
On the Design of Context-Aware Applications

Boris Shishkov and Marten van Sinderen

University of Twente, Department of Computer Science, Enschede, The Netherlands
{b.b.shishkov, m.j.vansinderen}@ewi.utwente.nl

Abstract. Ignoring the dynamic context of users may lead to suboptimal
applications. Hence, context-aware applications have emerged, that are aware
of the end-user context situation (for example, “user is at home”, “user is
travelling”), and provide the desirable services corresponding to the situation at
hand. Developing context-aware applications is not a trivial task nevertheless
and the following related challenges have been identified: (i) Properly deciding
what physical context to ‘sense’ and what high-level context information to
pass to an application, and bridging the gap between raw context data and high-
level context information; (ii) Deciding which end-user context situations to
consider and which to ignore; (iii) Modeling context-aware application behavior
including ‘switching’ between alternative application behaviors. In this paper,
we have furthered related work on context-aware application design, by
explicitly discussing each of the mentioned interrelated challenges and
proposing corresponding solution directions, supported by small-scale
illustrative examples. It is expected that this contribution would usefully
support the current efforts to improve context-aware application development.

Keywords. Application development; Context-Awareness; Behavior modeling.

1 Introduction

Traditional application development methods do not consider the context of
individual users of the application under design, assuming instead that end-users
would have common requirements independent of their context. This may be a valid
assumption for applications running on and accessed at desktop computers, but would
be less appropriate for applications whose services are delivered via mobile devices
[1, 9]. Ignoring the dynamic context of users may lead to suboptimal applications, at
least for a subset of the context situations the end-user may find him/herself in.
Therefore, especially driven by the successful uptake of mobile telephony and
wireless communication, a new strand of applications has emerged, referred to as
context-aware applications [12]. Such applications are, to a greater or lesser extent,
aware of the end-user context situation (for example, “user is at home”, “user is
travelling”) and provide the desirable services corresponding to the situation at hand.
This quality points also to another related characteristic, namely that context-aware
applications must be able to capture or be informed about information on the context
of end-users, preferably without effort and conscious acts from the user part.

Shishkov B. and van Sinderen M.
On the Design of Context-Aware Applications.
DOI: 10.5220/0004464600210034
In Proceedings of the 2nd International Workshop on Enterprise Systems and Technology (I-WEST 2008), pages 21-34
ISBN: 978-989-8111-50-0
Copyright c© 2008 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Developing context-aware applications is not a trivial task nevertheless and the
following related challenges have been identified: (i) Properly deciding what physical
context to ‘sense’ and what high-level context information to pass to an application,
and bridging the gap between raw context data and high-level context information;
(ii) Deciding which end-user context situations to consider and which to ignore; (iii)
Modeling context-aware application behavior including ‘switching’ between
alternative behaviors.

Inspired by the mentioned challenges, we have furthered a related work on context-
aware application design [12], by explicitly discussing each of these interrelated
challenges and proposing corresponding solution directions, supported by small-scale
illustrative examples. It is expected that this contribution would usefully support the
current efforts to improve context-aware application development.

The outline of the remaining of this paper is as follows: Section 2 further motivates
the actuality of context-awareness as a desirable application quality. Section 3
provides relevant background information to be used as a basis for proposing
improvements. Section 4, Section 5, and Section 6 address in more detail the
challenges mentioned above, respectively. Finally, Section 7 presents our conclusions.

2 Motivation for Context-Awareness

The basic assumption underlying the development of context-aware applications is
that end-user needs are not static, however partially dependent on the particular
situation the end-user finds him/herself in. For example, depending on his/her current
location, time, activity, social environment, environmental properties, or
physiological properties, the end-user may have different interests, preferences, or
needs with respect to the services that can be provided by applications.

Context-aware applications are therefore primarily motivated by their potential to
increase user-perceived effectiveness, i.e. to provide services that better suit the needs
of the end-user, by taking account of the user situation. We refer to the collection of
parameters that determine the situation of an end-user, and which are relevant for the
application in pursue of user-perceived effectiveness, as end-user context, or context
for short, in accordance to definitions found in literature [4].

Context-awareness implies that information on the end-user context must be
captured, and preferably so without conscious or active involvement of the end-user.
Although in principle the end-user could also provide context information by directly
interacting with the application, one can assume that in practice this would be too
cumbersome if not impossible; it would require deep expertise to know the relevant
context parameters and how these are correctly defined, and furthermore be very time
consuming and error-prone to provide the parameter specifications as manual input.

