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Abstract: The detection of anomalies in computer environments, like network intrusion detection, computer virus or
spam classification, is usually based on some form of patternsearchon a database of“signatures” for known
anomalies. Although very successful and widely deployed, these approaches are only able to cope with anoma-
lous events that have already been seen. To cope with these weaknesses, the “behaviour” based systems has
been deployed. Although conceptually more appealing, they have still an impractical high rate of false alarms.
The vertebrate Immune System is an emergent and appealing metaphor for new ideas on anomaly detection,
being already adopted some algorithms and theoretical theories in particular fields, such as network intrusion
detection. In this paper we present a temporal anomaly detection architecture based on the Grossman’s Tun-
able Activation Threshold (TAT) hypothesis. The basic idea is that the repertoire of immune cells is constantly
tuned according to the cells temporal interactions with the environment and yet retains responsiveness to an
open-ended set of abnormal events. We describe some preliminary work on the development of an anomaly
detection algorithm derived from TAT and present the results obtained thus far using some synthetic data-sets.

1 INTRODUCTION

The vertebrate Immune System (IS) (Sompayrac,
2008) inspired the deployment of Artificial Immune
Systems (AIS) ( de Castro and Timmis, 2002) and has
already been successfully used as a promising source
of inspiration for new ideas on anomaly detection
(Kim et al., 2007). The IS is an extremely complex
distributed system whose main function is to actively
protect the body from the intrusion ofpathogens. It
is composed by two main layers of defense:innate
andadaptive. Theinnatepart only recognizes specific
known intruders by their “signatures”, and its behav-
ior is similar in all individuals of the same species.
In contrast, theadaptivepart is in a sense unique to
each individual and is able to “learn” throughout time
to recognize new forms of intrusive pathogens, thus
providing a much more specific and adaptive form of
recognition of pathogens.

The IS is supported by a complex set of cells. The

Antigen Presenting Cell (APC) digests and converts
pathogens into smallpeptideswhich are then pre-
sented toT-cells. These cells have specificreceptors
that canbind with a certain degree of affinity to the
peptides present on the surface of each APC and thus
become activated.

Anomaly detection can be seen as a technique that
produces a model for identifying cases that in some
way deviate from a “learned” normal behavior. Deci-
sions are based on aprofile of normal behaviour and
an anomaly is any particular case instance that is an
outlier under this characterization. Current anomaly
detection systems are mainly based on statistics, data-
mining, data fusion and bio-inspired approaches, like
neural networks.

Interestingly, the problem of creating a system ca-
pable of monitoring a normally changing environment
and yet retaining the capacity to detect open-ended
anomalies has been developed by natural selection
during the evolution of the vertebrate IS. This sys-
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tem is capable of discriminate and engage in very dif-
ferent ways bothnormal body components and very
similar but foreign (abnormal) chemical structures
present in microorganisms. The IS is also able to learn
and memorise the first encounter it has with these in-
truders, and can make effective use of this acquired
knowledge to better deal with them on a future en-
counter. Perhaps even more relevant for the designing
of an effective anomaly detection system, is the now
well accepted fact that the IS learns the body compo-
sition during embryo life and adapts to physiological
changes as the individual matures and ages (notable
examples being hormones during sexual maturation
or metamorphoses in some vertebrates).

Negative Selection (NS) (Forrest et al., 1994) and
Danger Theory (DT) (Greensmith et al., 2006) were
the immune theories most used on the development
of IS-based anomaly detection systems (Kim et al.,
2007). In this paper we explore a different view of
the immune system to present the first developments
of a new anomaly detection algorithm based on the
Tunable Activation Threshold (TAT) hypotheses put
forward by Grossman and colleagues (Grossman and
Paul, 1992). In TAT it is assumed that lymphocytes
have tunable activation thresholds whose value re-
flects the recent history of signaling they have been
receiving from the environment. Potentially autoim-
mune lymphocytes, which are continuously exposed
to body antigens raise their activation threshold, and
become unresponsive or anergic. In contrast, lympho-
cytes that are not auto-reactive but recognise microor-
ganism structures have low activation thresholds and
are thus fully responsive upon infection.

This paper is organized as follows: in section 2 we
explain in some detail the TAT concept and the model
dynamics we have used for T-cells. In section 3 we
describe the system architecture, its main components
and features, as well as a methodology we have used
for the generation of synthetic data-sets we are using
to evaluate the system in a controlled way. In section
4 we present the results obtained with the experiences
we have done with the artificially generated generic
data-sets. In section 5 we discuss the results obtained,
draw some conclusions and delineate guidelines for
future research.

