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Abstract: In this paper the optimization of EMG signals segmentation and decomposition based on wavelet represen-
tation and k-mean clustering technique is presented. It is shown that wavelet decomposition can be usefull 
in detecting particular spikes in EMG signals and the presented segmentation algorithm may be useful for 
the detection of active segments in related MUAP’s action potentials. The algorithms has been tested on the 
synthetic model signal and on real signals recorded with intramuscular multi-point electrode. The efficiency 
of EMG signal decomposition and classification with adaptive wavelet algorithm were presented.  Single 
and multiple fibers MUAP patterns were tested and identified. By applying a Debauchies  wavelet transfor-
mation and k-mean clustering algorithm to localize the action-potential source in the  presence of specific 
neuromuscular diseases like NMI neuropathy, muscular dystrophy and myasthenia gravis (MG), instead of 
many decomposition and pattern recognition algorithm, wavelets and k-mean clustering have its flexibility 
for robustly classify and localize the signal stochastic sources with a linear way, in addition to identify the 
blind source for EMG bioelectric potential. 

1 INTRODUCTION 

Electromyography (EMG) signals classification and 
processing can be used for varieties of clini-
cal/biomedical applications, spectral pattern classifi-
cation of intensity-based analysis, and modern hu-
man computer interaction. EMG signals acquired 
from muscles require advanced methods for detec-
tion, decomposition, processing, and classification. 
The resolution of a composite EMG signal into its 
significant, constituent MUAPTs requires the ability 
to detect the discharges (i.e., MUAPs) of the MUs 
significantly correlating to the composite signal and 
to correctly combine each detected MUAP with the 
MU that generated it. EMG signal decomposition 
therefore involves the two basic steps of detecting 
MUAPs and recognizing detected MUAPs. To iden-
tify the occurrences of consecutive MUAP’s poten-
tial signal a parallel electrode should be placed in the 
path of depolarization waveform, for recording such 
activities, which considered as a vital point in 
MUAP’s acquisition technique (D. Zazula, 1999). 
The basic steps of intramuscular EMG signal acqui-
sition was illustrated in fig.1 were the recording 
electrode detecting spontaneous electrical activity of 
different myofibers on the basis of three electrical 
wave propagation zones (1) innervations zone ,(2) 

depolarization zone and (3) terminal zone. These 
will accumulatively constructing the different pat-
tern of EMG signals. The definition of MUAP’s 
potential of this scheme, were the spontaneous elec-
trical activity to be recoded can be observed in real 
time synchronous EMG signal recording technique 
(Wang et. al, 1997). Adaptive signal decomposition 
technique have a principal rule in defining elementa-
ry methods for EMG signals classification and 
processing, which can be used for varieties of clini-
cal/biomedical applications, spectral pattern classifi-
cation of intensity-based development, and modern 
human computer interaction. The purpose of this 
paper is to illustrate the various methodologies and 
algorithms for EMG signal pattern classification 
based on wavelet signal decomposition to provide 
efficient and effective ways of understanding the 
signal and its physiological nature.  

2 MATERIALS AND METHODS  

EMG signal recorded using Delsys® system for 
recording surface (sEMG) and needle EMG with 
sensitivity between (0.2-10 uV). The suspected area 
of disorder is identified for EMG recording, for 
example, the biceps brachii in the upper arm. The 
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EMG is then triggered to record for a predetermined 
time after which the acquired signal is differentially 
amplified, band pass filtered, and digitized. The 
common feature for classifying intramuscular EMG 
signal is the Euclidean distance between the MUAP 
waveforms. For clinical interests, the main feature of 
EMG signal is the number of active motor unit 
(MUs), the MUAP waveforms, and the innervations 
time statistics. According to De Luca method (D. 
Zazula, 1999), the determination of the MUAP 
waveform and the number of active MUs can be 
considered as a classification problem, and for fur-
ther analysis of EMG signals (Wang et. al, 1997; 
Thompson et. al, 1996).   

 
Figure 1: Intramuscular EMG signal acquisition with 
typical MUAP action potential (Wang et. al, 1997). 