Context-aware applications can be particularly effective if the end-user is mobile
and uses a personal handheld device for the delivery of services. The mobile case is
characterized by dynamic context situations often dominated by changing location
(however not necessarily restricted to this). Different locations may imply different
social environments and different network access options, which offer opportunities
for the provision of adaptive or value-added services based on context sensitivity.
Especially in the mobile case, context changes are continuous, and a context-aware

22

application may exploit this by providing near real-time context-based adaptation
during a service delivery session with its end-user. The adaptation is ‘near real-time’
because context information is an approximation (not exact representation) of the
real-life context and thus there may be a time delay.

Through context-awareness, applications can be pro-active with respect to service
delivery, in addition to being just re-active, by detecting certain context situations that
require or invite the delivery of useful services which are then initiated by the
application instead of by a user request. Otherwise said, traditional applications
provide service in reaction to user requests (re-active), whereas context-aware
applications have also the possibility of initiating a service when a particular context
situation is detected, without user input (pro-active).

Although context-aware applications have received much attention within the
research community, they have not been fully successful so far from a business point
of view. This situation may change rapidly however, due to the observed growing
power and reduced prices of mobile devices, sensors, and wireless networks, and due
to the introduction of new marketing strategies and service delivery models [6,5].

In summary, context-awareness concerns the possibility of delivering effective
personalized services to the end-user, taking into account his/her particular situation
or context. Technological advances enable better and richer context-awareness,
beyond mere location-sensitivity. Hence, service delivery models, specifically those
targeting the mobile market, would allow companies to offer the added value in more
attractive ways to the end-user.

Concerning the development and introduction of context-aware applications, as it
has been mentioned already, this is not a trivial task. Efficiency and productivity
would greatly benefit from an architecturally well-founded context infrastructure and
design framework [17, 16, 3].

3 Architectural Implications and Design Considerations

In this section, we consider essential architectural/design issues concerning context-
aware applications, and we also identify and briefly outline (on this basis) three
important related interconnected challenges (to be elaborated in the following
sections).

3.1 Architectural Implications

Context-aware applications acquire knowledge on context and exploit this knowledge
to provide the best possible service. As already mentioned, the particular focus in this
work concerns the end-user context, i.e. the situation of a person who is the potential
user of services offered by an application. Examples of end-user context are the
location of the user, the user's activity, the availability of the user, and the user's
access to certain devices or facilities. The assumption we make is that the end-user is
in different contexts over time, and as a consequence (s)he has changing preferences
or needs with respect to services.

23

A schematic set-up for a context-aware application is depicted in Fig. 1. Here, the
application is informed by sensors of the context (or of context changes), where the
sensing is done as unobtrusively (and invisibly) for the end-user as possible. Sensors
sample the user's environment and produce (primitive) context information, which is
an approximation of the actual context, suitable for computer interpretation and
processing. Higher level context information may be derived through inference and
aggregation (using input from multiple sensors) before it is presented to applications
which in turn can decide on the current context of the end-user and the corresponding
service(s) that must be offered.

context management

user within
context

sensor

service
delivery

context-
aware

application

Fig. 1. Schematic representation of a context-aware application.

The design, implementation, deployment, and operation of context-aware applications
have many interesting concerns, including:

 social/economical: how to determine useful context-aware services, where
useful can be defined in terms of functional and monetary value?
 methodological: how to determine and model the context of the end-user that

is relevant to the application; how to relate the context to the service of the
application and how to model this service; how to design the application such that
the service is correctly implemented?
 technical: how to represent context in the technical domain; how to manage

context information such that it is useful to the application; how to use context
information in the provisioning of context-aware services?

Addressing the last two concerns (especially the last one) starts with considering
the possible architectures and in our view, two principle architectures could be proper:

 Context-aware Selection: end-user request(s) and end-user related context
information are used to discover a matching service (or service composition).
Discovery is supported by a repository of context-enhanced service descriptions. A
context-enhanced service description not only specifies the functional properties
(goals, interactions, input, output) and non-functional properties (performance,
security, availability), but also the context properties of the service. Context
properties indicate what context situations the service is targeting. For example, a
service could provide information which is region-specific (such as a sightseeing
tour), and therefore the context properties could indicate the relevance for a
particular geographical area.
 Context-aware Execution: after the end-user request(s) has been processed

and a matching service(s) has been found (possibly in the same way as described

24

above), the service delivery itself would adapt to changing context during the
service session with the end-user. When the context of the end-user changes in a
relevant (to the application) way, the service provided is adapted to the situation at
hand. For example, the user may move from one location to another while using a
service that offers information on objects of interest which are close-by (such as
historic buildings within a radius of five kilometres, for example).