2 TAT AS A MODEL FOR
TEMPORAL ANOMALY
DETECTION

The Tunable Activation Threshold (TAT) (Grossman
and Paul, 1992) hypothesizes that T-cell activation de-

pends on a threshold that is adjusted dynamically to
the integrated history of signals received via the T-
cell Receptor (TCR). Every interaction between the
TCR and its ligands, the antigenic MHC/peptide com-
plexes presented by the APC, results in intracellular
competition between ”excitation” and ”de-excitation”
signaling pathways, causing the T-cell to adapt to
the stimulus by increasing or decreasing its activation
threshold. Therefore, T-cells with different antigen-
specificity will have different activation thresholds as
they are exposed to different stimuli. Furthermore,
Grossman and colleagues also postulated that T-cells
that are tuned to be unresponsive by chronic exposure
to antigen could inhibit the activation of responsive T-
cells in their neighborhood in physical and antigenic
spaces. This implies that an immune response will
not depend on response of an individual T-cell, but
depends on the ensemble of T-cells engaged and on
their current activation thresholds, which in turn re-
flects the T-cell’s individual history.

We have adopted a minimal mathematical model
of TAT for T-cells (Carneiro et al., 2005). Briefly,
T-cell activation is controlled by two enzymes that re-
spond to antigenic signals delivered by the APC: Ki-
nase (K) and Phosphatase (P). Antigenic signals lead
to a linear increase of bothK and P activities until
they reach a plateau that is proportional to the inten-
sity of the stimulus.
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Figure 1: The T-cell receives a variable signal and adjusts
theK andP levels.

For the same signalS, K increases faster thanP,
but if the signal persistsP will eventually reach a
higher plateau. Similarly, on signaling absence,K re-
turns to the basal level at a faster rate thanP. It is
further assumed that T-cell activation is a switch-type
response that requires thatK supersedesP, at least
transiently. Under these conditions, those T-cells that
receive continuous or sufficiently frequent antigenic
signals from APCs become unresponsive and those
that rarely see their antigen remain sensitive (Carneiro
et al., 2005) (illustrated in Figure 1).

BIOSIGNALS 2009 - International Conference on Bio-inspired Systems and Signal Processing

358



3 GENERAL ARCHITECTURE

In this section we present the TAT-based architecture
we developed for anomaly detection. We describe a
TAT-based AIS and its major metaphorical IS coun-
terparts for anomaly detection.

Figure 2: Building blocks of the TAT-based AIS.

Figure 2 depicts the general architecture of TAT-
based AIS. The core is a simulation of the dynamics
of an artificial T-cell repertoire. Each artificial T-cell,
heretofore denoted byTCELL, is an object that re-
ceives signals from the environment, compares these
signals to astring representation of its unique speci-
ficity, and adjusts its response threshold by tuning the
values of itsK andP variables. At some given point in
time, a ”committee” of activatedTCELLs may raise
an alert depending on the values each cell has for
these variables.

3.1 Generating Artificial Data-Sets

We have worked with two different data-sets: one is
used fortraining and the other is used fortesting.
The training data-set is further split in two parts, re-
specting the temporal order of the events recollec-
tion. The first part is used fortraining calibration
in which the T-cell simulator is run, neglecting any
alerts. The second part is composed by normal and
abnormalAPCs, where the abnormalAPCs contain
peptides not present on the first part of the training
data-set. The aim of the training phase is to build and
tune theTCELL repertoire and adapt the values of
K andP to the environment. The second part of the
training data-set is used to validate the system initial
calibration. This is done by evaluating how well the
newly constructed cell repertoire copes with theAPCs
present in the second part of the training data-set.

EachAPC is a container composed by a set of
string PEPTIDEs separated by a white space and a
classification tag. On the experiments described in
this paper, the data-sets have been synthetically gen-
erated by having thePEPTIDEs for eachAPC taken
from a group of pre-arranged “string” sets, as follow:
a set of normalPEPTIDEs (strings) that appear reg-
ularly on both training and testing data-sets; a set rep-
resenting sporadic patterns that appear in training, but

are also considered normal; two sets of patterns corre-
sponding to anomalies in training and testing respec-
tively; finally, a set of new patterns for testing that
were unseen during training, but are still the result of
normal activity.

