
A USEFUL LOGICAL SEMANTICS OF UML FOR QUERYING AND
CHECKING UML CLASS DIAGRAM

Thomas Raimbault, David Genest and Stéphane Loiseau
Leria, University of Angers, 2 bd Lavoisier, 49045 Angers Cedex 1, France

Keywords: UML, First Order Logic, Knowledge Representation and Reasoning, Model-Based Reasoning, Knowledge
Engineering, Visual Quering, Visual Checking, Positive Constraints, Negative Constrains.

Abstract: In Knowledge Engineering, UML class diagram is the defacto standard for modeling object oriented systems.
We propose a way for logical reasoning on UML class diagram, concerningqueryingand checkingclass
diagram. First, we define an originallogical semanticsto UML class diagram. Our approach differs from
other existing works, because we use a same set of predicates to translate any class diagram instead of other
“ad hoc” approaches. Second, we extend UML, especially withvariableandbicoloration, to express query
and constraint into the visual environment of (extended-)UML.

1 INTRODUCTION

In Knowledge Engineering, several models and tools
are used to represent and manipulate knowledge,
e.g. (Akkerman et al., 1999). For modeling object
oriented systems, the Unified Modeling Language
(Booch et al., 1998) (UML) has been widely accepted
as standard. Currently, UML provides an object ori-
ented language for modelling knowledge by using di-
agrams of various kinds. However, UML is merely
a language, then knowledge is only represented as a
drawing and no reasoning way is available. In this ar-
ticle, we focus our attention onclass diagramthat is
the main UML diagram.

During the knowledge acquisition phase, the de-
signer need to query and to check knowledge. The
Object Constraint Language (OMG, a) (OCL) gives a
start of solution to express constraints to be checked
and queries. OCL is an integral part of UML2 (OMG,
c; OMG, b), it is a textual language that provides a
way to express specific constraints on object oriented
models in addition to diagrammatic notations. How-
ever, OCL is only a language with few reasoning tools
and without visual representation.

The aim of this work is to provide a way for
logical reasoning on UML class diagram, concern-
ing querying and checking class diagram. We ex-
tend UML both to associate an original logical se-
mantics of UML class diagram and to express queries
and constraints into the visual environment specific to

(extended-)UML.
For this purpose, we propose two contributions.

First, we define for UML class diagram an associated
Logical Form(LF), which is based on first order pred-
icate logic (FOL). Translating UML class diagram
into FOL (Beckert et al., 2002) or more generally
into languages with inference power (Soon-Kyeong
and Carrington, 2000; Berardi et al., 2005)1 is not a
new idea.However, all these approaches are ad hoc
approaches: for each UML class diagram, a specific
set of predicates is defined. For instance, in (Beckert
et al., 2002) a classPerson is translated into a predicate
calledPerson. This predicate is useful for logical rea-
soning on only this given class diagram that contains
the classPerson. Unfortunately, it is impossible in
FOL to refer to a given predicate using a variable. For
example, it is impossible to query the class diagram
like “Is there a class that has an attribute of string
type?”. The originality of our approach is to consider
the different notations that compose the UML class
diagram language as ordered set of FOL predicates.
Then, we translate specific information of a specific
class diagram as constants included in FOL formulas.
In other words, each UML class diagram can be trans-
lated into FOL by using the same set of predicates,
and the specifics of a given class diagram are given
by using constants. Thus, our approach makes pos-

1About using Description Logics, like in (Berardi et al.,
2005), (Rosati, 2007), the difficulty of querying knowledge
within this logic is discussed.

179
Raimbault T., Genest D. and Loiseau S. (2009).
A USEFUL LOGICAL SEMANTICS OF UML FOR QUERYING AND CHECKING UML CLASS DIAGRAM.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 179-184
DOI: 10.5220/0001556101790184
Copyright c© SciTePress

sible general inferences on the LF of any UML class
diagram.

Second, weextend UML class diagramwith
generic elements, i.e.variables. Indeed, to construct
a reliable model the designer needs both to query it
and to check it. On the one hand, variables are re-
quired to express aquery in UML class diagram: a
query is an incomplete representation of knowledge
whose some parts must be identified. On the other
hand, variables are required to formulateconstraints
for checkingif a class diagram can be considered as
valid. We integrate queries and checks in the visual
representation of UML, and we associate a logical se-
mantics to these notions.

