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Abstract: In this paper Empirical Mode Decomposition (EMD)-based features from single-channel electroencephalo-
graphic (EEG) data are proposed for rat's sleep state classification. The classification performances of the
EMD-based features and some classical power spectrum density (PSD)-based features are compared. Sup-
ported by experiments on real EEG data, we demonstrate that classification performances can significantly
improve, by simply substituting EMD to PSD in features extraction. This is in noticeably due to the natural
adaptivity of EMD which show more robust to subjects variability.

1 INTRODUCTION et al., 1990), to cite but a few.

In most studies dealing with automatic quantita-
EEG signals are widely used to study the basic as- tive classification of sleep states, frequency domain
pects of the brain activities in human and/or in ani- features seem to be preferred. In particular, Power
mals. EEG data show variations related to the differ- Spectrum Density (PSD)-based classifications rely on
ent brain states during sleep which make EEG an im- the energy carried out in different frequency inter-
portant tool in sleep studies (Robert et al., 1999; Vya- vals, even if a unanimous consensus about the defi-
zovskiy et al., 2002; Estrada et al., 2004; Hese et al., nition of sensitive bandwidths is still missing (Robert
2001; Vivaldi and Bassi, 2006; Corsi-Cabrera et al., et al., 1999; Corsi-Cabrera et al., 2001). It is also no-
2001). Objective staging of the sleep states by visual ticed that most representative EEG activities may vary
analysis of EEG data is a time consuming and rather between sleep states and between different subjects
subjective process, as staging agreement between dif{Corsi-Cabrera et al., 2001). Moreover, to be fully
ferent experts is around 8090% (Gervasoni et al., relevant, PSD-based methods require the data to be
2004; Robert et al., 1999). In recent years, the re- stationary over the analyzed epoch. This is another se-
searches focused on defining new methods, mostlyvere limitation when dealing with EEG signals which
utilizing EEG data, in order to provide an automatic by nature are non-stationary as it is the case for most
and more objective staging of the brain states. How- biomedical signals. For all these reasons, a method
ever, due to the complexity and to the subject variabil- that is adaptive (data-driven), less sensitive to subject
ity of EEG signals, automatic sleep classification still heterogeneity and robust to non-stationary data is cer-
remains a challenging issue. tainly worth investigating.

Automatic sleep state classification based on EEG ~ Empirical Mode Decomposition (EMD) is known
data has been performed by a large number of tech-to be a fully data-driven technique which automati-
niques relying on time, frequency or wavelet do- cally extracts meaningful oscillating components (in-
main features, such as EEG amplitudes, zero crossingtrinsic modes) that underlie the signal (Huang et al.,
counting, harmonic analysis, Hjorth parameters, spe-1998; Rilling et al., 2003). Furthermore, as it acts
cific bandwidths’ energiesd(8,0), bispectra (Ning locally in time, EMD does not require the analyzed
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signal to be stationary. The main goal of this study
is then to underline how the inherent advantages of
EMD can sensibly strengthen the features’ extraction
and improve the sleep state classification.

The article is organized as follows. Data and
methods are described in Sections 2 and 3, respec-
tively. Section 4 presents and compares the classi- o 1 2 3 4 5 6 7 8 9 10
fication performances of both PSD and EMD-based
approaches. We conclude and discuss possible exten-
sions of this work in Section 5. I
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Figure 1: Rat EEG Signals at a) Awake, b) Slow Wave
2 MATERIALS Sleep, ¢) Paradoxical Sleep.

