UML provides an object ori-
ented language for modelling knowledge by using di-
agrams of various kinds. However, UML is merely
a language, then knowledge is only represented as
drawing and no reasoning way is available. In this ar-
ticle, we focus our attention otlass diagranthat is
the main UML diagram.

During the knowledge acquisition phase, the de-
signer need to query and to check knowledge. The
Object Constraint Language (OMG, a) (OCL) gives a
start of solution to express constraints to be checked
and queries. OCL is an integral part of UML2 (OMG,
c; OMG, b), it is a textual language that provides a
way to express specific constraints on object oriented
models in addition to diagrammatic notations. How-

179

Raimbault T., Genest D. and Loiseau S. (2009).

A USEFUL LOGICAL SEMANTICS OF UML FOR QUERYING AND CHECKING UML CLASS DIAGRAM.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 179-184

DOI: 10.5220/0001556101790184

Copyright © SciTePress

ICAART 2009 - International Conference on Agents and Artificial Intelligence

sible general inferences on the LF of any UML class
diagram.

Second, weextend UML class diagranwith
generic elements, i.evariables Indeed, to construct
a reliable model the designer needs both to query it
and to check it. On the one hand, variables are re-
quired to express gueryin UML class diagram: a
query is an incomplete representation of knowledge
whose some parts must be identified. On the other
hand, variables are required to formulatmstraints
for checkingif a class diagram can be considered as
valid. We integrate queries and checks in the visual
representation of UML, and we associate a logical se-
mantics to these notions.

This paper is organized as follows. Section 2 de-
fines the logical semantics of UML class diagram.

Pkg Person

#name: String
#birthDate: Date

Plane
-type: String
-planelD: int
-maxSpeed: int
-maxDistance: int

assignedPlane
0..N

0.N Pilot

-licenseDate: Date
+fly(planelD: int)

v assignedPilot

7/
7

Customer
#clientID: int

T

FrequentFlyer
-milesFlown: int
+bonusPoints(): int

Flight

-flightNumber: int
-departureTime: Date
-arrivalTime: Date

0.N

+flightDuration(): int
+numberOfStops(plane: Plane, speed: int): int

Figure 1: Example of a UML class diagram.

a more simple link that not explicitly needs an associ-
ation class.

Section 3 presents our extension to query and check

UML class diagram by using variables.

2 UML CLASS DIAGRAM INTO
FIRST-ORDER LOGIC

2.1 A Short UML Class Diagram
Description

Class diagram shows statical structure of a system
with graphical notations. It shows the system ele-
ments, their internal features and their relationships

2.2 Logical Form

We specify some terms that are used in this paper. We
consider dJML class diagranas a finite set of UML
notations. We call aJML notationa pair Concept
elemen}t, whereconceptis one of the symbols that
constitute the UML class diagram language, ated
mentis an instance of this concept. For example, in
Figure 1priane is an element of the concept ‘class’.
We divide concepts in three sets: the set of entities,
the set of relations and the set of properties. éfn

tity is used to refer to general concepts such as: class,
attribute, operation, etc. felationis either a general-

to other system elements. In a class diagram, classedZation or an association between classeqrdperty

are modeled and are linked by two types of relations:
generalization and association.
We present with an example, in Figure 1, the main

provides more precisely a meaning, like visibility or
multiplicity.
We recall that in a class diagram an element may

notations of a UML class diagram. A class (em- be described by some others. Then, these elements
lot) is drawn as a solid-outline rectangle. It contains '€ €nclosed into it. For instance, a class is described

the name of the class in the top compartment, the at- by its attributes and its operations. The entity that

tributes (e.glicenseDate) in the middle compartment,
and the operations (e.dly) in the bottom compart-
ment. This operation has one parameter, which is an
instance of the clagsane. The operatiomonusPoints

of the classrequentFlyer returns a data typmt. The
generalization relation is represented by an arrowed
line drawn from the specialized class to the general
class. Then, the classiot has for generalization the
Person class, and theerson class has for subclasses
the classesilot, Customer and indirectlyFrequentFlyer.

An association between the classdst andPlane is
defined by the centralight association class and by
the properties present at the ends of the association
like the multiplicityo..N. The association class, which
is a kind of class, is shown as a class symbol linked
by a dashed line to a line symbol of association. The
association between the classéght andCustomer is

180

encloses the others is thentextof them.