The representation of time-triggered and no overlap-
ping MUAPs produce a shimmer. MUAP shimmer 
is influenced by the time-offset of the sampled 
waveforms, local fluctuation of the baseline and 
background noise. Besides background noise and the 
effects of signal offset, white noise influences the 
classification. The classification with wavelet coef-
ficient needs the wavelet coefficient (Ff[m,n]) of 
four frequency bands (m=2, 3, 4, 5) and not below 
150 Hz. Classification performance depends also on 
distance between the class means, therefore, the best 
selection of these four frequency bands depends on 
the Fourier transform of the MUAP waveforms 
themselves. Boualem (Wang et. al, 1997) theorized 
that the time frequency representation of wavelets 
decomposition (WVD) provided high-resolution 
signal characterization in time-frequency space and 
good noise rejection performance as fig.2 illustrated 
the continuous wavelet transformation for the EMG 
signals using a Db-WT. This theory is useful for 
EMG signal classification. For purpose of classify-
ing EMG patterns, EMG electrical model is used in 
combination with wavelet decomposition by ex-
tracted and compared two types of features based on 

signal processing for the purpose of classifying 
EMG patterns. The two features were the coeffi-
cients of EMG signal the components of Fourier 
frequency spectra. The method showed better results 
while describing the EMG linear envelopes (LE) 
method (McKeown et. al, 2002). 

 
Figure 2: EMG wavelets transformation for single MUAP 
using Db WT (McKeown et. al, 2002). 

3 EMG PROCESSING METHOD 

The complexity of a detected EMG signal and the 
ease with which it can be decomposed depend on the 
type of electrode, electrode positioning, profile of 
muscle contraction, and muscle selected. The elec-
trode should be positioned so that it is close to active 
muscle fibers and detects MUAPs of maximum 
amplitude and sharpness in order to maximize the 
relative differences in the distances between the 
fibers of different MUs and the electrode surface. 
MUAPs distinct from the background noise can be 
detected in this way. The suggested procedure is to 
initially position the electrode in a minimally con-
tracting muscle to detect MUAPs of maximum am-
plitude and sharpness, and then to increase muscle 
contraction as isometrically as possible and initiate 
data acquisition once the contraction is at the desired 
level. If the decomposition system can process sig-
nals acquired during force-changing contractions, 
data acquisition should start immediately after 
needle positioning (McKeown et. al, 2002; M. J. 
McKeown, 2002). 

4 MUAPS VOLTAGE  
DETECTION 
AND RESOLUTION  

Complete EMG signal decomposition requires the 
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detection of all MUAPs generated by MUs active 
during signal acquisition. In practice, however, there 
are many MUAPs produced by MUs with no fibers 
close to the detection surface. These MUAPs are 
generally small, primarily of low-frequency content, 
and similarly shaped. Therefore, it is difficult to 
consistently assigning such MUAPs to their correct 
MUAP and it is easy to miss the small MUAPs 
when they occur in close temporal proximity to 
larger MUAPs. Consequently, it is more useful to 
only detect MUAPs that can be consistently correct-
ly assigned. MUAP detection usually involves calcu-
lating, for each sample of the composite signal ac-
quired, a statistic and comparing its value to a pre-
set threshold. Some of the signal statistics used in-
clude the raw or band pass-filtered signal amplitude 
(M. J. McKeown, 2002; Fang et. al, 1999) or va-
riance (Thompson et. al, 1996; McKeown et. al, 
2002), or a combination of both raw signal slope and 
amplitude (Thompson et. al, 1996; Jung et. al, 2001). 
When the threshold value is exceeded, a candidate 
MUAP can be defined as a fixed length section of a 
neighboring signal or a variable-length signal sec-
tion, assumed to possibly contain several significant 
MUAP contributions (Wang et. al, 1997; Thompson 
et. al, 1996). Any selected signal section may be an 
isolated MUAP, a superposition of MUAPs from 
two or more MUs, only a portion of a single MUAP, 
or a spurious noise spike. Therefore, before further 
processing, it is required that the composition of a 
detected section be determined, and properly aligned 
and represented. 
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Figure 3: Localization of MUAP’s intensity profile within 
repeated recording of single needle EMG electrode (Fang 
et. al, 1999). 