This paper is organized as follows. Section 2 de-
fines the logical semantics of UML class diagram.
Section 3 presents our extension to query and check
UML class diagram by using variables.

2 UML CLASS DIAGRAM INTO
FIRST-ORDER LOGIC

2.1 A Short UML Class Diagram
Description

Class diagram shows statical structure of a system
with graphical notations. It shows the system ele-
ments, their internal features and their relationships
to other system elements. In a class diagram, classes
are modeled and are linked by two types of relations:
generalization and association.

We present with an example, in Figure 1, the main
notations of a UML class diagram. A class (e.g.Pi-
lot) is drawn as a solid-outline rectangle. It contains
the name of the class in the top compartment, the at-
tributes (e.g.licenseDate) in the middle compartment,
and the operations (e.g.fly) in the bottom compart-
ment. This operation has one parameter, which is an
instance of the classPlane. The operationbonusPoints
of the classFrequentFlyer returns a data typeint. The
generalization relation is represented by an arrowed
line drawn from the specialized class to the general
class. Then, the classPilot has for generalization the
Person class, and thePerson class has for subclasses
the classesPilot, Customer and indirectlyFrequentFlyer.
An association between the classesPilot andPlane is
defined by the centralFlight association class and by
the properties present at the ends of the association,
like the multiplicity0..N. The association class, which
is a kind of class, is shown as a class symbol linked
by a dashed line to a line symbol of association. The
association between the classesFlight andCustomer is

Figure 1: Example of a UML class diagram.

a more simple link that not explicitly needs an associ-
ation class.

2.2 Logical Form

We specify some terms that are used in this paper. We
consider aUML class diagramas a finite set of UML
notations. We call aUML notationa pair (concept,
element), whereconceptis one of the symbols that
constitute the UML class diagram language, andele-
mentis an instance of this concept. For example, in
Figure 1Plane is an element of the concept ‘class’.
We divide concepts in three sets: the set of entities,
the set of relations and the set of properties. Anen-
tity is used to refer to general concepts such as: class,
attribute, operation, etc. Arelation is either a general-
ization or an association between classes. Aproperty
provides more precisely a meaning, like visibility or
multiplicity.

We recall that in a class diagram an element may
be described by some others. Then, these elements
are enclosed into it. For instance, a class is described
by its attributes and its operations. The entity that
encloses the others is thecontextof them.

Definition 1 (Logical Form). TheLogical FormΦD
of a UML class diagram D is a FOL formula of con-
junction of predicates. Apredicatein ΦD represents a
concept of the UML class diagram language. Acon-
stantin ΦD refers to an element of D.Φ is obtained
according toDefinitions 2 to 6.

In a UML class diagram some properties of ele-
ments are implicit. For instance, if nothing is spec-
ified, a class is by default not abstract. Please no-
tice that we explicitly express all implicit information
from a class diagram into its LF.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

180

Figure 2: Set of entities.

2.2.1 Entities in Class Diagram

Definition 2 (LF of Entities). Let D be a UML class
diagram. A UML notation (E, e) of D, wheree is an
instance of an entityE, is represented inΦD by a bi-
nary predicateE. The first term ofE is a constant,
called thecontextof e, and the second term is a con-
stant, called theidentifierof e.

The entity predicates are partially ordered by a
kind-of relation, denoted by≺ (Figure 2).

Example: The LF of the classPilot is Φ1 =
package(⊤, Pkg) ∧ class(Pkg, Pkg.Pilot) ∧
attribute(Pkg.Pilot, Pkg.Pilot.licenseDate) ∧
operation(Pkg.Pilot, Pkg.Pilot.fly) ∧ parame-
ter(Pkg.Pilot.fly, Pkg.Pilot.fly.planeID). The pred-
icates class, attribute, operation and parameter
represents some entities.Φ1 indicates thatPilot, with
the single identifier Pkg.Pilot, is aclass, licenseDate
is an attribute, fly is an operation, and planeID is a
parameterof fly. All of these elements are defined
in packagePkg. Remember that each element is
enclosed in a context, then the context ofPilot is Pkg,
the one of bothlicenseDate andfly is Pilot and the one
of planeID is fly.

First, note that the more general context is repre-
sented by the constant⊤. Second, note that each ele-
ment is identified by a constant: for visibility reasons,
in our example anidentifieris the element’s name pre-
fixed by its full context (but identifiers may be num-
bers as id1, id2, etc.). Third,Φ1 will be completed in
Section 2.2.3 with some properties of these entities.