We have generated (Section 4) artificial data-sets
that meet the following conditions: the training data-
set has 5000APCs (3750 for calibration and 1250 for
validation); the testing data-set has 7500APCs. The
APCs have a maximum number of 1000PEPTIDEs,
generated randomly from the sets described above.
The APCs with anomalies are different from those
generated for thetestingand for thetraining data-sets.

3.2 TCELLRepertoire Dynamics

The AIS contains a variable list ofTCELLs that are
dynamically created and deleted. EachTCELL has
a unique string, which defines its specificity, and is
analogous to the TCR of the natural T-cell. It also
stores two variables,K andP, that are adjusted as a
function of the input signalSreceived from eachAPC,
as described in next section. ATCELL is created and
added to the repertoire whenever aPEPTIDE in any
of the currently queuedAPC does not find a suffi-
ciently similar match in the available repertoire. In
this newly createdTCELL the string is set to be iden-
tical to the unmatchedPEPTIDE. TheK andP are
initially set to the basal values (K0 and P0, respec-
tively) and updated with the stimulus represented by
thePEPTIDE.

A TCELL is removed from the repertoire when-
ever theK andP dynamics bring them back to these
basal values. In practice, this algorithm of creation
and removal ofTCELLs, uses implicitly a potential
infinite repertoire ofTCELLs with K andP in basal
values, but we only use the processing and memory
resources upon demand, keeping the actual repertoire
size contained.

3.3 TCELLK and P Dynamics

The TAT model we implemented is a piece-wise lin-
ear approximation to the differential equations model
described in (Carneiro et al., 2005), and can be de-
scribed as follows:

1. T-cells are born with basal values ofK andP, re-
spectivelyK0 = S0 ∗Kmax andP0 = S0 ∗Pmax. S0
corresponds to the initial value for the signal re-
ceived by T-cells.

2. The values ofK andP are adjusted dynamically as
a function of the signalSand tend towards the val-
uesK0 +S∗KmaxandP0 +S∗Pmax, respectively.
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3. The input signalSsent by eachPEPTIDE to the
TCELLs in the repertoire is calculated by:

S= C×A f f inity(TCELL,PEPTIDE)

where C is the number of occurrences of the
PEPTIDE in the APC and A f f inity is the per-
centage of equal characters in the same positions,
for all theTCELLandPEPTIDEstrings.

4. If the values ofK andP are lower (higher) than
their maximum values, they increase (decrease)
linearly with constant derivativesφK andφP, re-
spectively, until the corresponding plateau values
are reached (step 2).

5. TheTCELL is transiently activated whenK ¿ P;
otherwise it is said to be unresponsive.

6. To ensure that aTCELL receiving a constant sig-
nal eventually becomes unresponsive (Figure 1)
we imposeP0 +S∗Pmax> K0 +S∗Kmax.

7. To ensure that, in anyTCELL, the conditionK ¿P
can be potentially reached at least transiently, we
impose thatφK > φP.

8. The time duration of eachAPC is measured in
units ofAPCduration (∆t).

Algorithm 1 shows the corresponding pseudo-
code for the updating ofTCELLvariables.

Algorithm 1 UpdateTCELLparameters.

1: if ((S+S0)∗Kmax) > K then
2: K←MIN((S+S0)∗Kmax,K+ = φK ∗∆t)
3: else
4: K←MAX((S+S0)∗Kmax,K−= φK ∗∆t)
5: end if
6: if ((S+S0)∗Pmax) > P then
7: P←MIN((S+S0)∗Pmax,P+ = φP∗∆t)
8: else
9: P←MAX((S+S0)∗Pmax,P−= φP∗∆t)

10: end if

3.4 The Immune Response in the AIS

In the AIS, theAPCs currently queued are processed
sequentially, reflecting the temporal order of events,
and are classified according to the activation state of
the TCELLs that match itsPEPTIDEs. A TCELL
is considered to match aPEPTIDE if their pairwise
A f f inity is greater than a predefined valueα. The
classification of theAPCis decided based on thecom-
mitteeof all TCELLs matching itsPEPTIDEs. We
first compute the fraction of activatedTCELLs per
PEPTIDE, and count the number ofPEPTIDEs in
which this fraction is greater than a critical valueτ.

If the number of such ’abnormal’ peptides relative to
the number ofPEPTIDEs in theAPC is higher than a
predefined parameterψ, then an alert is raised against
theAPC.

