
Modeling Requirements Elicitation Process for Web 
Applications 

Marian Cristian Mihăescu1, Cosmin Stoica Spahiu1, Mihai Mocanu1 
and Bogdan Logofatu2 

1University of Craiova, Faculty of Automatics, Computers and Electronics 
Software Engineering Department, Bvd. Decebal, Nr. 107, 200440, Craiova, Dolj, Romania 

{mihaescu, stoica_cosmin, mocanu}@software.ucv.ro 
2University of Bucharest, CREDIS Department 

Bd. M. Kogalniceanu 36-46, Sector 5, Bucuresti, Romania 
logofatu@credis.ro 

Abstract. Requirements engineering plays a critical role within a software 
development process. Studies have revealed a lack of systematic processing of 
requirements due to high number of activities that need to be accomplished in 
this phase. There are many reasons for this situation. One of the most difficult 
tasks is to model requirements elicitation process. This is the first and one of the 
most important steps from the implications point of view  in the nest steps of 
the development process and in the quality of the obtained software. This paper 
presents a requirements elicitation technique that has been successfully used in 
the development process of a web application. The direction of improvements 
are represented by requirements traceability and their modeling during 
elicitation phase. 

Keywords. Requirements elicitation, traceability, modeling, web application. 

1 Introduction 

Ideally, software development, based on any of the well-established life cycle models 
described in [9] or [10], is linear, starts from scratch, and its phases can be (logically) 
delimited. No matter the software development model referred, distinct identifiable 
phases such as, requirements specification and analysis, architectural (overall) design, 
component design, implementation, component integration, validation and 
verification, code maintenance and evolution, can be extracted. If and how much are 
they really separated and easy to reveal, this is a difficult matter related to the specific 
and goals of the software development process applied.  

In practice, software development must deal with the strong tendency to overlap 
development phases, due perhaps to social issues, and problem domain traditional 
“ways of doing things”, little considered in the past within the discipline of software 
engineering. The facts are clear: software developers make mistakes, clients change 
their requirements while the software product is being developed, errors in operating 
software cannot be avoided a.s.o. The Winburg mini-case study [10] proved all these 
issues in the most convincing manner. From the implementation of the first version of 

Mihaescu M., Stoica C., Mocanu M. and Logofatu B.
Modeling Requirements Elicitation Process for Web Applications.
DOI: 10.5220/0004464900640072
In Proceedings of the 2nd International Workshop on Enterprise Systems and Technology (I-WEST 2008), pages 64-72
ISBN: 978-989-8111-50-0
Copyright c© 2008 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



a software product, continuing to the episode when a fault is found (i.e. due to a slow 
product operation), and a new design has to be adopted (i.e. using a faster algorithm), 
or an episode when the requirements change (i.e. because the accuracy has to be 
increased), the only thing that is “stable” and could be easily noted is a recurrence of 
problems.  

Requirements engineering, based on requirements specification, elicitation and 
analysis, is not only the first, but also one of the most critical, knowledge-intensive 
activities of software development [1] The most basic question in requirements 
engineering is how to find out what users really need. Research has shown that in 
general many large projects fail because of inadequate requirements and specifically 
that poor execution of elicitation will almost guarantee that the final project is a 
complete failure. Since project failures are so rampant [2], it is quite likely that 
improving how the industry performs elicitation could have a dramatic effect on the 
success record of the industry [3]. Improving requirements elicitation requires us to 
understand it first. Although many papers have been written to define elicitation, or to 
prescribe a specific technique to perform during elicitation, nobody has defined yet a 
unified model of the elicitation process that emphasizes the role of knowledge. 

The motivations of this paper can be seen in our effort to reach such a model. We’d 
like to make the necessary steps in establishing and describing (documenting) the 
requirements engineering phase, with an emphasis put on requirements elicitation, 
based on our experience in large software projects. Furthermore, we want to illustrate 
how we assessed the correctness of all these steps, based on a realistic software 
product development. In this paper, our specific aim is to discuss all the 
improvements regarding requirements elicitation that have been tested under real 
circumstances when developing an e-Learning platform called Tesys [4]. 

The organization of the rest of the paper is as follows. First, the paper presents an 
overview of the requirements engineering process (involving requirements 
specification, elicitation and analysis). Then it presents briefly the Tesys application 
platform. Next, it discusses the proposed improvements to requirements elicitation, 
regarding traceability and modeling of requirements in the elicitation process, and the 
benefits regarding verification and validation The paper concludes with a discussion 
of the proposed solutions and makes recommendations on how requirements 
elicitation could proceed. 