2.2.2 Relations in Class Diagram

There are two kinds of relations between classes: gen-
eralization and association.

Definition 3 (LF of Generalization). Let D be
a UML class diagram with notations (class,C1),
(class,C2) and (generalization link,g), such asg links
the moregeneralclassC1 and the morespecific C2.
The notation (generalization link,g) is represented in
ΦD by a ternary predicategeneralization, where the
first term is the context ofg, the second term is the
identifier of C1 and the third term is the identifier of
C2.

Example: Descendants ofPerson are defined byΦ2 =
generalization(Pkg, Pkg.Person, Pkg.Pilot)∧ gener-
alization(Pkg, Pkg.Person, Pkg.Customer)∧ general-
ization(Pkg, Pkg.Customer, Pkg.FrequentFlyer).

We have always chosen to represent a UML asso-
ciation relation as its most complete form, i.e. by us-
ing an association class. Then, each association from
a class diagram can be expended to an association that
is centralized by an association class.

Definition 4 (LF of Association). Let D be
a UML class diagram with notations (class,C1),
(class,C2), (association class,A), (role name,r1) and
(role name,r2) such as:C1 andC2 are linked together
throughA; r1 and r2 are the two ends ofA and are
respectively combined withC1 and C2. An element
ri is an entity represented inΦD by a binary predi-
cate role. A role ri and a classCi are combined in
ΦD by using a ternary predicateassoEnd, where the
first term is the context ofA, the second is the identi-
fier of Ci and the third is the identifier ofri . Then, a
role ri andA are linked inΦD by a ternary predicate
association, where the first term is the context ofA,
the second is the identifier ofA and the third is the
identifier of ri .

Example: Association betweenPilot and Plane:
Φ3 = assoClass(Pkg, Pkg.Flight)∧ role(Pkg,
Pkg.assignedPilot)∧ role(Pkg, Pkg.assignedPlane)
∧ assoEnd(Pkg, Pkg.Pilot, Pkg.assignedPilot)∧ as-
soEnd(Pkg, Pkg.Plane, Pkg.assignedPlane)∧ asso-
ciation(Pkg, Pkg.Flight, Pkg.assignedPilot)∧ asso-
ciation(Pkg, Pkg.Flight, Pkg.assignedPlane). The
constantsPkg.assignedPilotand Pkg.assignedPlane
identify the two ends of the association, which is cen-
tralized by the association classFlight.

Please first remark that the Definition 4 can be eas-
ily extended for n-ary associations (n≥ 2). Second,
note thatΦ3 will be completed in Section 2.2.3 with
properties.

2.2.3 Properties of Elements

Definition 5 (LF of Properties’ Elements). Let D be
a UML class diagram with a notation (P, (a,v)), where
the value for propertyP that is applied to the entity2

or relation a is v. Notation (P, (a,v)) is represented
in ΦD by a ternary predicateP, where the first term
is the context ofa, the second term is the identifier of
a and the third term is the identifier of the notation
(propVal,v) in the same context.

The property predicates are partially ordered by a
kind-of relation, denoted by≺, whose greatest predi-
cate isproperty(Figure 3).

2exceptpropValof course

A USEFUL LOGICAL SEMANTICS OF UML FOR QUERYING AND CHECKING UML CLASS DIAGRAM

181

Figure 3: Set of properties.

Please observe thatnamedis a property that makes
the link between an identifier of an entity and its real
name in the class diagram.
Example: The example of the LFΦ1 should now
be completed: Φ′

1 = Φ1 ∧ ... ∧ named(Pkg,
Pkg.Pilot, Pilot) ∧ propVal(Pkg, Pilot)∧ ... ∧
visibility(Pkg.Pilot, Pkg.Pilot.licenseDate, private)∧
propVal(Pkg.Pilot, private)∧ multiplicity(Pkg.Pilot,
Pkg.Pilot.licenseDate, 1-1)∧ propVal(Pkg.Pilot, 1-
1) ∧ . . .∧ rank(Pkg.Pilot.fly, Pkg.Pilot.fly.planeID,
#1) ∧ propVal(Pkg.Pilot.fly, #1). This completed
LF expresses also the fact theprivate attribute li-
censeDate has a multiplicity of1-1 and it expresses
that the parameterplaneID is the first parameter of
the operationfly. In the same way,Φ′

3 = Φ3
∧ named(Pkg,Pkg.assignedPlane,assignedPlane)∧
propVal(Pkg, assignedPlane)∧ ... ∧ multiplicity(Pkg,
Pkg.assignedPilot, multiplicity.0-N)∧ propVal(Pkg,
0-N).