5 WAVELETS  
TRANSFORMATION 

The wavelet  transform  (WT)  of  signal  S(t)   corre 

sponds to its decomposition with respect to a family 
of function obtained by dilations and translations of 
an analyzing wavelet denoted V(t). The coefficients 
WS (a,b) deduced from this decomposition are ex-
pressed by: 

dttstsbaWS baba )()(,),( ,, ∫
∞

∞−

∗== ψψ    (1) 

where the superscript * denotes the complex conju-
gate. The parameter a and b are the scale factor and 
shift factor respectively. This transformation acts on 
the signal as a filter bank whose frequency charac-
teristics are linked to ψ(t) and to the parameter U. In 
multiresolution signal analysis (Thompson et. al, 
1996), WT may be used to decompose a signal at 
various resolutions. The details of a signal at differ-
ent resolutions generally characterize different 
physical structures. From wavelet representation, the 
exact reconstruction of the signal can be carried out. 
This makes it feasible to compute and manipulate 
data in compressed parameters via WT.  
These parameters characterize the behaviour of the 
signal and can be served as features. In our paper, 
we select wavelet coefficient with the maximum 
absolute value at each scale to be the features of 
EMG signals. These values represent in some way 
the correlation between the raw signals and the base 
vectors of the corresponding detail subspaces.  

 
Figure 4: EMG- decomposition and pattern clustering with 
adaptive wavelet / k-mean algorithm. 

6 ADAPTIVE WAVELET  
DECOMPOSITION 

The EMG is decomposed in a number of levels (dif-
ferent resolutions) of an appropriate wavelet basis. 
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The Daubechies wavelet db5 from Daubechies 
(Thompson et. al, 1996; McKeown et. al, 2002) has 
been used with 5 decomposition levels. The wavelet 
coefficients are roughly classified into two different 
classes: a burst zone where artefacts and myoelectric 
signals coexist and an inter-burst zone where only 
artefact contribution is present. By using hard 
thresholding the high-frequency components are set 
to zero. In cases where there is no artefact superim-
posed to the myoelectric signal and associated 
MUAP’s potentials, the coefficients are supposedly 
lower so they will be set to zero with higher prob-
ability. The noisy components of the wavelet de-
composition are truncated and the signal is recon-
structed from the remaining components, addition-
ally the MUAP’s mapping feature with adaptive 
wavelets reflects an accurate definition of pre and 
post-firing interval identification with related 
movement of the subjects (McKeown et. al, 2002; 
Fang et. al, 1999). 

7 ROC PERFORMANCE  
ANALYSIS 

As EMG signal inherited a vast number of noise 
interference, this will affect result of clustering and 
then need to characterize EMG sensor itself for 
calibration and buffering purpose. Receiver operat-
ing characteristics (ROC) curve, is analysis of sensor 
signals clustering were it is calculated through re-
peatable EMG recording which tend to be classified 
in a specific classification algorithm (Jung et. al, 
2001). The robustness of wavelet/k-mean algorithm 
was tested in contrast to the amplifier gain of inter-
face (Andrzej Cichocki and Shun-ichi Amari, 2003) . 
Intramuscular EMG electrode which is used in clini-
cal experiment is reusable and composed of lined 
conductive area used for increasing measurement 
stability and reduction of parasitic noise associated 
with physiological measurement session. The defini-
tion of sensitivity and selectivity with ROC analysis, 
have the following criteria for recursive data cluster-
ing and pattern classification of biomedical and 
clinical data.  

As table 1. illustrated that the average efficiency 
of classified MUAP’s potential in related EMG 
signal , the obvious maximum asymptotic properties 
ΩEMG(t) of 0.97716 and of minimum one of 
0.011208 and this reflects high contrast between the 
recorded EMG potential ,in which can be considered 
as differentiated parameters in classifying associated 
MUAP’s signal. For further investigation of this 
effect, additional analysis was applied to the classi-

fied EMG signals using the non-negative matrix 
decomposition after a k-mean clustering stage, in 
which a relevant result of the EMG classification 
shows the approximated results in relation to the 
MUAP’s intensity. A performance test was applied 
to the 9 clustered patterns, by which illustrate that, 
the same maximum and minimum asymptotic prob-
abilities for the verified EMG patterns, which in 
corresponding 25-test pattern that presented only a 3 
EMG-MUAP’s pattern with relevant high voltage 
intensity (A. J. Bell and T. J. Sejnowski, 1995), 
(Kadefors et. al, 1999). 