In order to reduce the number of experimented 1. Awake (AW): AW epochs are characterized by
animals, we advisedly re-used for this study a data  low amplitude EEGs with hig (5-9 Hz) andy
set originally obtained from previous experiments.  (30-55 Hz) power density and a high amplitude
In these experiments, adult male Sprague Dawley =~ EMG with phasic bursts.

rats (250-300 g) were chronically implanted for 2. Slow Wave Sleep (SWS): SWS epochs are iden-
polygraphic recordings under general anesthesia tified by high amplitude EEG with a high (1-4
(Ketamine / Xylazine, 90 mg/kg and 5mg/kg re- Hz) and spindles (10-14 Hz) power density and a
spectively). Briefly, three stainless steel EEG screws low amplitude EMG.

were msgr_ted mtolthe skulll over the frontal, parietal 3. Paradoxical Sleep (PS): PS (Rapid Eye Move-
and occipital cortices, with a reference electrode . i .
ment) was identified by a low amplitude EEG

placed over the cerebellum. Two stainless wires were with a predominan® rhythm (5-0 Hz) and a con-
inserted into the neck muscles. All electrodes were ] . . .
linked to a connector cemented to the skull with Pl amp!nude EMG reflecting the typi-
dental acrylic. Post-operative analgesia was ensured gt mysguilar atonia.

by oral administration of carprofen (Rima®| 0.5 In Figure 1 a-c, examples of 10-seconds rat EEG sig-
mg / 100 g / 24 h). After ten days of recovery from nals from frontal cortex derivation are plotted for AW,
the surgical procedure, the rats were individually SWS and PS states, respectively.

habituated to the recording chamber and cable under All the segments with saturated sample points are

a 12 hour light/dark cycle (lights on at 7:00 A.M.) discarded from the analysis. In the data set, only the
with water and food ad libitum. All procedures three main sleep states are identified. However, it
were in accordance with the National Institute of is known that, at the sleep cycles, middle transition
Health guidelines for animal care and were ap- sates are also present between main sleep states (Ger-
proved by our local institutional ethics committee Vvasoni et al., 2004). These transition states may cre-
for animal experimentation. From each rat, three ate ambiguity during the search for best representative
referential EEG and one bipolar EMG signals were and discriminative features. Therefore, the transition
amplified and filtered (bandwidth 1-250 Hz) using a segments that may correspond to possible transition
preamplifier headstage and a multichannel amplifier states are also excluded from the data base. The num-
(MCP Plus, Alpha-Omega Engineering, Nazareth, bers of remaining segments after data cleaning are de-
Israel), and sampled at 512 Hz using an analog to scribed in Table 1 for all states and from each of the
digital converter (Cambridge Electronic Design, Six rats.

Cambridge, UK). In this study, the data set from 6

rats are analyzed. Data files were manually scored byTable 1: The number of segments at each sleep states for six
10-seconds epochs using EEG and EMD magnituderats.

criteria defined in the four distinct papers (Gervasoni  [Rat | Time\ segments| # AW | #SWS][ #PS]

et al., 2004), (Gottesmann et al., 1976), (Timo-laria 208 min\ 1253 | 863 198 | 102
et al., 1970), (Winson, 1974). Although the epochs 91 min\ 547 200 135 212
were scored by two scorers with an inter-rater agree- 115 min\ 689 352 188 | 149
ment of 85%, here the result from only one scorer 241 min\ 1446 | 930 467 49
was used. Blind repeated scoring was not performed 194 min\ 1162 | 766 | 232 | 164
in this study. Three sleep states are identified; 310 min\ 1860 | 784 | 869 | 207

O O &l W[ N -
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Table 2: Spectral Energy Bands. then the spectral amplitude ratiag, andr,, are ob-
_ tained by dividing the integrated spectral amplitudes
Band | Bandwidth (Hz) over defined frequency bands:
&1 0.5-2.5 20Hz 4.5Hz
& 25-4.0 _ JosuP()df _ Josnz P(F)df 1)
o | 40-60 VT EER(hAf T JSERP(f)dt
0, 6.0-8.0
a 8.0-12.0 whereP(f) denotes the spectral amplitudes over the
B, 12.0 - 20.0 frequencyf. These ratios are heuristically chosen af-
B, 20.0-45.0 ter a thorough search in order to obtain the best sepa-

ration of states. Numerators of the ratios are included
in the denominators to obtain more symmetrical dis-

tributions. The feature space for classification is con-
3 METHODS structed by two variables{, r,) calculated from each