In both architectures, a new role is introduced, namely the role of context provider.
A context provider is an information service provider where the information is
context information. A context provider captures raw context data and/or processes
context information with the purpose of producing richer context information which is
of (commercial) interest. Interested parties could be other context providers or
application providers. Further, a context-ware application obviously requires an
adaptive service provisioning component and a context information provisioning
component.

3.2 Design Considerations

Our design approach is a partial refinement of an existing approach [14] that concerns
a general design life cycle, comprising, amongst others:

 Business Modeling: during this phase, the end-user is considered in relation
to processes that either support him/her directly or the goal(s) of related
business(es). These processes have to be identified, modeled and analyzed with
respect to their ability to (collectively) achieve the stated goals. A model of these
processes and their relationships is called a business model.
 Application Modeling: during this phase, the attention is shifted from the

business to the IT domain. The purpose is to derive a model of the application,
which can be used as a blueprint for the software implementation based on a target
technological platform. A model of the application, whether as an integrated whole
or as a composition of application components, is called an application model.
Business models and application models should certainly be aligned, in order to
achieve that the application properly contributes to the realization of the
business/user goals. As a starting point for achieving proper alignment, one could
delineate in the final business model which (parts of) processes are subject to
automation (i.e., are considered for replacement by software applications). The
most abstract representation of the delineated behavior would be a service
specification of the application (as an integrated whole), which can be considered
as the initial application model.
 Requirements Elicitation: both the business model and the application model

have to meet certain requirements, which are captured and made explicit during the
phase called requirements elicitation. Application requirements can be seen as a
refinement of part of the business requirements, as a consequence of the
proposition that the initial application model can be derived considering (parts of)
the business processes (within the final business model), especially those processes
selected for automation.
 Context Elicitation: an important part of the design of a context-aware

application is the process of finding out the relevant end-user context from the

25

application point of view; we will refer to this phase as context elicitation. End-
user context is relevant to the application if a context change would also change the
preferences or needs of the end-user, regarding the service of the application.
Context elicitation can therefore be seen also as the process of determining an end-
user context state space, where each context state corresponds to an alternative
desirable service behavior. Since relevant end-user context potentially has many
attributes (location, activity, availability, and so on), a context state can relate to a
complex end-user situation, composed of (statements on) several context attributes.
Moreover, context elicitation relates to requirements elicitation in the sense that
each context state is associated with requirements (i.e., preferences and needs of
the end-user) on desirable user behavior. Context elicitation can best be done in the
final phase of business modeling and the initial phase of application modeling,
when the role and responsibility of the end-user and the role and responsibility of
the application in their respective environments are considered.

Fig. 2 depicts these different phases and activities.

Business
modeling

Application
modeling

refine

Business
requirements

Application
requirements

refine

Context
requirements

constrain constrain

Fig. 2. Application design life cycle.

Following [12], we assume that an end-user context space can be defined and that
each context state within this space corresponds to an alternative application service
behavior. In other words, the application service consists of several sub-behaviors or
variations of some basic behavior, each corresponding to a different context state.
Any service behavior model would have to express the context state dependent
transitions from one sub-behavior (or behavior variation) to another one.

3.3 Challenges

As mentioned already, developing context-aware applications is not a trivial task and
the following related challenges have been identified:

 Properly deciding what to ‘sense’ and how to interpret it in adapting
application behavior can be problematic since the interpreted sensed information
must be a valid indication for a change in the situation of the end-user and it is not
always trivial to know how context information is to correspond to a user situation.

26

 Deciding which end-user context situations to consider and which to ignore is
challenging because there may be tens or even hundreds of possible end-user
situations, with only several of them with high probability to occur, and therefore
considering the others at design time is not sensible with respect to adequate
resource expenditure.
 Modeling the application behavior including the ‘switching’ between

alternative desirable application behaviors can be complicated because alternative
behaviors are behaviors themselves which also are to be considered in an
integrated way, allowing for modeling the ‘switching’ between them, driven
possibly by rules.