As observed from the performance index of 
adaptive wavelet decomposition could be noticed a 
well discriminated EMG pattern such as low firing 
contraction, mid –firing contraction , and high firing 
contraction and other elated MUAP’s biopotential 
action signals associated with muscular fibers firing 
schemes (Andrzej Cichocki and Shun-ichi Amari, 
2003), (Micera et. al, 2001).   

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
 o

f E
M

G
 e

le
ct

ro
de

Specificity of EMG pattern

 ROC curve

 
Figure 5: ROC curves analysis of 24 EMG pattern using k-
mean clustering algorithm after wavelet decomposition of 
MUAP intensity patterns. 

Table 1: ROC curve analysis of EMG signal patterns 
based on wavelet k-mean clustering technique*. 

EMG 
pattern* 

Area 
Under 
curve 

Std. 
Error 

SE 

Asymptotic 
Prob 

Ω(EMG) 

95.% 
LCL 

95.% 
UCL 

EMG1 0.23013 0.1632 0.1083 -0.08975 0.55 
EMG2 0.09751 0.29079 0.16498 -0.47243 0.66745 
EMG3 0.3714 0.08492 0.08572 0.20496 0.53785 
EMG4 0.5083 0.49786 0.97716 -0.46749 1.48409 
EMG5 0.60189 0.19039 0.48479 0.22873 0.97505 
EMG6 0.49024 0.23233 0.95367 0.03489 0.94559 
EMG7 0.12033 0.32535 0.19027 -0.51734 0.758 
EMG8 0.53122 0.19993 0.81122 0.13937 0.92307 
EMG9 0.33194 0.20502 0.31729 -0.0699 0.73377 
EMG10 0.59129 0.4909 0.75282 -0.37085 1.55342 
EMG11 0.51452 0.49979 0.96004 -0.46505 1.49409 
EMG12 0.09066 0.1331 0.01486 -0.17021 0.35152 
EMG13 0.2125 0.24776 0.16159 -0.2731 0.6981 
EMG14 0.57797 0.09307 0.42753 0.39556 0.76038 
EMG15 0.73418 0.10483 0.07323 0.52872 0.93964 
EMG16 0.28801 0.15334 0.20715 -0.01253 0.58854 
EMG17 0.48729 0.05748 0.91535 0.37463 0.59995 
EMG18 0.03942 0.19281 0.11208 -0.33849 0.41732 

*18 subject were tested in the vicinity of ROC curve analysis. 
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Figure 6: Entropy index of EMG-wavelet k-mean decom-
position algorithm for 24 EMG pattern. 

8 EVALUATION OF EMG  
SIGNAL DECOMPOSITION 
PERFORMANCE 

Verification of the accuracy of an intramuscular 
EMG signal decomposition requires the availability 
of signals for which the decomposition result is 
known and the definition of quantitative indexes that 
allow comparison of performance. Moreover, for 
completeness and to assess robustness, the perfor-
mance of a specific algorithm should be evaluated 
based on a number of signals of different complexi-
ty. The reference results were obtained by manual 
decomposition of a number of experimental signals 
by expert operators. However, different patterns may 
result when the same or different operators attempt 
to decompose the same signal twice, especially if the 
MU firing rates are irregular, the MUAPs are simi-
lar, superposition of MUAPs are frequent, and some 
MUs may be intermittently recruited (Farina et. al, 
2001; Kadefors et. al, 1999). 

In addition different wavelet algorithms may 
weigh different information, such as waveform simi-
larity or firing regularity; differently and therefore 
produce different results. Furthermore specific algo-
rithms may be more appropriate in certain cases and 
others in other cases. To assess accuracy, DeLuca 
(Andrzej Cichocki and Shun-ichi Amari, 2003) pro-
posed to detect signals (using multiple electrode 
surfaces) from the same MU at different locations 
and to compare the results of the decomposition of 
the two signals obtained. This way the probability of 
incorrectly decomposing the different signals and 
yet having the same firing pattern for an investigated 
MU is low. When the decomposition results agree 
for all the channels, the decomposition is considered 

correct. The variability degree of different wavelet 
algorithm was calibrated with each EMG–sensor 
channel with reference ROC curve as illustrated in 
Fig.5. The reference decomposition result can also 
be obtained from synthetic signals generated by a 
model. In this case the crucial issue is to describe all 
the relevant characteristics of the experimental sig-
nals. A model is the only way to test the algorithms 
with signals having selected characteristics in order 
to evaluate the sensitivity of the decomposition algo-
rithms to different EMG signal parameters. Whatev-
er the approach for the generation of reference de-
composition results, it is necessary to introduce 
indexes of performance computed from the compari-
son of the results obtained by the application of the 
algorithm under test and the reference. Fig.8 that and 
Fig.9 which illustrated the k-mean separation hyper-
plan for 24 MUAP’s signal recorded as synchro-
nized EMG recording system.  