Definition 1 (Logical Form). ThelLogical Form®p

of a UML class diagram D is a FOL formula of con-
junction of predicates. fredicatén ®p represents a
concept of the UML class diagram languagecan-
stantin ®p refers to an element of DP is obtained
according toDefinitions 2 to 6

In a UML class diagram some properties of ele-
ments are implicit. For instance, if nothing is spec-
ified, a class is by default not abstract. Please no-
tice that we explicitly express all implicit information
from a class diagram into its LF.

A USEFUL LOGICAL SEMANTICS OF UML FOR QUERYING AND CHECKING UML CLASS DIAGRAM

entity

) N

type package member parameter role

O\

attribute operation

propVal

class dataType

I / N\

assoClass primType enumType

Figure 2: Set of entities.

2.2.1 Entities in Class Diagram

Definition 2 (LF of Entities). Let D be a UML class
diagram. A UML notationk, €) of D, wheree is an
instance of an entitf, is represented i®p by a bi-
nary predicateE. The first term ofE is a constant,
called thecontextof e, and the second term is a con-
stant, called thédentifierof e.

The entity predicates are partially ordered by a
kind-of relation, denoted by (Figure 2).

Examplee The LF of the classpPilot is ®; =
package(, Pkg) A class(Pkg, Pkg.Pilot) A
attribute(Pkg.Pilot, Pkg.Pilot.licenseDate) A
operation(Pkg.Pilot, Pkg.Pilot.fly) A parame-
ter(Pkg.Pilot.fly, Pkg.Pilot.fly.planelD)The pred-
icates class attribute, operation and parameter
represents some entitie®; indicates thapilot, with
the single identifier Pkg.Pilot, is elass licenseDate

is an attribute, fly is anoperation andplanelD is a
parameterof fly. All of these elements are defined
in packagerkg. Remember that each element is
enclosed in a context, then the contexpdt is Pkg,
the one of bothicenseDate andfly is Pilot and the one
of planelD is fly.

First, note that the more general context is repre-
sented by the constant. Second, note that each ele-
ment is identified by a constant: for visibility reasons,
in our example aidentifieris the element’s name pre-
fixed by its full context (but identifiers may be num-
bers as ig, idz, etc.). Third,®; will be completed in
Section 2.2.3 with some properties of these entities.

2.2.2 Relations in Class Diagram

There are two kinds of relations between classes: gen
eralization and association.

Definition 3 (LF of Generalization). Let D be
a UML class diagram with notationsclassC),
(classCy) and (generalization linlg), such ag links
the moregeneralclassC; and the morespecific G.
The notation generalization linlg) is represented in
®p by a ternary predicatgeneralizationwhere the
first term is the context of), the second term is the
identifier of C; and the third term is the identifier of
Co.

Example: Descendants aferson are defined byp, =
generalization(Pkg, Pkg.Person, Pkg.Pilet)gener-
alization(Pkg, Pkg.Person, Pkg.Customeryeneral-
ization(Pkg, Pkg.Customer, Pkg.FrequentFlyer)

We have always chosen to represent a UML asso-
ciation relation as its most complete form, i.e. by us-
ing an association class. Then, each association from
a class diagram can be expended to an association that
is centralized by an association class.

Definition 4 (LF of Association). Let D be
a UML class diagram with notationsclassCs),
(classCy), (association clagd), (role namery) and
(role namery) such as:C; andC; are linked together
throughA; ry andr; are the two ends oA and are
respectively combined witB; and C;. An element
ri is an entity represented i®p by a binary predi-
caterole. A roler; and a classC; are combined in
®p by using a ternary predicatassoEndwhere the
first term is the context o\, the second is the identi-
fier of C; and the third is the identifier of;. Then, a
role ri and A are linked in®p by a ternary predicate
associationwhere the first term is the context &f,
the second is the identifier && and the third is the
identifier ofr;.

Example: Association betweerpilot and Plane:

O assoClass(Pkg, Pkg.Flight)an role(Pkg,
Pkg.assignedPilot)\ role(Pkg, Pkg.assignedPlane)
A assoEnd(Pkg, Pkg.Pilot, Pkg.assignedPilotas-
soEnd(Pkg, Pkg.Plane, Pkg.assignedPlanedsso-
ciation(Pkg, Pkg.Flight, Pkg.assignedPilot) asso-
ciation(Pkg, Pkg.Flight, Pkg.assignedPlane)The
constantsPkg.assignedPiloand Pkg.assignedPlane
identify the two ends of the association, which is cen-
tralized by the association clasght.

Please first remark that the Definition 4 can be eas-
ily extended for n-ary associationsXr2). Second,
note that®s will be completed in Section 2.2.3 with
properties.