2 Requirements Specification, Elicitation and Analysis 

The purpose of the requirements engineering process, which involves requirements 
definition (specification), elicitation and analysis is to document the requirements for 
the next phases to be implemented during the software process according to the 
specific aims of the project. From a social point of view, this should be a collaborative 
process involving domain expertise from the client and software expertise from the 
contractor part. The key concept behind this step consists of the separation of 
application requirements from business/process requirements, which later on permits 
to link these to design objects. The up-front separation of application from business 
requirements really helps to clarify and focus on each aspect of the user's 

65



requirements, or even helps to determine who should be asking for information about 
the requirements. 

The requirements analysis methodology should cover the entire cycle, from the 
initial requirements-gathering phase through the separation phase where requirements 
and non-requirements are set apart. The overall steps required to define an approved 
set of requirements, and reach closure of the glossary definitions, should be: 
1. Collection of ‘raw’ requirements – This step may start with the domain area 

experts (in this case the physicians) to write a few pages of text describing the 
problem to be solved. All relevant sources of possible requirements must be 
collected. Multiple sources of domain knowledge must be found, to allow the 
verification of sources. Specialized software tools, such as EasyRM Requirement 
Management Suite (http://www.easy-rm.com/) or AnalystPro 
(http://www.analysttool.com/) could be used from this point onwards. 

2. Refining of requirements - The objective of this step is to identify the key business 
concepts, and their properties. Each requirement must be processed in turn for:  

− Exclusion for all the following processing steps of any requirements, which are 
outside the scope of the mission statement,  

− Decomposition into sub-requirements, containing only one concept.  
− Naming convention – making sure that the name of the requirement reflects the 

requirement content. 
− Redundancies elimination and resolving of duplicate requirements.  
− Adjustment of ‘priority’ (initially all requirements will have the same low 

priority) and ‘status’. Once all requirements have at least the status of ‘Approved’ 
then the requirement work has been completed to the point where the requirement 
set can be passed to the modelers of both teams (client team and implementation 
team) – possibly to act from here as a ‘joint’ team, for the creation of the 
conceptual models. 

3. Establishing of reference sources for requirements – Many requirements are 
directly derived from mission papers, and other conceptual documents. A 
document manager tool can allow links to be established to these documents. 

4. Creation of a document reference (the so-called ‘requirements document’), in a 
bottom-up manner, with a short description giving an overview of what the other 
documents contain, and a location field used to point to the actual document – 
this can be filled with a path in the file system, or an URL. As the number of 
documents may increase, it is essential to classify these in a hierarchical manner, 
into folders required for specific subject areas. 

5. Pass the ‘requirements document’ to system modelers, to check with the 
conceptual model they created in parallel with steps 3 and 4. 

The end product of this succession of steps should be a requirements document and 
a correct system conceptual model which should allow the successful development of 
a software framework and possibly an open source architecture for the software 
product. 

66



3 Tesys Application Platform 

An e-Learning platform that represents a collaborative environment for students, 
professors, secretaries and administrators has been designed and developed. Secretary 
users manage sections, professors, disciplines and students. The secretaries have also 
the task to set up the structure of study years for all sections. The main task of a 
professor is to manage the assigned disciplines. The professor sets up chapters for 
each assigned discipline by specifying the name and the course document and man-
ages test and exam questions for each chapter. The platform offers students the 
possibility to download course materials, take tests and exams and communicate with 
other involved parties like professors and secretaries.   

The Tesys platform has initially been designed and implemented only with core 
functionalities that allowed involved people (learners, course managers, secretaries) to 
collaborate in good conditions. The requirements engineering followed an ad-hoc 
process that informally followed the classical life-cycle: elicitation, modeling, 
analysis, validation, verification and management. The involved parties were 
represented by three parties: development team, beneficiaries and end-users. Firstly, a 
prototype that implemented main functionalities has been developed. The 
requirements were elicited and negotiated between development team and 
beneficiary. After prototype has been deployed the e-Learning system has been 
populated with data and users. The beneficiary was the one that kept a close relation 
with end-users and closely looked the effectiveness of the platform. 

The e-learning platform consists of a framework on which a web application may 
be developed. On server side we choose only open source software that may run on 
almost all platforms. To achieve this goal Java related technologies were employed. 

The model is represented by DBMS (Data Base Management System) that in our 
case is represented by MySQL [11]. The controller, which represents the business 
logic of the platform is Java based, being build around Java Servlet Technology [12]. 
As Servlet container Apache Tomcat 5.0 [13] is used. 

This architecture of the platform allows development of the e-learning applica-tion 
using MVC architecture. The view tier is template based, WebMacro [14] tech-nology 
being used. WebMacro is also a Java based technology the link between view and 
controller being done at context level. The separation between business logic and 
view has great advantages against having them together in the same tier. This de-
coupling makes development process more productive and safer. One of the biggest 
advantages of not having business logic and view together is the modularity that 
avoids problems in application testing and error checking. 