_ ) _ ) segment.
This section starts presenting two classical ap-

proaches based on the estimated power spectrum den

sity of EEG time series. After describing the PSD- 3.2 EMD-based Features

based techniques, new feature sets based on EMD . ' / _

analysis are proposed. Each data segment is normalEMD is an entirely data-driven (adaptive) method that
ized before PSD or EMD analyses in order to have iteratively decomposes the analyzed signal into a set

unit energy within each 10-seconds segment. of components called Intrinsic Mode Functions (IMF)
(Huang et al., 1998). In contrast with the Fourier or
31 PSD-based Features the wavelet analyses, EMD adaptively extracts the in-

trinsic components that compose the signal without
) ) ) necessitating to choose any a priori fixed basis. The
3.1.1 Relative Bandwidths’ Energies core of the algorithm is the so-called “sifting proce-
dure” which, locally in time, isolates the fastest os-
Several studies have shown relevance in parsing EEGcillation in the signal. The resulting (possibly non-
signals into different frequency bands. For instance, stationary) component, referred to as the first intrinsic
(Goeller and Sinton, 1989) suggests to consider four mode function (IMF), is an amplitude and frequency
bands 1-3 Hz, 4-6 Hz, 6-10 Hz and 11-25 Hz; accord- modulated waveform that corresponds to the signal
ing to (Ruigt et al., 1989), seven bands are relevant: details at the finest time scales. This IMF is subtracted
1-3 Hz, 3-6 Hz, 6-9 Hz, 9.5-20 Hz, 20-45 Hz, 49-51 from the original signal, and the same adaptive proce-
Hz and 1-45 Hz; as for (Neckelmann et al., 1994), dure is applied to the remainder (low-pass approxi-
only four bands are necessary:0.5-5 Hz, 6-9 Hz, 11- mation) to identify the second IMF, and recursively
16Hz, 20-60.5 Hz. We chose in the present study to for the next ones.
divide the frequency axis into seven different energy EMD has been successfully used in many biolog-
bands as proposed in (Estrada et al., 2004; Hese et al.jcal signal processing applications (see e.g. (Zigiang
2001) and reported in Table 2. and Puthusserypady, 2007; Torres et al., 2007; Shara-
The normalized PSD is estimated for each 10 sec- baty et al., 2006)), and we believe that EMD-based
onds EEG segment, and then partially integrated overfeatures are also promising candidates for a more ro-
these seven frequency intervals. The resulting ener-pust sleep state classification.
gies serve as input features of the sleep state classifi- EMD is applied to each of the EEG signal ex-

cation. amples shown in Figure 1 and the first 8 IMFs of
. each signal are displayed in Figure 2-a. It was ob-
3.1.2 PSD-based Spectral Energy Ratios served that &\ points time series generally decom-