2.2.3 Properties of Elements

Definition 5 (LF of Properties’ Elements). Let D be
a UML class diagram with a notatior®((a,v)), where
the value for property that is applied to the entity
or relation ais v. Notation @, (aV)) is represented
in ®p by a ternary predicatd, where the first term
is the context of, the second term is the identifier of
a and the third term is the identifier of the notation
(propValv) in the same context.

The property predicates are partially ordered by a
kind-of relation, denoted by, whose greatest predi-
cate isproperty(Figure 3).

2exceptpropValof course

181

ICAART 2009 - International Conference on Agents and Artificial Intelligence

property

/7

named of Type propOfAssoEnd eltOfEnum

SN~

visibility multiplicity direction aggregation rank

|

composition

Figure 3: Set of properties.

Please observe thabhmeds a property that makes
the link between an identifier of an entity and its real
name in the class diagram.

Example: The example of the LEd; should now
be completed: ®; = ®; A ... A named(Pkg,
Pkg.Pilot, Pilot) A propVal(Pkg, Pilot)A ... A
visibility(Pkg.Pilot, Pkg.Pilot.licenseDate, private)
propVal(Pkg.Pilot, private)x multiplicity(Pkg.Pilot,
Pkg.Pilot.licenseDate, 1-1) propVal(Pkg.Pilot, 1-
1) A ...A rank(Pkg.Pilot.fly, Pkg.Pilot.fly.planelD,
#1) A propVal(Pkg.Pilot.fly, #1) This completed
LF expresses also the fact thevate attribute Ii-
censeDate has a multiplicity of1-1 and it expresses
that the parameteglanelD is the first parameter of
the operationfly. In the same way,®; = @3
A named(Pkg,Pkg.assignedPlane,assignedPlane)
propVal(Pkg, assignedPlang)... A multiplicity(Pkg,
Pkg.assignedPilot, multiplicity.0-N) propVal(Pkg,
0-N).

Definition 6 (Partial Ordering in Set of Concepts).

A FOL formula®yy to the set of UML concepts is
assigned. It corresponds to the interpretation of the
partial orderings of set of entities (Figure 2) and set
of properties (Figure 3). For all predicates; @nd p
such as p < pi, the formulavx; .. . xn(p2(X1 ... Xn) —
p1(X1...Xn)) is assigned, where+ 2 for entity pred-
icates and n= 3 for property predicates.

dicate in this section how to query and check UML
class diagram. Two new visual notations are intro-
duced into the UML model: variables and coloration.

3.1 Variables and Mappings

Definition 7 (Extended UML Class Diagram). Let
D be a UML class diagram. A variabbeof D is de-
noted by the symb@x. An entity notation (E&x) of D
is represented i®p as it is defined in Proposition 1;
but the second term of predicdtds x. All variables
are existentially quantified i®p.

We call anextended UML class diagram UML
class diagram that may have variables.

Asking for the existence of mappingfrom an ex-
tended class diagra® to a class diagrar® can be
seen as a search such as all information contained in
Qis also contained iD.

Definition 8 (Mapping). Let Q be an extended UML
class diagram and D a UML class diagram.

A subset Dof D is called amapping fromQ to D
if cl)UML7qJD/ = q)Q andV D" @ D/;CDUML,CDD// I3 cDQ

3.2 Querying UML Class Diagram

Definition 9 (Result of a UML Query). A UML
queryis an extended UML class diagram. Let D be
a UML class diagram and Q a UML query. The result
of the query Q to D is the set of mappings from Q to
D.

In a general way, a designer is interested in the
correspondence between each variable fgpamd the
identifiers of instances of entities in a subseDodic-
cording to a given mapping fro to D.

Example: The LF of the query (Figure 4) i$q
= Jp,c,x,y,z class(p,c) named(p,c,Person) prop-

In Figure 2 or 3_the order between two concepts is Va](p1Per30n)/\ C|ass(p,x) A genera“zaﬁon(p,clx)
represented by a link b_etween themselves suqh as they operation(x,y) A visibility(x,y,public) A prop-
more general concept is above the more specific con-val(x,public) A parameter(y,z)A ofType(y,z,int)A

cept. For instance, the orderiagsoClass< classin
Figure 2 wherelassis the more general entity means

primType(y,int) This query expresses the fact that “In
a package, does a class named by the vadsen has

that, in a given context an association class is also aa subclass that has an operation with public visibility

class:vc,x assoClass(c,%p class(c,x)

3 EXTENDING UML TO QUERY
AND TO CHECK CLASS
DIAGRAM

In addition to UML as a model for representing
knowledge, we propose a way for querying and

and with one parameter of type callee?”. The re-
sult of this query to the class diagram of Figure 1 is
presented on the right side in Figure 4. The designer
can deduce that the intended classiii¢ with the op-
erationily that has the parametganelD.