Definition 6 (Partial Ordering in Set of Concepts).
A FOL formulaΦUML to the set of UML concepts is
assigned. It corresponds to the interpretation of the
partial orderings of set of entities (Figure 2) and set
of properties (Figure 3). For all predicates p1 and p2
such as p2 ≺ p1, the formula∀x1 . . .xn(p2(x1 . . .xn)→
p1(x1 . . .xn)) is assigned, where n= 2 for entity pred-
icates and n= 3 for property predicates.

In Figure 2 or 3 the order between two concepts is
represented by a link between themselves such as the
more general concept is above the more specific con-
cept. For instance, the orderingassoClass≺ classin
Figure 2 whereclassis the more general entity means
that, in a given context an association class is also a
class:∀c,x assoClass(c,x)→ class(c,x).

3 EXTENDING UML TO QUERY
AND TO CHECK CLASS
DIAGRAM

In addition to UML as a model for representing
knowledge, we propose a way for querying and
checking knowledge. Queries are used to find some
elements, and constraints to check some other. We in-

dicate in this section how to query and check UML
class diagram. Two new visual notations are intro-
duced into the UML model: variables and coloration.

3.1 Variables and Mappings

Definition 7 (Extended UML Class Diagram). Let
D be a UML class diagram. A variablex of D is de-
noted by the symbol$x. An entity notation (E,$x) of D
is represented inΦD as it is defined in Proposition 1;
but the second term of predicateE is x. All variables
are existentially quantified inΦD.

We call anextended UML class diagrama UML
class diagram that may have variables.

Asking for the existence of amappingfrom an ex-
tended class diagramQ to a class diagramD can be
seen as a search such as all information contained in
Q is also contained inD.

Definition 8 (Mapping). Let Q be an extended UML
class diagram and D a UML class diagram.

A subset D′ of D is called amapping fromQ to D
if ΦUML,ΦD′ � ΦQ and∀ D′′ ⊂ D′

,ΦUML ,ΦD′′ 2 ΦQ.

3.2 Querying UML Class Diagram

Definition 9 (Result of a UML Query). A UML
query is an extended UML class diagram. Let D be
a UML class diagram and Q a UML query. The result
of the query Q to D is the set of mappings from Q to
D.

In a general way, a designer is interested in the
correspondence between each variable fromQand the
identifiers of instances of entities in a subset ofD ac-
cording to a given mapping fromQ to D.
Example: The LF of the query (Figure 4) isΦQ
= ∃p,c,x,y,z class(p,c)∧ named(p,c,Person)∧ prop-
Val(p,Person)∧ class(p,x)∧ generalization(p,c,x)
∧ operation(x,y) ∧ visibility(x,y,public) ∧ prop-
Val(x,public) ∧ parameter(y,z)∧ ofType(y,z,int)∧
primType(y,int). This query expresses the fact that “In
a package, does a class named by the valuePerson has
a subclass that has an operation with public visibility
and with one parameter of type calledint?”. The re-
sult of this query to the class diagram of Figure 1 is
presented on the right side in Figure 4. The designer
can deduce that the intended class isPilot with the op-
erationfly that has the parameterplaneID.

Theorem 1. Let D be a UML class diagram and Q
an extended UML class diagram.M is the result of
query Q to D iff (1)∀M ∈ M ΦUML,ΦM � ΦQ; and
(2) ∀M ∈ M,∄N ⊂ M such asΦUML,ΦN � ΦQ.

Proof. Let S be the set of subset ofD. (⇒) Let M the
result ofQ to D. Let D′ a mapping fromQ to D. (1)

ICAART 2009 - International Conference on Agents and Artificial Intelligence

182

Figure 4: A UML query and a mapping.

Then,D′ ∈ M andΦUML ,ΦD′ � ΦQ (by hypothesis).
(2) LetD′′ ∈ S whereD′′ ⊂ D′, thenΦUML ,ΦD′′ 2 ΦQ
(by hypothesis).

