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Abstract. A new framework is proposed for a fast calculation of linear scalings
posed on structured data. Several widely used types of data representation based
on clusters with intrinsic features of local simmetry are taken into account. Pa-
per presents some Image Mining technologies that are used for improvement of
abstract data multi-view evaluation procedures.

1 Introduction

On-line estimation of standard parameters concerning to big samples is usually per-
formed on the basis of preliminary calculation and accumulation of frequently used
intermediate values. The greater the costs of time expenditures, the more numerous in-
termediate data become. A characteristic example is given by systems of class OLAP
(On-Line Analytical Processing) in which files of aggregates prepared in advance can
surpass in size initial sample in tens and hundreds times [5], [12]. Nevertheless, mul-
tiple view is quite necessary for many types of data, in particular, for various types of
spatially distributed data, 3D scenes and images. Recently hypercubes and other ad-
vanced architectures and methods quickly spread and benefit in many applications of
Image Processing and Image Mining technologies, for instance, in GIS [9], [10], [11].
And, vice-versa, some technologies of IP and IM turn out to be useful in processing
abstract samples in structured data spaces [4], [7]. A subject matter of the paper be-
longs to this last class of methods: we develop a framework providing fast evaluation
of density distributions for arbitrary linear scalings posed on a data sample. Techniques
described here use certain properties of spatial symmetry that are specific to clusters of
some widely used types of data representation.

1.1 Multiple View on a Data Sample

Existing software products and systems of the specified type are focused, mainly, on
calculation of several key parameters of data. At the same time, inquiries of refined
analysts concern often also to various non-standard relations of parameters for each of
which aggregated scales can’t be prepared in advance [2], [4], [6]. Such inquiries can
concern to spatiotemporal relations, indirect or hidden indicators, actual and presup-
posed dependencies, and so on [1], [3], [8]. In some cases that we address to in what
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follows, it is possible to perform fast estimations of corresponding distributions with-
out direct use of bulky files of data. By the equation of arbitrary relationA(x) = a

an a-parametric scaling is determined in the data spaceX . Projections of clusters of
X onto the parameterization scale automatically form sampling estimates of the den-
sity distribution fora. If the form of clusters possesses properties of isotropy, i.e., to
some extent it is invariant with respect to linear transformations belonging to the group
SON , in some cases it is possible to replace all procedures of calculation and gathering
projections by simple summation of values that are independent on actual direction of
a-layers inX .

2 Local Linear Transforms

We assume that for a sampleX = {xi} ⊆ RN , i ∈ I, of great volume|I|, some kind
of preliminary segmentation or structuring was made that can be permanently refined
with new data. The situation is widespread when such pre-segmentation produces an
estimation of empirical densityfI(x) = 1

|I|

∑
∫

δ(x − xi)dx in the form of finite sum

g(x) =
∑

λkgk(x), in which every componentgk(x) represents in the vicinity of its
centerxk a limited functionh of some positively determined 2-formBk of coordinates:
gk(x) = h((x − xk)T Bk(x − xk)), whereλk are aprioristic weights. Examples are:
normal mixtures, final sets of ellipsoidal clusters, of ”thick” spheres, etc. The last type
of vicinities is specific to data of the highest dimension, first of all, for long time series
(for example, the sphere with ”thickness”0.01R contains more than 90% of the volume
of 1000-dimensional sphere).

2.1 Advantages of Clusters with Symmetry

The common for these representations (see Fig. 1) is that in the vicinity of the centerxk

each component of the sum
∑

λkgk(x) is resulted by some invertible linear transform
Lk to spherically symmetric formgsk(yk) = hs(

∑

(y
k

n)2),
∫

gsk(yk)dyk = 1.

Fig. 1. Clusters of initial representation are rebuilt to isotropic ones via local transforms. Linear
layer of a scaling (dotted line, left) is replaced with its transformed images (right).
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If the integral
∫

Lk(Sa) gsk(yk)dyk on the imageLk(Sa) of a layerSa is easily calculable
(or can be represented by table values prepared in advance along with permanent refine-
ment of the representation

∑

λkgk(x)), an estimation of aprioristic distribution of scal-
ing parameterp(a) =

∑

µk(ck)
∫

gsk(yk)dyk is reduced to an arrangement of trans-
formed layersLk(Sa) in RN , and also to calculation of factorsµk(ck), adhering coordi-
natesyk to uniform scale of scalar parametera. In a linear case, whenA(x) =

∑

cjxj ,
all layers are hyper-planes of dimensionN − 1, and the value

∫

Lk(Sa) gsk(yk)dyk de-

pends only on the distance from component’s centerxk to the imageLk(Sa) of a layer
Sa whatever direction of vectorck

j , j ∈ {1, ..., N}, taken in the spaceRN .