In the following sections, we will address explicitly each of these challenges.

4 Deriving Context Information

An adequate decision about what should be ‘sensed’ and how it is to be interpreted,
concerns the extraction of context information from raw data, which relates broadly to
context reasoning [2].

Context reasoning is concerned with inferring context information from raw sensor
data and deriving higher-level context information from lower-level context
information. As for the extraction of context information from raw data, related
algorithms are needed to support it, and two main concerns are to be taken into
account:

 specific target applications, e.g. in domains such as healthcare or finance,
requiring the output of the algorithms;
 the availability of sensors providing input to the algorithms.

Current standard mobile devices can already operate as sensors, e.g. they can
gather GPS info, WiFi info, cellular network info, Bluetooth info, and voice call info.
In addition, dedicated sensors (that for example measure vital signs) can be integrated
with existing mobile networked devices. Next to that, future standard mobile devices
may even include other types of sensors, e.g. measuring temperature.

Hence, it is considered crucial developing efficient context reasoning algorithms,
by investigating whether it is possible to derive certain specific context information
from certain specific sensor information. In order to adequately refine such
algorithms, additional restrictions would need to be taken into account:

 restrictions concerning the (specific) processing environments of mobile
devices;
 restrictions on memory usage, processing power, battery consumption,

wireless network usage;
 restrictions that concern real-time versus delayed availability of extracted

context.

In order to develop adequate algorithms that extract context from raw sensor data,
it is thus important to appropriately consider gathering raw sensor data which is
augmented with user input. Concerning the sensor data, it should be pre-processed
and filtered, in order to be properly structured as input for the context reasoning

27

algorithms which in turn would be expected to automatically yield the desired output.
The (delivered) context information must be of certain (minimal) quality in order to
be useful; otherwise said, certain Quality-of-Context levels should be maintained.

Finally, some issues that have more indirect impact, need also to be taken into
account: (i) The delivered context information would have to be often applied in real-
time environments where failures, performance requirements, available interfaces,
and operational environments are to be taken into careful consideration; (ii) In order
new applications to be enabled, it is important to investigate how the algorithms could
be integrated in the infrastructure for context awareness.

5 Occurrence of Context Situations

Reasoning concerning context should point to the different situations the end-user
may appear to be (situations that are characterized by corresponding context
information. Often it is worthwhile considering the occurrence probabilities of these
situations since, as mentioned already, usually only several (out of more) end-user
situations are of high probability to actually occur. We call such an investigation
situation analysis.

As studied in [12], it is helpful to support such an analysis by means of ‘pragmatic’
decisions (for instance: to ignore end-user situations which usually do not occur,
although they might occur with some (certainly small) probability). Such subjective
decisions should however be rooted in more objective studies that justify the
decision(s) taken. In our view, a possible way of approaching this is through random
variables. Exploring their probabilities allows one to apply statistical analysis,
including hypotheses testing and parameters estimation [7].

Considering just possible outcomes is sometimes not enough in approaching a
phenomenon; one might need to refer to an outcome in general. This is possible
through a random variable, if the occurrence probability of the outcomes is studied (a
random variable is a function that associates a unique numerical value with every
outcome of an experiment).

An experimental data bank could be built through observations. Then, by applying
statistical analysis, the development team would get the right insight on: (i) which
end-user situation to be defined as the ‘default’ situation (the situation that points to
the ‘default’ application behavior); (ii) which of the other situations are to be put ‘for
consideration’; (iii) which (obviously the rest) should be ignored. This is illustrated in
Fig. 3 (where n should be certainly equal to m+p+1):

28

DS

STATISTICAL
ANALYSIS

S1 S2

… Sn

… SC1
SC2

SCm

… SI1
SI2

SIp

Legend:

S: Situation
DS: Default situation
SC: Situation for consideration
SI: Situation to be ignored

Fig. 3. Applying statistical analysis.

In a healthcare-related example, considered in [12], a hospital could be viewed as
an end-user and there are exactly two possible end-user situations or states
(considered as possible outcomes), namely: ‘not too busy’ (some medical doctors are
immediately available to provide help) and ‘very busy’ (all medical doctors are
occupied or have scheduled appointments within half an hour, for example). We
consider the random variable Y with respect to these outcomes. Y would be a discrete
random variable [7] since it may take on only a countable number of distinct values
(in our case two). Provided the number of possible distinct values is exactly two, we
have the case of a priori probabilities of each of the alternative outcomes (this means
that one of these probabilities can be calculated by deducting the other one from 1).