(⇐) LetM ∈ S whereΦUML ,ΦM � ΦQ and∀N∈ S

whereN ⊂ M, ΦUML ,ΦN 2 ΦQ, then∄N′ ∈ S where
N′ ⊂ M, ΦUML ,ΦN′ � ΦQ, soM ∈ M.

3.3 Checking UML Class Diagram

A class diagram is valid with respect to a set of con-
straints if it verifies each constraint. A constraint is
eithernegativeor positive.

A negative constraint expresses an extended class
diagram that must not be found in the class diagram to
validate. A positive constraint expresses a specifica-
tion like “if A, then obligation B”.Colorationis used
to distinguish premise from obligation.

Definition 10 (UML Negative Constraint). A UML
negative constraintis an extended UML class dia-
gram.

Definition 11 (UML Positive Constraint). Col-
orationis an application that associates a color0 or
1 with each notation of an extended UML class di-
agram. AUML positive constraintC+ is a colored
extended UML class diagram, which is divided into
two parts: apremiseand anobligation. The premise
is the subset with0-colored notations (white back-
ground) and obligation the subset with1-colored no-
tations (black background).

Without considering coloration:C+
p is called the

premise ofC+, ΦC+
p

its LF, andΦC+ the LF ofC+.
Notice thatΦC+ is not the logical semantics (due to
coloration) ofC+ 3.
Example: Figure 5 shows two negative constraints
C−

1 andC−
3 , and two positive constraintsC+

2 andC+
4 .

C−
1 expresses the following prohibition: “a classX

can be a subclass of a classY, which is a subclass of

3Let Ψp be defined asΦC+
p

without existential quanti-
fiers, andΨo as the LF of the obligation without existential
quantifiers. Letx1, ..,xn be the variables ofΨp andy1, ..,ym
the variables ofΨo that are not inΨp. Thelogical semantics
of C+ is as∀x1 . . .∀xnΨp →∃y1 . . .∃ymΨo.

Figure 5: UML positive and negative constraints.

X”. In other words, this constraint checks that “there
is no simple inheritance cycle”.C+

2 expresses the fol-
lowing obligation: “if a classX has an abstract opera-
tion z, for each subclassY of X that is non-abstract,
z must necessarily be overwritten as a non-abstract
operation”. C−

3 expresses that “abstract classes” are
prohibited. C+

4 expresses that “each class has to be
associated with another class”.

Please observe that we consider constraints to be
divided into two groups:object oriented constraints
andspecific constraints. The first group refers to con-
straints for verifying if class diagram respects the ob-
ject oriented specifications. The second group may
express any requirement in addition to the object ori-
ented specifications that the designer needs according
to corporate project specifications.C−

1 andC+
2 are

object oriented constraints, andC−
3 andC+

4 specific
constraints.

Definition 12 (Verification of UML Constraint).
Let D be a UML class diagram, C− a UML negative
constraint, C+ a UML positive constraint.

D verifiesC− if there is no mapping from C− to D.
D verifies C+ if for each mapping M from the

premise of C+ to D, there is a mapping M′ from C+ to
D such as M⊆ M′.

Example: The class diagram in Figure 1 is valid ac-
cording to constraintsC−

1 , C+
2 andC−

3 , but it is not
valid according toC+

4 . Indeed, there is a mapping
from the premise ofC+

4 to the classPerson, but there
is no mapping from (whole)C+

4 to the class diagram
concerningPerson (no association).

Theorem 2. Let D be a UML class diagram and
C− a UML negative constraint. D verifies C− iff
ΦUML,ΦD 2 ΦC− .

A USEFUL LOGICAL SEMANTICS OF UML FOR QUERYING AND CHECKING UML CLASS DIAGRAM

183

Proof. (⇒) Let S be the set of subset ofD. There
is no mapping fromC− to D, then ∄D′ ∈ S where
D′ ⊆ D such asΦUML ,ΦD′ � ΦC− (by hypothesis).
So,ΦUML ,ΦD 2 ΦC− , becauseD ⊆ D.

(⇐) Immediate from hypothesis.

Theorem 3. Let D be a UML class diagram, C+ a
UML positive constraint. D verifies C+ iff for all
substitutionσ of all variables of C+p , if ΦUML,ΦD �

σ(ΦC+
p
), then there is a substitutionσ′ of all variables

of C+ whereσ ⊆ σ′ andΦUML,ΦD � σ′(ΦC+).

