MULTI-CHIRP SIGNAL SEPARATION

B. Dugnol, C. Fernández, G. Galiano, J. Velasco

2009

Abstract

Assuming that an specific audio signal, such as recordings of animal sounds, may be modelled as an addition of nonlinear chirps, we use the quadratic energy distribution corresponding to the Chirplet Transform of the signal to produce estimates of the corresponding instantaneous frequencies, chirp-rates and amplitudes at each instant of the recording and design an algorithm for tracking and separating the chirp components of the signal. We demonstrate the accuracy of our algorithm applying it to some synthetic and field recorded signals.

References

  1. Boashash, B. (1992a). Estimating and interpreting the instantaneous frequency of a signal. i. fundamentals. Proceedings of the IEEE, 80(4):520-538.
  2. Boashash, B. (1992b). Estimating and interpreting the instantaneous frequency of asignal. ii. algorithms and applications. Proceedings of the IEEE, 80(4):540- 568.
  3. Dugnol, B., Fernández, C., Galiano, G., and Velasco, J. (2008). On a chirplet transform based method applied to separating and counting wolf howls. Signal Proc., 88(7):1817-1826.
  4. et al., N. E. H. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. London A, 454(1971):903-995.
  5. Kwok, H. and Jones, D. (2000). Improved instantaneous frequency estimation using an adaptive shorttime fourier transform. IEEE Trans. Signal Process., 48(10):2964-2972.
  6. Mann, S. and Haykin, S. (1991). The chirplet transform: A generalization of gabor's logon transform. In Proc. Vision Interface 1991, pages 205-212.
  7. Maragos, P., Kaiser, J. F., and Quatieri, T. F. (1993). Energy separation in signal modulations with applications to speech analysis. IEEE Trans. Speech Audio Process., 41(10):3024-3051.
  8. McAulay, R. J. and Quatieri, T. F. (1986). Speech analysis/synthesis based on a sinusoidal representation. IEEE Trans. Acoustics Speech Signal Process., 34(4):744-754.
  9. Santhanam, B. and Maragos, P. (2000). Multicomponent am-fm demodulation via periodicity-based algebraic separation and energy-based demodulation. IEEE Trans. Commun., 48(3):473-490.
  10. Stankovic, L. and Djurovic, I. (2003). Instantaneous frequency estimation by using the wigner distribution and linear interpolation. Signal Process., 83(3):483- 491.
  11. Zhao, Z., Pan, M., and Chen, Y. (2004). Instantaneous frequency estimate for non-stationary signal. In Fifth World Congress on Intelligent Control and Automation, 2004. WCICA 2004., volume 4, pages 3641- 3643.
Download


Paper Citation


in Harvard Style

Dugnol B., Fernández C., Galiano G. and Velasco J. (2009). MULTI-CHIRP SIGNAL SEPARATION . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009) ISBN 978-989-8111-65-4, pages 216-221. DOI: 10.5220/0001432802160221


in Bibtex Style

@conference{biosignals09,
author={B. Dugnol and C. Fernández and G. Galiano and J. Velasco},
title={MULTI-CHIRP SIGNAL SEPARATION},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)},
year={2009},
pages={216-221},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001432802160221},
isbn={978-989-8111-65-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)
TI - MULTI-CHIRP SIGNAL SEPARATION
SN - 978-989-8111-65-4
AU - Dugnol B.
AU - Fernández C.
AU - Galiano G.
AU - Velasco J.
PY - 2009
SP - 216
EP - 221
DO - 10.5220/0001432802160221