Only for the purpose of exemplifying how statistical analysis (applied to
information that has been collected through observations) could be of use for the
application designer, we take the probabilities from the mentioned example: the a
priori probability of the first of the mentioned possible outcomes (“not too busy”) is
0.9 and the a priori probability of the second alternative outcome (“very busy”) is
therefore 0.1.

Knowing the occurrence probability of each outcome helps in deciding (in this
particular example) which to be the ‘default’ desirable application behavior (the other
one – that points to the other alternative outcome – would be the alternative behavior).
It would be of course sensible considering the application behavior that corresponds
to the first possible outcome as the ‘default’ behavior.

Once the designer has grouped the possible end-user situations, as suggested by
Fig. 3 (only a ‘default’ and ‘alternative’ situations to be considered in the example), it
is important making sure that the application is capable of ‘sensing’ the end-user
situations. The proposed way of solving this is through observation of the values of
appropriate parameters. If there are n parameters relevant to a scenario, then each of
the parameters would have certain possible values. Then each value combination
would point to a particular end-user situation.

In the example, we might distinguish two parameters (p1 and p2) and five
corresponding values, as follows:

29

 p1 is about the ratio between the number of patients and the number of
medical doctors at the particular moment, and is with just three possible values: v11
(the number is less than 1), v12 (it is exactly 1), and v13 (it is more than 1)
 p2 concerns the particular moment – normal (the hospital is supposed to

function as usual during working hours) or extreme (the hospital can rely on
limited (human) resources, as during night-time, for example), and has just two
possible values, respectively for normal and extreme, namely v21 and v22.

There are six possible value (p1,p2) combinations, namely v11.v21, v11.v22, v12.v21,
v12.v22, v13.v21 and v13.v22. Driven by some additional domain analysis, omitted here
for brevity, we determine the last combination only as validly corresponding to the
0.1-probability alternative (the ‘Second’ alternative), and thus all the rest,
corresponding to the 0.9-probability alternative (the ‘First’ alternative), as depicted in
Fig. 4.

 First alternative v11.v21, v11.v22, v12.v21, v12.v22, v13.v21

 Second alternative v13.v22

Parameters’ values’ combinations

Fig. 4. Recognition of end-user situations.

Hence, knowing the values of the two parameters (the values can usually be
captured using sensors), one could actually ‘sense’ the end-user situation at a
particular moment [12].

6 Managing Alternative Application Behaviors

After a consideration of the different possible end-user situations that point to
(corresponding) alternative application behaviors, the application designer has to
adequately address the challenge of managing these behaviors; even though the
‘switching’ between behaviors would take place at real time, proper design time
preparations are to be realized. These preparations should not only concern the
modeling of each of the alternative behaviors to be considered but they should also
address the ‘switching’ between behaviors (driven by a change in the end-user
situation).

Taking into account that the ‘switching’ between alternative behaviors is
insufficiently elaborated in current approaches [11,12] and inspired by previous
experience, we propose the usage, in combination, of Petri Net [15] and Norm
Analysis [8,13].

Petri Net could be considered as a triple (P,T,F) that consists of two node types
(places and transitions), and a flow relation between them. Places are to model
milestones reached within a business process and transitions should correspond to the
individual tasks to execute. Places are represented by circles, transitions are

30

represented by rectangles. The process constructions which are applied to build a
business process, are called blocks. They express some typical constructs, such as
sequence, choice, parallelism, and iteration. Hence the strengths of Petri Net,
concerning the modeling of decision points and parallel processes, are especially
relevant to the challenge of modeling alternative behaviors. Using the same notations
for conveniently modeling at different abstraction levels, gives the precious
possibility to grasp the ‘big picture’ and go consistently in details, and also to map to
other notations, and also to simulate. A further challenge nevertheless that concerns
not only Petri Net but also other process modeling formalisms, is the insufficient
elaboration facilities with regard to ‘decision’ and other complex points. We claim
that combining Petri Net and Norm Analysis (to be introduced further in the current
section) could be a good solution in this perspective [10].