3.5 Adjusting the System

The parameters controlling the natural IS have been
slowly refined by millions of years of selection of
ancestrals who managed to defend themselves from
pathogens, and yet avoided autoimmunity. Similarly,
we set the run-time parametersof the TAT algorithm
by running a non-linear meta-heuristic simplex op-
timizer (Pedroso, 2007). The mission of this opti-
mizer is to make sure that the TAT-based AIS clas-
sifies properly theAPCs generated over an appropri-
ate training data-set, tuning automatically theTCELL
repertoire to the environment. The optimizer uses
only theAPCs generated during the training valida-
tion to compare the classification made by the AIS
algorithm with the classification tag. The optimizer
runs the AIS algorithm repeatedly over the bipartite
data-set until it finds the parameter regime in which
the TAT algorithm tunes the repertoire and is able to
raise alerts on theAPCs containing artificial anoma-
lies, with a minimal number of false alerts on other
APCs.

The introduction ofat leastone artificial anomaly
in the training set for parameters validation is abso-
lutely necessary to constrain the tuning dynamics to
meaningful parameter regimes. In our experiments
we observed that if we would only use normal events
in training data-set and require minimization of false
alarm rates during the training validation, the sim-
plest solutions returned by the optimizer are param-
eter regimes in which tuning ofK andP is so strong
that noTCELLcould ever be activated. This allowed
us to better guide the optimizer in finding a set of
parameters that, not only minimizes the rate of false
alarms, but can also achieve a low rate for false neg-
atives. In addition we introduced a few additional
heuristic constraints:

0 <
K0

P0
< 1 φK > φP 0 <

Kmax

Pmax
< 1

The values forKmax, φK, K0 andS0 have also been
fixed at 10, 15, 100 and 10 respectively. Also, the
values ofα, τ andψ were also optimised.

4 TESTING THE TAT-BASED AIS

Our working hypothesis is that a TAT-based system
with the architecture just described could be opti-
mised in such a way that itsTCELLrepertoire would
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be tuned to the individual characteristics of a real
environment and yet be able to raise alerts against
anomalous activity. In that sense, the main achieve-
ment is the development of an implementation of the
framework we have previously presented. We have
already obtained some results with our implementa-
tion, which are described and discussed in the follow-
ing sections.

4.1 Experimental Protocol

We conducted two sets of five experiments each, with
different data-sets. In the first set, each anomaly is
extended between two contiguousAPCs. Our aim is
to detect the region (one or bothAPCs) that overlaps
with the anomaly. In the second experiment we in-
tend to decide whether TAT could also be used as an
APC classifier. To be able to determine this, in the
second data-set, anomalies appear isolated within a
singleAPC. We fixed the maximum number ofAPCs
with anomalies in 200 in the training data-set. In the
testing data-set we started with 149 anomalies and in-
crease this value in the subsequent experiments. Ta-
ble 1 describe the optimised parameters sets for each
of the data-sets, using the fixed parameters described
in subsection 3.5. The upper 5 rows correspond to
the “detection” of contiguousAPCs and the lower 5
rows correspond to the best parameters that correctly
classified theAPCs with anomalies.

4.2 Results

In order to evaluate the characteristics of TAT for de-
tection, let us assume thatC is the percentage of rare
peptides in theAPC. In table 2 we consider that the
parameterψ was optimised to the value of 6%, which
means that if the ratio of abnormal peptides in the
APC is above this value, then theAPC is considered
abnormal and an alarm should be raised. For each
APC we show the concentration of eachPEPTIDE
and the decision made by the AIS. In the bottom we
present the classification of eachAPC.

In this example, bothAPCs 2 and 3 have ab-
normalPEPTIDEs and thus should both beclassi-
fiedas “abnormal“. Nevertheless, since the abnormal
PEPTIDEs doesn’t match any T-cell in the repertoire,
new ones are created with the initial values ofK and
P. According to TAT dynamics (Section 3.3), the sig-
nalS(peptide concentration times the affinity) sent by
theAPCshould be such thatK become higher thatP.
Thus, theregionwhere the anomaly took place com-
prises theAPCs 2 and 3 and the AIS raised an alarm in
theAPC3. The twoAPCs did not have been correctly
classified, but theregionwhere the anomaly happened

Table 1: TAT optimised parameter set.