Proof. (⇒) Let Mp be the set of mapping fromC+
p

to D; andMc the set of mapping fromC+ to D. Let
M ∈Mp, then there is a substitutionσ1 of all variables
of C+

p such asΦUML ,ΦD � σ1(ΦC+
p
) (by hypothesis)

and because there is no variable intoΦD. ∃M′ ∈ Mc,
then there is a substitutionσ′

1 of all variables ofC+

such asΦUML ,ΦD � σ′
1(ΦC+) andσ1 ⊆ σ′

1 (because
M ⊆ M′).

(⇐) Let S be the set of subset ofD. Let σ1 a sub-
stitution of all variables ofC+

p where ΦUML ,ΦD �

σ1(ΦC+
p
) (A), then there is a substitutionσ′

1 of all

variables ofC+ where ΦUML ,ΦD � σ′
1(ΦC+) (B).

By (A), ∃D′ ∈ S, ∀D′′ ∈ S whereD′′ ⊆ D′ such as
ΦUML ,ΦD′ � σ1(ΦC+

p
) and ΦUML ,ΦD′′ 2 σ1(ΦC+

p
).

By (B) and σ1 ⊆ σ′
1 (by hypothesis),ΦUML ,ΦD �

σ′
1(ΦC+

p
) and soΦUML ,ΦD � σ1(ΦC+

p
) (C). By (B)

and (C),∃B′ ∈ S with D′ ⊆B′ and∀B′′ ∈ S whereB′′⊆
B′ such asΦUML ,ΦB′ � σ′

1(ΦC+) andΦUML ,ΦB′′ 2
σ′

1(ΦC+).

4 CONCLUSION

We have proposed an original logical semantics to
UML class diagram and an extention of UML to ex-
press queries and (positive and negative) constraints.
Our approch is useful to query and to check UML
class diagram for respectively answering queries and
satisfying constraints that both can be modelled in ex-
tended UML as well. Notice that the definition in this
article of constraints (using bicoloration) is inspired
by constraints of (Chein and Mugnier, 1997) from
the model of conceptual graphs (Chein and Mugnier,
1992; Wermelinger,). So, it could be interesting to
translate logical form of UML class diagram into this
model, and then use its reasoning operation (called
projection) both to answer queries and to test con-
straints.

REFERENCES

Akkerman, H., Anjewierden, A., Hoog, R. D., Shad-
bolt, N., de Welde, W. V., and Wielenga, B. (1999).
Knowledge engineering and management: the Com-
monKads methodology. MIT Press.

Beckert, B., Keller, U., and Schmitt, P. H. (2002). Translat-
ing the Object Constraint Language into First-order
Predicate Logic. InProc.of VERIFY, Workshop at
FLoC’02.

Berardi, D., Calvanese, D., and De Giacomo, G. (2005).
Reasoning on UML class diagrams.Artificial Intelli-
gence, 168(1):70–118.

Booch, G., Jacobson, C., and Rumbaugh, J. (1998).The
Unified Modeling Language - a reference manual. Ad-
dison Wesley.

Chein, M. and Mugnier, M.-L. (1992). Conceptual Graphs:
Fundamental Notions. Revue d’intelligence artifi-
cielle, 6(4):365–406.

Chein, M. and Mugnier, M.-L. (1997). Positive nested con-
ceptual graphs. InProc. of ICCS’97, volume 1257 of
LNAI, pages 95–109. Springer.

OMG. UML 2.0 Object Constraint Language Specification.
http://www.omg.org/docs/ptc/03-10-14.

OMG. Unified Modeling Language Specification:
Infrastructure, v2.0. http://www.omg.org/cgi-
bin/doc?ptc/04-10-14.

OMG. Unified Modeling Language Specification:
Superstructure, v2.0. http://www.omg.org/cgi-
bin/doc?formal/05-07-04.

Rosati, R. (2007). The Limits of Querying Ontologies.
In Proceedings of 11th International Conference in
Database Theory (ICDT’07), volume 4353 ofLecture
Notes in Computer Science (LNCS), pages 164–178.
Springer.

Soon-Kyeong, K. and Carrington, D. (2000). A Formal
Mapping between UML Models and Object-Z Spec-
ifications. InProc. of ZB ’00, volume 1878 ofLNCS,
pages 2–21. Springer.

Wermelinger, M. Conceptual Graphs and First-Order Logic.
pages 323–337.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

184