3 Fast Calculations on Isotropic Clusters

The form of each linear transformLk is uniquely (and simply) determined by the equa-
tion A(x) =

∑

cjxj and by the main axes of the initial shape of clusterk. Let matrixes
of these transforms are constructed for all components. In alinear case factorsµk(ck)
are determined by the formula

µk(ck) =

(

∑∑

(ck
j (Lk)−1

ij )2
∑

(ck
j )2

)
1

2

(1)

If we exclude from the analysis exotic types of distributionsgk(x) used in integrals on
transformed layersLk(Sa), then obvious formulas can be written out. We show here as
examples the two corresponding estimates of densityp(a) for cases of a normal mixture
and a set of uniformly filled ellipsoids.

For a normal mixture:

p(a) =
1√
2π

∑

λkµk(ck)exp

(

−1

2

(a −∑ ck
j xk

j )2
∑∑

(ck
j (Lk)−1

ij )2

)

(2)

For a set of ellipsoids:

p(a) =
1√
π

Γ (N
2 + 1)

Γ (N−1
2 + 1)

∑

λkµk(ck)

(

1 −
(a −∑ ck

j xk
j )2

∑∑

(ck
j (Lk)−1

ij )2

)

N−1

2

(3)

So, if a data representation of specified type is used, then for evaluation of distributions
on linear scalesA(x) =

∑

cjxj it is enough to make weighted by factors (1) transver-
sal summations on always the same set ofk one-dimensional files of sizenk filled
with predefined constants

∫

Lk(Sa)
gsk(yk)dyk, wherenk depends only on a necessary

detailing of the densityp(a).

3.1 Possible Generalizations

Certainly, mixed combinations are admissible, when the sum
∑

λkgk(x) contains com-
ponentsgk(x) of different types. In general case a critical point is a choice of suitable
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piece-wise approximation of the scalingA(x) = a. For a single linear scaling each clus-
ter intersects with entire(N −1)-hyper-plane, but the calculation of its partial crossings
with linear pieces proves to be a separate hard analytical and computational problem
even for simple equations of kindA(x) = a, especially whenN grows. Approximate,
but yet computationally efficient solutions can be found in cases when actual repre-
sentations

∑

λkgk(x) consist of numerous compact clusters that are small enough to
embody close to exactly plain fragments of a smooth non-linear a-layer (see Fig. 2).
This condition can be directly satisfied for diminishing ellipsoids in sparse clusterings,

Fig. 2. Plain piece-wise approximation of intersections of smaller clusters with layers of a smooth
non-linear scalingA(x) = a.

but for kernels with infinite support (such as Gaussian ones)some additional assump-
tions are necessary, for instance, usage of kernels cut within ellipsoids that contain main
share of kernels’ volume. In any case, computation of valuesof type (2), (3) is a prob-
lem essentially less complicated, than pre-calculation and warehousing of numerous
data aggregations or a direct calculation on the sampleX = {xi}.

4 Conclusions

A framework was proposed for efficient estimation of a distribution taking place on
parametera scale of arbitrary linear scalingA(x) = a posed on a big data sample. It
was shown that in special cases it is possible to replace all procedures of calculation
of a sample share represented in any globala-layer by simple weighted summation of
highly limited number of predefined values. Besides exactlycomputational advantages,
basic improvements of estimatesp(a) are provided on this way in the case when it’s
ensured a priori, that not only approximation, but also the true distribution of the sample
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X = {xi} is a mixture of the form
∑

λkgk(x). Then formulas of type (2) or (3)
containing estimates of parametersxk, ck, Bk, µk obtained on the basis of searching all
the set of initial data, will be more exact, than nonparametric density estimates provided
by restricted fragments situated in layers of scalingA(x) = a, in particular, more exact,
than similar evaluations produced from standard aggregates or other partial histograms.
The framework could be useful in applied tasks concerning tomining and analytical
processing images and other big data sets represented by clusters with described above
features of symmetry.
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