In the figure 2 there are presented the main software components from the MVC 
point of view. MainServlet, Action, Manager, Bean, Helper and all Java classes 
represent the Controller. The Model is represented by the DBMS itself while the 
Webmacro templates represent the View. The model is built without any knowledge 
about views and controllers. 

The business logic of the application uses Java classes. As it can be seen in figure 
2, there are four levels of dependency between classes. The levels are: servlets, ac-
tions, managers and beans. Servlets level has so far two of them: MainServlet and 
DownloadServlet.  

67



The MainServlet first job first job is to initialize application’s parameters. For this 
purpose the init() method is used. Firstly, there is initialized a pool of database 
connections. Helper classes like ConnectionPool or ExecuteQuery based on the in-
formation from database.properties configuration file conduct this process. In the 
database configuration file there are set the address of MySQL server and the user-
name and password of MySQL user that is used.  

 

 
Fig. 1. Software architecture of the platform. 

 
Fig. 2. Software components of the application from MVC point of view. 

Another important part of software architecture regarding software development 
process is unit testing. For this purpose JUnit [15] is used. Unit tests are created for 
running the critical code like creating of a test, computing the result, saving the 
questions from the test, saving the test result, computing time for test. To accomplish 
this regressive testing is used. For each chain of actions a scenario is defined. If the 
computed result matches the expected result it means the test passed. Otherwise, it 
means something is wrong with the code because it does not behave like it supposed 
to. Whenever a method is added, test cases are written trying to have a full coverage 
of the code. There are created batch files that build the code experimentally and 
continuously and run all the tests. Similarly, a scheduled job runs the nightly build of 
all the code from the staging area and runs all tests.  

68



The platform is currently in use on Windows 2003 Server machine. This platform 
has three sections and at each section four disciplines. Twelve professors are defined 
and more than 650 students. At all disciplines there are edited almost 2500 questions. 
In the first month of usage almost 500 tests were taken. In the near future, the 
expected number of students may be close to 1000.    

4 Improvements in Requirements Elicitation 

We present improvements regarding two issues: traceability and modeling of 
requirements in the elicitation process.  

A requirement is defined as an object with his own status and life cycle. The status 
is determined by the set of values of fields. We define the following set of fields: 

Id – uniquely identifies the requirement; 
Role – defines the role to which the requirement addresses; 
Activity – defines the activity to which the requirement addresses; 
Status – there were defined three states: INWORK, SOLVED and VERIFIED; 
Solver – person responsible for implementing the requirement; 
Memo – text that represents a short summary about the requirement. 
Date – represents the date when the action has been executed on the requirement 
This structure ensures the traceability of the requirement.  

• The improvements in requirements elicitation is analyzed from the following 
points of view [6]:Time and Effort allocation: how requirements elicitation is 
distributed over time 

• Artifacts produced by requirements elicitation: various deliverables like data, 
effects, results, documents, etc, resulted from requirements elicitation 
process usage. 

• Requirements elicitation Activities: what activities produce artifacts 
including the requirements specification. 

• Disciplines and automation: specify major areas of concern that can 
influence 

• Requirements elicitation, technology and management tools 
• Roles: Various roles in RE and differences between them. 

 
The process of modeling the requirements is described in figure1. 
The requirements phase has its own life cycle. The specialty literature proves that 

is difficult to give a general description of requirements activities. In the 80’s Krasner 
identified five phases: need identification and problem analysis; requirements 
determination; requirements specification; requirements fulfillment; and requirements 
change management. Another approach presented by Jarke and Pohl in 1994 propose 
a three-phase cycle of elicitation, expression and validation.  

It seems that different approaches use different labels for the requirements 
activities and this brings about one of the critical problems in requirements 
engineering: lack of a systematic process. The main problem is that requirements 
Engineers involves people that communicate with other people. The communication 
is hard due to the lack of a common scientific language and knowledge. The 

69



misunderstandings from this kind of communication are translated directly in wrong 
application development. 

 

 
Fig. 3. The process of modeling requirements. 

The existing problems for requirements elicitation have been grouped into three  
categories as follows [8]: 

•  problems of scope (the system edge capabilities are not well defined, 
unnecessary design information may be given); 
•  problems of understanding (users don’t know exactly what they need and don’t 
know the compter limitations, the users frequently skip “obvious” information, 
there can be conflicts views  from different users 
•  requirements are often vague and untestable (problems of volatility, 
requirements evolve over time) 
Although this area was not researched enough, there are a series of techniques 

developed to solve these problems. Traditional methods include brainstorming, 
interviewing and  use of questionnaires[8]. The latests methods for requirements 
engineering include techniques for information gathering, modeling and 
representation of information. 

Requirements engineering relies fundamentally on verification and validation as a 
way of achieving quality by getting rid of errors, and as a way of identifying 
requirements.  