poses intdogy(N) IMFs (Huang et al., 1998; Rilling
Inthe second PSD-based approach developedin (Geret al., 2003). In our case, we most often obtained be-
vasoni et al., 2004), two specific spectral energy ratios tween 10 and 12 IMFs but only the first 8 are sys-
are defined and used as input features of a supervisedematically considered as the frequency content of the
classifier. In (Gervasoni et al., 2004), Local Field remainders lay below the physiologically meaningful
Potential (LFP) data is analyzed in order to exam- bandwidth & 0.5H2). As it can be seen in the fig-
ine sleep state transitions. Four frequency bands areure, the IMFs reproduce the non-stationarities of the
defined: 0.5-20Hz, 0.5-55H, 0.5-4.5Hz, 0.5-9Hz and signal at different characteristic time scales.
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Figure 2: a) The first 8 IMFs of EEG Signals for AW (th& golumn), for SWS (the™ column) and for PS (the'8 column)
states; b) Average PSD of IMFs at the states AW, SWS and P8 (&fi to right respectively); c) The logarithm of mean
values and the standard deviations of the peak frequentibcspectra (EEG data segments are taken from rat-1).
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Note that, for broad band signals such as EEG, ditional features. In Figure 3, the energy spectra of
EMD behaves like a dyadic filter bank (Flandrinetal., IMFs are plotted for three sleep states. All six rats’
2003). In Figure 2-b, average PSDs of IMFs obtained data are combined and the mean and the standard de-
from EEG segments (at AW, SWS and PS states) areviations of the IMF energies are calculated. This fig-
given. It can be observed that the frequency struc- ure is utilized to search for new energy ratios that may
tures of the automatically generated IMFs are similar provide better separation of the classes.
to that of artificially pre-defined EEG bands. For ex-
ample, the frequency content of the first IMF approx- : : : :
imately corresponds to theband ¢-30Hz), whereas 04} Al
the second IMF overlaps with th band (13- 30 © 0.35)
Hz). The third and the fourth IMFs also coincide with
thea (8 — 13 Hz) andB (3.5— 8 Hz) bands. A still
open question though, is to determine to which extent
these adaptively identified bandwidths correspond to
physical phenomena. Note that the frequency regions
that are automatically extracted by EMD are variable,
i.e. they are changing adaptively with the analyzed
signal. This can be seen from Figure 2-b that com-
pares the IMF spectra corresponding to the differ-
ent states. Moreover, the frequency peak distribution

(mean and variance) of each IMF spectrum, displayed
as box plots in Figure 2-c, show that characteristic We define two new ratios. The first ratio is defined

IMF Enegry Spectrum

o o
B, 9 N 9
a N O w

Mean IMF Energies +-

0.1r
0.05

IMF #

Figure 3: IMF Energy Spectra (the mean and the standard
deviation of the IMF energies) of three sleep states.

modes of a given state can also vary along time. for separation of AW and SWS states. It is slightly
_ different than the ratio in (2) {8and the %' IMF en-
3.2.1 EMD-based Band Energies ergies are removed from the ratio since they are not

significantly different for AW and SWS states as it is
As itis seen in Figure 2-b, the energies at some scalesseen in Figure 3).
are noticeably different for different states which can The second ratio is defined for the separation of
be convenient for classification. Therefore, energies AW and PS states. It is observed in Figure 3 that the
of eight IMFs are individually considered as features energies at the first two IMFs obtained from PS state
for sleep staging. This approach is similar to the are higher than the energies of IMFs obtained from
PSD-based relative frequency band energy featuresaw state. In contrast, the energies of IMFs from AW
given in Section 3.1.1. However, instead of defining at last four scales (5, 6, 7, 8) are higher than the ener-
fixed bands beforehand, the bands are automaticallygies of IMFs from PS state. Considering these obser-
selected by the method. vations, the second ratio is defined as the total energy
of the first two IMFs over the total energy of the last
four IMFs. Similar to the previously defined ratios,
the denominator includes also the numerator compo-
nents:

3.2.2 EMD-based Spectral Energy Ratios

By considering the same frequency bands defined in
Section 3.1.2 the EMD-based spectral ratios can ap-

proximately mimic the PSD-based spectral ratios. It ie(Zz S)P'MFi ie(zlz)HMFi
is approximately identified which IMF lie in which h=———— r1n=———>—— (3)
bandwidths considered in the energy ratipgndr , 12 PmF , 122 , PivF
defined in (1). The EMD based energy ratios are then i€(2..5) 1€(1,256.7,8)
constructed as below: The two PSD-based and the three EMD-based fea-
P P ture sets defined in the previous Sections are used as
ie(Zz,.. 7 MFi i€<; 7 MFi input features of a supervised classifier of EEG data.
Nn=————— ’Ih=——"—"— (2 Results are compared in the next section.
> Pk > PmF
ie(d,.,7) i€(4,..,7)
HerePir, is the energy of thé"! IMF. 4 STATISTICAL ANALYSIS AND
3.2.3 EMD-based New Spectral Ratios RESULTS

EMD provide limited number of naturally divided fre- A simple supervised classifier is used by fitting a mul-
guency bands which make possible to search for ad-tivariate normal density to each class. Several classi-
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fication parameters are provided for each feature set is to assess the robustness of the features to inter-
as a measure of classification performances: individual variability.