 
Figure 7: 3D Performance index of decomposed EMG 
signal based on wavelet algorithm indicate main compo-
nents of 9 EMG extracted pattern from the 24 overall 
EMG patterns. 

 
Figure 8: k-mean clustering result for 24 MUAP’s record-
ed in needle EMG electrode, illustration of white cross and 
red block pattern in the EMG signal for corresponding 
MUAP’s clusters.  

OPTIMIZATION OF EMG-SIGNAL SOURCE CLASSIFICATION BASED ON ADAPTIVE WAVELETS K-MEAN
ALGORITHM

495



 

9 RESULTS AND DISCUSSION 

Adaptive Wavelet-decomposition for EMG signal 
illustrates optimality in clustering efficiency of 
about (p=0.0128) for spontaneous EMG vector clas-
sification. Some deviation was reported with the 
linearity of MUAP classes due to different standard 
deviation (SD), of each recorded EMG signal.  The 
signal deviation can be compensated by increasing 
the correlation index, or selecting the same order 
number of (Finite impulse response) FIR filtering 
module to attenuate the parasitic noise in the EMG 
transmission pathway.  

Testing additional wavelet/ k-mean algorithms to 
evaluate clustering efficiency presents with robust 
hyperplane classification based on other criteria such 
as EMG signal turns, spike area, integrated area, and 
phases. The tested classes that have been presented 
in fig.9 also shows maximum intensity differntiality 
performed in adaptive wavelet algorithm as concise 
effective methods to increase stability of overall 
clustering schemes. Euclidean distance have been 
computed in background algorithm as state vector 
mapping (SVM) matrices for each EMG signal with-
in  individual channel in contrary this will overload 
computation time for reiterative clustering.  

 
Figure 9: Selective MUAP’s classed that corresponding to 
maximum spike activity pattern in recorded EMG signals. 

As fig.10 illustrated the clustered coefficients of the 
MUAP’s potential signal cab be differentiated in 
accordance to the maximum intensity which in this 
case considered as discriminative characteristics for 

clinical classification system. Odd clusters as it 
shown in fig.6 that have been selected for compara-
tive purposes to localize the pre and post-firing myo-
fibers relative to subject movement. Prospective 
clustering data for MUAP’s based on k-mean clus-
tering technique that can be demonstrated in fig.7 
where  

 
Figure 10: Clustered coefficients of MUAP’s signal using 
wavelet decomposition and K-mean clustering using 18 
EMG samples. 

10 CONCLUSIONS 

The decomposition of the intramuscular EMG signal 
is a complex task that involves advanced signal 
processing and pattern recognition techniques. Their 
application covers the fields of basic physiology, 
neurology, motor control, ergonomics, and many 
others. Current available techniques and the pre-
sented wavelet- k mean allow reliable decomposi-
tion at low /medium force contraction levels during 
short and long contractions in static and dynamic 
conditions. The availability of such methods for 
automatic intramuscular EMG signal analysis allows 
the completion of experimental studies that were 
unthinkable some years ago, such as the investiga-
tion of MU activity during very long contractions 
(up to hours). Intramuscular EMG signal decomposi-
tion is, however, still carried out mainly in research 
environments while it finds limited clinical applica-
tion. This is mainly due to the limitations that EMG 
signal decomposition still has, such as the amount of 
time required to obtain clinically useful information 
(especially if high reliability on a number of condi-
tions is required), the necessity in most cases of an 
interaction with an expert operator, the applicability 
to only low-to-medium contraction levels, and the 
need of specially trained persons for the proper posi-

BIOSIGNALS 2009 - International Conference on Bio-inspired Systems and Signal Processing

496



 

tioning of the needle electrode to obtain the high-
quality signals required for reliable decomposition. 
These limitations are being addressed by current 
research efforts. The obtained result of this work and 
other related work could be contribute to optimize 
the efficiency and reliability of intramuscular EMG 
signal  
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