Theorem 1. Let D be a UML class diagram and Q
an extended UML class diagrani(is the result of
query Q to D iff (1)VM € M ®ymi, Pm F Pg; and
(2) VM € M, #N C M such asbymi, Py F Pg.

checking knowledge. Queries are used to find someProof. Let§ be the set of subset &f. (=) Let M the
elements, and constraints to check some other. We in-result ofQ to D. Let D’ a mapping fromQ to D. (1)

182

A USEFUL LOGICAL SEMANTICS OF UML FOR QUERYING AND CHECKING UML CLASS DIAGRAM

-~ = = > Pk
M Person 9 Person
—————— - =
(R B R
$x - - r == Pilot
Oy @zcint) _ _ _ _ yu*fly(planelD: int)

Query Mapping

Figure 4: A UML query and a mapping.

Then,D’ € M and®ywm , Py F Pq (by hypothesis).
(2) LetD” € 8 whereD” c D/, then®ym , Ppr ¥ Pg
(by hypothesis).

(<) LetM € Swhere®ymi, Pu E PgandvyN € §
whereN C M, ®ym, Oy ¥ Do, thendN’ € § where
N'CM,CDUML,CDN/':CDQ, soM € M. O

3.3 Checking UML Class Diagram

A class diagram is valid with respect to a set of con-

straints if it verifies each constraint. A constraint is
eithernegativeor positive

C $x C*, $x
$z { abstract }
3y y
{no abstract }
C $x C* $x
{abstract }

Figure 5: UML positive and negative constraints.

X". In other words, this constraint checks that “there
is no simple inheritance cycleC; expresses the fol-
lowing obligation: “if a classX has an abstract opera-
tion z, for each subclas¥ of X that is non-abstract,

A negative constraint expresses an extended classz must necessarily be overwritten as a non-abstract
diagram that must not be found in the class diagram to operation”. C; expresses that “abstract classes” are
validate. A positive constraint expresses a specifica- prohibited. c} expresses that “each class has to be

tion like “if A, then obligation B”. Colorationis used
to distinguish premise from obligation.

Definition 10 (UML Negative Constraint). A UML
negative constrainis an extended UML class dia-
gram.

Definition 11 (UML Positive Constraint). Col-
orationis an application that associates a col@ror

1 with each notation of an extended UML class di-
agram. AUML positive constraintC* is a colored
extended UML class diagram, which is divided into
two parts: apremiseand anobligation The premise
is the subset wittD-colored notations (white back-
ground) and obligation the subset withcolored no-
tations (black background).

Without considering coloratiorc:;r is called the
premise ofC™, Pcs its LF, and®¢: the LF of C™.
Notice that®.- is not the logical semantics (due to
coloration) ofC* 3.

Example: Figure 5 shows two negative constraints
C; andC;, and two positive constrain@} andC; .

C; expresses the following prohibition: “a claXs
can be a subclass of a clagswhich is a subclass of

3Let Wy, be defined aSDC; without existential quanti-
fiers, and¥, as the LF of the obligation without existential
quantifiers. Leky, ..,xn be the variables d¥p andyy,..,ym
the variables oW, that are not i¥p. Thelogical semantics
of CT isasvxy... Vg Wp — 3y1... FymWo.

associated with another class”.

Please observe that we consider constraints to be
divided into two groupsobject oriented constraints
andspecific constraintsThe first group refers to con-
straints for verifying if class diagram respects the ob-
ject oriented specifications. The second group may
express any requirement in addition to the object ori-
ented specifications that the designer needs according
to corporate project specification<C; andCj are
object oriented constraints, a@f andC; specific
constraints.

Definition 12 (Verification of UML Constraint).
Let D be a UML class diagram, Ca UML negative
constraint, C- a UML positive constraint.
D verifiesC™ if there is no mapping from Cto D.
D verifiesC™ if for each mapping M from the
premise of C to D, there is a mapping Mrom C* to
D such as MC M’,

Example: The class diagram in Figure 1 is valid ac-
cording to constraint€;, C; andCj, but it is not
valid according toC; . Indeed, there is a mapping
from the premise o€, to the clas®erson, but there
is no mapping from (wholef; to the class diagram
concerningPerson (No association).

Theorem 2. Let D be a UML class diagram and
C~ a UML negative constraint. D verifies Ciff
DPymL, Pp # Pc-.