We

Sensitivity (Sns.) and Specificity (Spc.): Sensi-
tivity is the proportion of the correctly identified
(true positives) segments that actually belong to
the class and specificity is the proportion of the
correctly identified (true negatives) segments that
actually do not belong to the class.

4.1 Self-classification Experiments

4.1.1 PSD-based Band Energies vs. EMD-based
Band Energies

Self-classification results (meah standard devia-
Omission Error §&,) and Commission Erroreg): tion of each performance parameters) obtained by the
€ Is the proportion of the omitted segments that PSD-based and EMD-based band energy features are
actually belong to the classy(=1- Sns.)€cisthe  given in Tables 3 and 4. It is observed in the con-
proportion of the segments classified as the corre- cordance tables that the separation of SWS class from
sponding class where they actually do not belong the other two classes is attains a high matching score
to the classg: = 1 - Spc.). (with ~ 96— 98%) by both PSD and EMD based fea-

Overall Accuracy (Acc.): Accuracy is the propor- tures. On the other hand, separation of AW and PS

tion of the truly classified segments in the whole States is more arduous. Yet, the energies computed
population. over the adaptively EMD-selected bandwidths pro-

vide relatively better results. Indeed, the omission
Kohen's Kappa K): K is a measure of agree- error of AW state decreases of about 7% and the com-
ment between the manual and automatic staging. mission error of PS state gains 18%. As we can see,
1>k > 0.81 indicates almost perfect agreement, simply replacing the pre-fixed bands with the ones
whereas B> Kk >0.61and 06 > k > 0.41indi-  that are automatically identified by EMD provides a
cate substantial and moderate agreements respecso, increase on the overall accuracy and.@0me-
tively. This parameter is different from the overall |ioration of k index. This shows that even within the
agreement in the sense that it removes the effectssame rat's EEG, the frequency content relative to a

of the agreements occurred by chances calcu-  given state, can vary from one time segment to the
lated ask = ->=5¢ wherePy is the overall agree-  other (as it can be seen in Figure 2-c), and that auto-

ment between manual and automatic staging, andmatic band selection is an encouraging alternative to
P is the expected agreement by chance (Cohen,handle this non-stationarity.
1960).

Concordance Table (Confusion Matrix): The frac-
tion of the data which was classified as each of
the existing classes are given in concordance ta- got ¢|assification results for PSD-based spectral ra-

bles. In these tables, each row represents the aCjog ang for their EMD-based counterpart are given in
tual class whereas each column represents the pre

dicted ¢l Table 5 and 6, respectively. Similarly to the band en-
icted class. ergy features, SWS class is easily distinguished from
hold two different scenarios of classification ex- the other two classes(96—97% agreement) by both

4.1.2 PSD-based Energy Ratios vs. EMD-based
Energy Ratios

periment. PSD and EMD-based ratios. However, discrimination

120

of AW and PS classes is relatively worse. For PSD-
based ratios, 23% of AW segments are classified as
PS and 15% of PS segments are classified as AW. By
using EMD-based ratios, these percentages lower to
8% and 12% respectively. Overall accuracy also gets
better, with a 3% upgrade, wheraamdex increases

of about +0.04.