Norm Analysis essentially concerns Semiotic Norms, or norms for short, which
include formal and informal rules and regulations, define the dynamic conditions of
the pattern of behavior existing in a community and govern how its members (agents)
behave, think, make judgements and perceive the world. When the norms of an
organization are learned, it would be possible for one to expect and predict behavior
and to collaborate with others in performing coordinated actions. Once the norms are
understood, captured and represented in, for example, the form of deontic logic, this
could serve as a basis for programming intelligent agents to perform many regular
activities. The long established classification of norms is probably that drawn from
social psychology, partitioning them into perceptual, evaluative, cognitive and
behavioral norms; each governing human behavior from different aspects. However,
in business process modeling, most rules and regulations fall into the category of
behavioral norms. These norms prescribe what people must, may, and must not do,
which are equivalent to three deontic operators: “of obligation”, “of permission”, and
“of prohibition”. Hence, the following format is considered suitable for specification
of a behavioral norm:

whenever <condition>
if <state>
then <agent>
is <deontic operator>
to <action>

The condition describes a matching situation where the norm is to be applied, and
sometimes further specified with a state-clause (this clause is optional). The actor-
clause specifies the responsible actor for the action, who could be a staff member, or a
customer, or a computer system if the right of decision-making is delegated to it. As
for the next clause, it quantifies a deontic state and usually expresses in one of the
three operators - permitted, forbidden and obliged. For the next clause, it defines the
consequence of the norm. The consequence possibly leads to an action or to the
generation of information for others to act. With the introduction of deontic operators,
norms are broader than the normally recognised business rules; therefore provide
more expressiveness. For those actions that are “permitted”, whether the agent would
take an action or not is seldom deterministic. This elasticity characterises the business
processes, and therefore is of particularly value to understand organisations.

31

The combination between Petri Net and Norm Analysis is of interest, especially
with regard to the challenge of managing alternative application behaviors, for a
number of reasons, among which are the following:

 Petri Net is a well-established process modeling formalism with sound
theoretical roots and ‘convenient’ notations, that only misses facilities for
exhaustive elaboration concerning complex points, while Norm Analysis is a well
established rule modeling formalism possessing also sound theoretical roots and
impressive (process-elaboration-related) expressiveness.
 There are examples of applying Petri Net and Norma Analysis in combination

[10].
 The useful capability of modeling and elaborating (through Petri Net + Norm

Analysis) complex process constructs makes the Petri Net – Norm Analysis
combination attractive particularly with regard to the challenge of managing
alternative application behaviors.

4

1

3

2

5 6

8

7

9

10

11

 labels of transitions

 s: start

 1: register patient

 2: check emergency status

 3: list patient in ‘traffic-light’ (TL)
system

 4: list patient in a queue

 5: examine vital signs of patient

 6: check health history of patient

 7: analyze record of patient

 8: prescribe emergency
treatment

 9: examine patient

 10: formulate diagnosis

 11: treat patient

 e: end

s

e

emergency
treatment normal treatment

whenever a patient needs
emergency help
then the receptionist
is obliged
to list the patient in the TL
system.

whenever a patient does not
need emerg. help
then the receptionist
is obliged
to list the patient in a normal
queue.

Fig. 5. A typical health-care process.

Fig. 5 (left) presents a typical health-care process, using Petri Net, and it is easily
seen that there are two alternative behaviors, namely emergency and normal
treatment. We could use Norm Analysis in such cases to usefully elaborate the
process model. For instance, two norms corresponding to the choice construct in Fig.
5 (left) can be identified and specified in detail – consider Fig. 5 (right).

Therefore, by combining Petri Net and Norm Analysis, one could substantially
facilitate the handling of (alternative) application behaviors.

32

7 Conclusions

This paper has presented further results that concern the development of context-
aware applications. In particular, following a related motivation statement and based
on architecture/design visions on the development of context-aware applications, we
have identified and outlined three related interconnected challenges, proposing and
motivating afterwards corresponding solution directions, summarized as follows:

 To decide what to ‘sense’ and how to interpret it in adapting application
behavior, one would need to apply context reasoning for the purpose of properly
extracting context information from raw data (the guidelines presented in Section 4
could be useful in this direction).
 To decide (at design time) which should be the ‘default’ application behavior,

which alternative behaviors to remain under consideration, and which behaviors
may be ignored, one could get useful support through analyzing (considering
random variables) the occurrence probabilities of end-user situations; on the basis
of observations, statistical analysis can be applied in support of such decisions. As
for the ‘sensing’ the end-user situations corresponding to these application
behaviors, one could consider observing the values of appropriate parameters (the
guidelines presented in Section 5 could be useful in this direction).
 To appropriately model the complex behavior of a context-aware application

including ‘switching’ between alternative behaviors, one would require not only a
powerful process modeling formalism but also an appropriate elaboration facility
to be applied to complex points (the proposed in Section 6 combined application of
Petri Net and Norm Analysis could be useful in this direction).