183

ICAART 2009 - International Conference on Agents and Artificial Intelligence

Proof. (=) Let 8§ be the set of subset @. There
is no mapping fronC~ to D, then#D’ ¢ § where
D’ C D such as®ym, Py F Pc- (by hypothesis).
So,PymL, Pp ¥ P-, becaus® C D.

(<) Immediate from hypothesis. O

Theorem 3. Let D be a UML class diagram, Ca
UML positive constraint. D verifies Ciff for all
substitutiono of all variables of q if dymL,Pp F
O'(CDC;), then there is a substitutiasl of all variables

of C* whereo C ¢’ and®yw, Pp F o' (D).

Proof. (=) Let M, be the set of mapping frorﬁgr
to D; and M the set of mapping fror@* to D. Let
M € M, then there is a substitutian of all variables
of C; such agbym,Pp F Gl(q’cg) (by hypothesis)
and because there is no variable idtg. IM’ € Mg,
then there is a substitutiont; of all variables ofC*
such asbymL , Pp F 07 (Pc+) andoy C o) (because
M C M).

(<) Let S be the set of subset &f. Leto; a sub-
stitution of all variables ot:,jr where ®yy , Pp F
Gl(q’cg) (A), then there is a substitutioa’ of all

variables ofC™ where ®ym, Pp £ 0} (Pc+) (B).
By (A), dD' € 8, VD" € 8§ whereD” C D’ such as
CDUML,CDD/ E O'l(cbcar) and CDUML,CDD// ¥ O'l(cbcar).
By (B) and o1 C o) (by hypothesis)®umL, Pp F
0’1(CDC$) and so®ym,Pp F 01(CDC$) (C). By (B)
and (C) 3B’ € 8§ with D’ C B’ andvB” € 8 whereB” C
B’ such asCDUML,CDB/ = O'S_(CDCJr) and CDUML,CDB// =
O-a_(¢c+). K]

4 CONCLUSION

We have proposed an original logical semantics to
UML class diagram and an extention of UML to ex-
press queries and (positive and negative) constraints
Our approch is useful to query and to check UML
class diagram for respectively answering queries and
satisfying constraints that both can be modelled in ex-
tended UML as well. Notice that the definition in this
article of constraints (using bicoloration) is inspired
by constraints of (Chein and Mugnier, 1997) from
the model of conceptual graphs (Chein and Mugnier,
1992; Wermelinger,). So, it could be interesting to
translate logical form of UML class diagram into this
model, and then use its reasoning operation (called
projectior) both to answer queries and to test con-
straints.

184

REFERENCES

Akkerman, H., Anjewierden, A., Hoog, R. D., Shad-
bolt, N., de Welde, W. V., and Wielenga, B. (1999).
Knowledge engineering and management: the Com-
monKads methodologMIT Press.

Beckert, B., Keller, U., and Schmitt, P. H. (2002). Translat
ing the Object Constraint Language into First-order
Predicate Logic. InProc.of VERIFY, Workshop at
FLoC'02

Berardi, D., Calvanese, D., and De Giacomo, G. (2005).
Reasoning on UML class diagramaArtificial Intelli-
gence 168(1):70-118.

Booch, G., Jacobson, C., and Rumbaugh, J. (1998)e
Unified Modeling Language - a reference manued-
dison Wesley.

Chein, M. and Mugnier, M.-L. (1992). Conceptual Graphs:
Fundamental Notions. Revue d'intelligence artifi-
cielle, 6(4):365-406.

Chein, M. and Mugnier, M.-L. (1997). Positive nested con-
ceptual graphs. IRroc. of ICCS’97 volume 1257 of
LNAI, pages 95-109. Springer.

OMG. UML 2.0 Object Constraint Language Specification.
http://www.omg.org/docs/ptc/03-10-14.

OMG. Unified Modeling Language Specification:
Infrastructure, v2.0. http://www.omg.org/cgi-
bin/doc?ptc/04-10-14.

OMG. Unified Modeling Language Specification:
Superstructure, v2.0. http://www.omg.org/cgi-
bin/doc?formal/05-07-04.

Rosati, R. (2007). The Limits of Querying Ontologies.
In Proceedings of 11th International Conference in
Database Theory (ICDT'07y¥olume 4353 of_ecture
Notes in Computer Science (LNCPages 164-178.
Springer.

Soon-Kyeong, K. and Carrington, D. (2000). A Formal
Mapping between UML Models and Object-Z Spec-
ifications. InProc. of ZB '0Q volume 1878 oLNCS
pages 2-21. Springer.

Wermelinger, M. Conceptual Graphs and First-Order Logic.

. pages 323-337.