Cross Classification: In the second group exper-  Asitis explained in Section 3.2.3, in order to have
iment, we train the classifier with mixed data better separation between AW and PS classes, new
coming from only five rats, and test the algo- EMD-based ratios were defined. The classification
rithm with the remaining sixth rat's EEG. This results are provided in Table 7. Compared to the PSD-
procedure is repeated for all possible combina- based ratios’ results of Table 5, EMD-based new ra-
tions of the rats and only the mean classification tios pull the omission for AW class from 24% down to
rates are provided. We refer to this experiment as 17%. Omission of PS class also decreases from 16%
cross-classification. The aim of this experiment to 11%. Overall accuracy improves by 4.6% and the

Self Classification: In the first group experiment,
all the data from the six rats are gathered and a
5-folds cross validation is used. Since the training
and the test data are selected from the same dat
pool, this experiment is called self-classification
throughout the paper.
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K gain is 0.07. For similar reasons to the ones evoked 3) Accuracy b) Cohen's k
in the preceding paragraph, it is very likely that the 83‘2‘
adaptivity of EMD turns the energy ratios more ro- 08
bust to non-stationarities. 332
0:74
0.72
0.7
0.68

Accuracy %

4.2 Cross-classification Experiments

The aim of this experiment is to investigate the ro-

bustness of the feature sets to the inter-individual vari- PSD EMD  PSD EMDIEWD Banisbands  Ratb RaloNew
oqe . . i Ratio

ability. The results obtained for the cross classifi- Rato

cation experiment are presented in Table 8. As for [ M PD-Eosed NN EMD-Based|

the self classification, EMD features globally provide Figyre 4: Final comparison of the classification perfor-
better classification performances. Again the differ- mances (First group classification).

ences stem from a better separation between AW and

PS states. For example, compared to PSD-based en 2) Accuracy .

ergy ratios, EMD-based new energy ratios increases 92 0.84

the sensitivity for AW and PS classes by 9% and 7%, 9 0.82

respectively. The specificities also improve (4% and 007-2

13%), as well as the overall accuracy (about 5.5%) o

and thex index which raises by +0.09. Improvements 0.74

of the same order of magnitude can be observed in the 0'073

same table for frequency bands features. Altogether, olts

these results demonstrate that EMD-based features

through their adapted bandwidth selection, fit better

the individual characteristics. Indeed, IMFs convey
a spectral information (notably the frequency band-
width) that can significantly vary from one individual Figure 5: Final comparison of the classification perfor-
to the other. Then, as the ratios defined in expres- mances (Second group classification).

sions (3) solely imply IMFs indices, they can natu-

rally adapt to the spectral specificities of each indi-

vidual. 5 CONCLUSIONS AND FUTURE

For better visual comparison, overall accuracies WORKS
andk values obtained with PSD and EMD-based fea-
ture sets are bar-plotted in Figures 4 and 5.

Another interesting outcome of this experiment is
that in cross classification EMD-based energy ratios
outperform the EMD-based energy bands whereas it
is the opposite for self-classification. The overall ac-
curacy and th& values of EMD-based ratios are sen-
sibly the same for self and cross classifications. With
EMD-based energy bands, the performance decrease
for the cross classification. This can be explained as
follows. When test and training data are selected from
different subjects, energies at some scales (mostly
coarse scales corresponding to low frequency compo-
nents) may substantially vary affecting thus the clas-
sification performance. With energy ratios however,
since they combine the energies at different scales,
this local energy variability is less penalizing.

Accuracy %

PSD EMD PSD EMD EMD PSD EMD EMD EMD
Bands Bands Ratio Ratio New BandsBands Ratio RatioNew
Ratio Ratio

[ NI PSD-Based [ EMD-Based]

In this paper EMD is applied to rat EEG signals in
order to extract features for sleep state classification.
The results obtained from EMD-based features are
compared to those obtained from PSD-based features,
and show that EMD-based techniques are particularly
adapted to analyze non-stationary signals, such EEGs
or any other biophysical signals. Since EMD is a data-
driven technique that naturally decomposes the data
into intrinsic components, it removes the necessity of
a hazardous fixed band division. Adaptivity of EMD
also yields a more robust classification with respect to
the inter-individual variability.

In addition, as the sifting process performs locally
in time, a on-line version of the EMD algorithm was
proposed in (Rilling et al., 2003). Then, we could
use this to adapt our EMD-based classifier to contin-
uous time, with no prior segmentation of the signal
needed. This approach would permit sleep state mon-
itoring with real-time classification and detection of
transition points.
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Table 8: Cross classification results. The data from five aegsused for training and the remaining rat’s data is used for

Table 3: Self classification performances after using P&Eed spectral band energy features.