One benefit from structuring requirements is the use of automation for verification 
of requirements. The requirements may be inspected such that verification is 
performed by using well established checklists. The checklists are applied to the 
requirements by a well established process.  

Modeling requirements in a custom structured form provides the opportunity for 
analyzing them. Analysis techniques that have been investigated in requirements 
engineering include requirements animation, automated reasoning, consistency, and a 
variety of techniques for validation and verification that are further discussed. 

70



Validation is the process of establishing that the requirements and derived 
structures provide an common and accurate base for involved persons (developers and 
beneficiaries). Explicitly describing the requirements is a necessary precondition not 
only for validating requirements, but also for resolving conflicts between developers 
and beneficiary. 

Difficulty of requirements validation comes from many sources. One reason is the 
problem itself is philosophical in nature. This makes the formalizing process hard to 
define. On the other hand, there is a big difficulty in reaching agreement among 
involved persons dew to their conflicting goals. The solution to this problem is 
requirements negotiation. These will attempt to resolve conflicts between involved 
parties without necessarily weakening satisfaction of each person’s goals.  

Structuring requirements brings a big advantage for validation and verification in 
case of changing requirements. As all successful systems, our e-Learning platform 
evolves. This means that when a functionality changes because of beneficiary and 
developer negotiated such a change, this transition needs to be done with minimum of 
effort. For this, requirements have to be traceable and this feature is accomplished by 
proposed structuring.  

5 Conclusions 

In this paper, there were presented the main challenges in requirements engineering 
and especially requirements elicitation. There were presented solutions regarding 
traceability and modeling of requirements during elicitation phase. 

Proposed solutions were tested during Tesys e-Learning platform software 
development process. It has been also presented the initial requirements engineering 
process that was used when the prototype has been developed as compared to the 
improved one. 

Proposed solutions come to support a big effort of software globalization  
development process since the application is rapidly growing in size. More than this, 
the business logic complexity, degree of heterogeneity among assets is increasing.  

Other benefit is that there may be created pools of requirements based on 
functionality at role level and even with a higher granularity at activity level. This will 
have a big impact on future decisions regarding what parts of software to be out-
sourced in the effort of globalization. 

From requirements point of view there were presented three improvements. 
Finally, there presented the benefits brought by our structuring to verification and 
validation processes. The proposed structure ensures traceability of requirements, 
such that as the system evolves the requirements are still properly managed.  

References 

1. Gottesdeiner, E.: Requirements by Collaboration, Addison-Wesley, (2002)  
2. Standish Group, The Chaos Report, www.standishgroup.com, (1995) 
3. Hofmann, H., and F. Lehner: Requirements Engineering as a Success Factor in Software 

Projects, IEEE Software, 18, 4 (2001) 

71



4. Burdescu, D.D., Mihăescu, M.C.: Tesys: e-Learning Application Built on a Web Platform, 
Proceedings of International Joint Conference on e-Business and Tele-communications, 
Setubal, Portugal (2006) 

5. Ann M. Hickey, Alan M. Davis, "Requirements Elicitation and Elicitation Technique 
Selection: A Model for Two Knowledge-Intensive Software Development Processes," 
hicss, p. 96a, 36th Annual Hawaii International Conference on System Sciences 
(HICSS'03) - Track 3, 2003 

6. Bhavani Palyagar, Frank Moisiadis, "Validating Requirements Engineering Process 
Improvements - A Case Study," rev, p. 9, First International Workshop on Requirements 
Engineering Visualization (REV'06 - RE'06 Workshop), 2006 

7. Daniela E. Herlea Damian, “Challenges in Requirements Engineering”, Requirements E, 
Springer, Springer, 2003, vol. 8, no.3, pp. 149-160  

8. Michael G. Christel , Kyo C. Kang, “Issues in Requirements Elicitation”, Technical Report, 
1992 

9. Sommerville I., Software Engineering, 7th Ed., Pearson –Addison Wesley, 2004 
10. Schach S.R., Object-Oriented and Classical Software Engineering, 6th Ed., McGraw Hill, 

2006 
11. Randy Jay Yarger, George Reese, Tim King, “Managing & Using MySQL, Second Edi-

tion”, O’Reilly, 2002. 
12. Jason Hunter, “Java Servlet Programming, 2nd Edition”, O’Reilly, 2001. 
13. Chanoch Wiggers, “Professional Apache Tomcat”, Wiley Publishing, 2003. 
14. Faulk, S. “Software Requirements: A Tutorial, Software Engineering”, Los Alamitos, CA: 

IEEE Computer Society Press, 1996. 
15. A. Sutcliffe, S. Fickas, and M. M. Sohlberg. PC-RE a method for personal and context 

requirements engineering with some experience. Req. Eng. J., 11(3):1–17, 2006.  

72