It is expected that these results would usefully support the current efforts to
improve context-aware application development

However, all addressed challenges and corresponding solution directions must be
considered in an integrated manner, as part of a context-aware application
development approach, since they are interrelated. Hence, we plan (as further work)
to use the results reported in the current papers for extending usefully an existing
business-application-alignment approach [12].

Acknowledgements

This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl).
Freeband is sponsored by the Dutch government under contract BSIK 03025.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services, Concepts, Architectures and
Applications. Springer-Verlag, Berlin-Heidelberg (2004)

33

2. AWARENESS, Freeband AWARENESS project, http://www.freeband.nl/ project.cfm?id=
494&language=en (2008)

3. Broens, T.H.F., van Halteren, A.T., van Sinderen, M.J., Wac, K.E.: Towards an Application
Framework for Context-Aware m-Health Applications. International Journal of Internet
Protocol Technology, 2 (2) (2007)

4. Dey, A. K.: Understanding and Using Context. Personal Ubiquitous Computing 5 (1): 4-7
(2001)

5. Hristova, N., O’Hare, G.M.P.: Ad-me: Wireless Advertising Adapted to the User Location,
Device and Emotions. In: HICSS’04, 37th Hawaii International Conference on System
Sciences (2004)

6. Kurkovsky, S., Harihar, K.: Using Ubiquitous Computing in Interactive Mobile Marketing.
Pers Ubiquit Compt, vol. 10, no. 1 (2006)

7. Levin, R.I., Rubin, D.S.: Statistics for Management. Prentice Hall, USA (1997)
8. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,

Cambridge (2000)
9. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In: WMCSA’94,

Workshop on Mobile Computing Systems and Applications (1994)
10. Shishkov, B. and Dietz, J.: Deriving Use cases from Business processes, the Advantages of

DEMO. In: Enterprise Information Systems V. Eds. O. Camp, J.B.L. Filipe, S. Hammoudi,
and M. Piattini. Kluwer Academic Publishers, Dordrecht/Boston/London (2004)

11. Shishkov, B., Quartel, D.: Combining SDBC and ISDL in the Modeling and Refinement of
Business Processes. In: Enterprise Information Systems VIII, Eds.: Y. Manolopoulos, J.
Filipe, P. Constantopoulos, J. Cordeiro, Lecture Notes in Business Information Processing.
Springer-Verlag, Berlin-Heidelberg (2008)

12. Shishkov, B., Van SInderen, M. J.: From User Context States to Context-Aware
Applications. In: Enterprise Information Systems IX, Eds.: J. Cordoso, J. Cordeiro, J.
Filipe, V. Pedrosa, Lecture Notes in Business Information Processing. Springer-Verlag,
Berlin-Heidelberg (2008)

13. Shishkov, B., Dietz, J.L.G., Liu, K.: Bridging the Language-Action Perspective and
Organizational Semiotics in SDBC. In: ICEIS’06, 8th International Conference on Enterprise
Information Systems (2006)

14. Shishkov, B., Van Sinderen, M.J., Quartel, D.: SOA-Driven Business-Software Alignment.
In: ICEBE’06, IEEE International Conference on e-Business Engineering (2006)

15. Van Hee, K.M., Reijers, H.A.: Using Formal Analysis Techniques in Business Process Re-
Design. In: Business Process Management; Models, Techniques, and Empirical Studies,
Eds.: W. van der Aalst, J. Desel, A. Oberweis, Lecture Notes in Computer Science. Springer-
Verlag, Berlin-Heidelberg (2000)

16. Van Sinderen, M.J.: Architectural Styles in Service Oriented Design. In: ICSOFT’06,
International Conference on Software and Data Technologies (2006)

17. Van Sinderen, M.J., Van Halteren, A., Wegdam, M., Meeuwissen, E., Eertink, H.:
Supporting Context-Aware Mobile Applications: An Infrastructure Approach. IEEE
Communications Magazine 44 (9): 96-104 (2006).

34