AW SWS PS € £
AW | 0.84:0.01 0.02:0.00 0.14:0.01 | 0.16£0.01 | 0.070.00
SWS | 0.02:0.00 0.98:0.00 0.06:0.00 | 0.02£0.01 | 0.04£0.01
PS | 0.20£0.01 0.0#0.00 0.79:0.01 | 0.21£0.02 | 0.42£0.01

Spc.=82.5%-0.4 Sns.=86.8%0.4 Acc.=87.5%0.4 k=0.79£0.01

Table 4: Self classification performances after using EMBeudl spectral band energy features.

AW SWS PS €0 g
AW | 0.91+0.01 0.03:0.00 0.06:0.01 | 0.09+0.01 | 0.08+0.01
SWS | 0.04+0.01 0.96:0.01 0.0@-0.00 | 0.04+0.01 | 0.06+0.01
PS | 0.22:0.02 0.0%0.01 0.7Z0.02 | 0.23+0.02 | 0.25+0.02

Spc.=87.1%0.7 Sns.=87.9%0.7 Acc.=90.4%-0.4 k=0.83+0.01

Table 5: Self classification performances after using P88l spectral energy ratios.

AW | sSws PS £ €
AW | 0.76£0.02 0.03:0.00 0.23:0.02 | 0.24-0.02 | 0.07+0.01
SWS | 0.03:0.01 0.92:0.01 0.030.00 | 0.03:0.01 | 0.03+0.00
PS | 0.16:0.02 0.08-0.01 0.84-0.02 | 0.16+0.03 | 0.53+0.02

Spc.=79.4%:-0.6 Sns.=85.4%0.8 Acc.=83.29%4-0.9 k=0.73£0.01

Table 6: Self classification performances after using EMBddl spectral energy ratios.

AW | sws PS € &
AW | 0.80£0.01 0.02-0.00 0.18:0.01 | 0.20+0.01 | 0.06+0.01
SWS | 0.03:0.01 0.96:0.00 0.02:0.00 | 0.04:0.00 | 0.04:0.01
PS | 0.12:0.02 0.03:0.00 0.88:0.02 | 0.12£0.02 | 0.46+0.02

Spc.=81.6%-0.9 Sns.=87.8%1.0 Acc.=85.8%-0.9 k=0.77+0.01

Table 7: Self classification performances after using EMBdal new ratios.

AW SWS PS E £
AW | 0.83:0.01 0.02:0.00 0.150.01 | 0.17+£0.01 | 0.05+0.01
SWS | 0.03:0.01 0.96:0.01 0.0310.00 | 0.04£0.01 | 0.04£0.01
PS | 0.11+0.02 0.0%0.00 0.82:0.02 | 0.11+0.02 | 0.414+0.02

Spc.=83.4%:-0.7 Sns.=89.2%0.9 Acc.=87.8%0.6 k=0.80£0.01

testing. The procedure repeated for all rats and the meaprwvalre provided.
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AW SWS PS Mean | Mean
Methods Spc. Sns.| Spc. Sns.| Spc. Sns.| Spc. Sns. || Acc. K
PSD-Bands| 89.7 79.2| 92.7 96 | 56.7 74.8| 79.7 83.3 || 84.0| 0.72
EMD-Bands| 91.5 80.2| 87.1 98.4| 69.5 78.7| 827 85.8 || 85.5| 0.75
PSD-Ratios| 89.5 73.6| 98.2 91.4| 475 81.8| 784 82.3 || 81.9 | 0.69
EMD-Ratios | 93.0 79.5| 96.7 95.7| 54.7 87.1| 815 87.4 85.7 | 0.76
EMD-New | 934 82.2| 96.6 95.3| 60.0 88.1| 833 88.6 || 87.4| 0.78
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