Run P0 Pmax φP α τ ψ
1 188.4 18.8 2.2 11.1 6.4 88.3
2 127.4 12.7 9.3 38.1 10.1 13.8
3 138.9 13.1 7.9 6.9 2.0 78.3
4 125.1 12.5 9.4 72.9 15.0 54.4
5 144.5 14.4 5.6 57.5 7.3 56.6

1 131.3 13.1 5.8 16.1 8.5 67.9
2 137.1 13.7 3.2 4.32 2.71 77.8
3 127.6 12.7 2.6 80.1 11.8 83.3
4 124.7 12.4 7.3 77.1 10.2 48.7
5 151.4 15.1 4.1 10.4 6.83 55.9

Table 2: Artificial immune detection.ψ = 6%.

PEPT IDE APC1 APC2 APC3 APC4

abcde 84 N 33 N 37 N 107 N

fghij 97 N 53 N 45 N 99 N

klmno 101 N 41 N 36 N 79 N

pqrst 89 N 40 N 39 N 99 N

uvwxz 97 N 53 N 42 N 101 N

PQRST - - 43 N 40 Y - -
UVWXZ - - 36 N 29 Y - -
OOOOZ - - 43 N 29 Y - -
C(%) 0 0 32% 0
Decision N N Y N

was correctly detected.
With the resulting optimised parameters sets for

the experiences (Table 1), and using the ”committee”
classification algorithm (Algorithm 1), we obtained
the results described in Table 3.

Table 3: Results obtained during the experiments.

Training Testing

Run APC TP FP APC
TP FP
qty qty %

1 192 121 15 149 75 14 0.1
2 198 129 20 199 104 66 0.8
3 195 122 17 248 131 34 0.4
4 194 127 18 299 163 83 1.1
5 198 126 23 347 184 31 0.4

1 192 192 18 149 148 21 0.2
2 198 198 12 199 198 46 0.6
3 195 195 159 248 248 563 7.5
4 194 193 92 299 299 417 5.5
5 198 195 27 347 347 35 0.4

Each row represents the best results obtained with
the parameters presented on Table 1, for each ex-
periment. The upper 5 rows correspond to the ex-
periments with two contiguously generated anomaly
APCs and the lower 5 with isolated anomalyAPCs.
In the first experiments, the TAT algorithm could de-
tect at least one of theAPC carrying the anomaly,
which appeared contiguously in the testing data-set.
As can be seen, the true positives corresponds to more
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than half of the totalAPCs, which means that all
the anomalies was detected and, in some cases, both
APCs of an anomalies raised an alert. We was also
succeeded in the last 5 experiments, whose goal was
to evaluate the use of TAT for classification. In the
testing phase we have a high rate of true positive and
a relatively low rate of false alarms. The higher level
of false alarms was 7.5% in the third experiment.

5 DISCUSSION

We have described an algorithm for anomaly detec-
tion based on the TAT theoretical immunological hy-
pothesis. Our main goal was to present a general
architecture of a TAT based AIS and an immune-
inspired algorithm for anomaly detection that could
deal with temporal events. We presented some pre-
liminary results obtained with artificially generated
data-sets that meet some of the characteristics ob-
served on real-world contextual data-sets. We have
also started to analyse the appropriateness of using
TAT in both a detection and classification context.

Despite the limited diversity of the data-sets used,
we believe that the algorithm proposed show that TAT
possesses a handful of promising properties when ap-
plied to temporal anomaly detection. Firstly, each
environment has its own characteristics and therefore
the detection system should reflect this individuality,
through the automatic adjustment of each cell acti-
vation threshold. Secondly,TCELL activation is an
automatic process based on changes in signal inten-
sity and the current values for theK and P. Each
TCELL has its sensitivity adjusted to a baseline that
is characteristic of the past and current activity. Fi-
nally, in TAT, normal activity is manifested by the
presence of recurrent signals and abnormal activities
correspond to exceptional signals for which the reper-
toire of TCELLs should not be adjusted. This is pre-
cisely what is supposed to happen in the detection of
anomalies in real-world applications.

In this phase we neglected some essential prop-
erties of the natural IS that can make adaptation to
evolving normality and anomaly detection more ro-
bust and reliable: immune memory and clonal dy-
namics. Future developments of the TAT-based de-
tector should aim at incorporating these properties.
Less because this would make the AIS in line with
the natural counterpart, but because variation in clonal
size can be a way of adjusting the weight of each
TCELLspecificity in the ”committee”, reflecting not
only the history of the signals but also the history of
co-occurrences of those signals.

The preliminary results obtained are in line with

those described by the authors in (Antunes and Cor-
reia, 2008). The results were also promising and the
ongoing research give us confidence to deploy a TAT-
based algorithm for anomaly detection.
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