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Abstract. A major challenge to the deployment of mobile robots in a wide range
of tasks is the ability to function autonomously, learning appropriate models for
environmental features and adapting these models in response to environmental
changes. Such autonomous operation is feasiblihe robot is able to plan an
appropriate action sequence. In this paper, we focus on the task of color model-
ing/learning, and present two algorithms that enable a mobile robot to plan action
sequences that facilitate color learning. We propokmg:term action-selection
approach that maximizes color learning opportunities while minimizing localiza-
tion errors over an entire action sequence, and compare it \gitbedy/heuristic
action-selection approach that plans incrementally, to maximize the utility based
on the current state information. We show that long-term action-selection pro-
vides a more principled solution that requires minimal human supervision. All
algorithms are fully implemented and tested on the Sony AIBO robots.

1 Motivation

Recent developments in sensor technology have provided a range of high-fidelity sen-
sors (laser range finders, color cameras) at moderate costs, thereby making it feasible
to use mobile robots in several fields [1-3]. But the sensors typically require frequent
and extensive manual calibration in response to environmental changes. An essential
requirement for the widespread deployment of mobile robots is therefore the ability
to function autonomously, learning appropriate models for environmental features, and
adapting these models in response to changes in the environment. Such autonomous
behavior can be achieveft the mobile robot can autonomously plan a sequence of
actions that facilitates learning and adaptation. Mobile robots typically operate under
constrained computational resources, but they need to operate in real-time to respond
to the dynamic changes in their environment. Autonomous learning and adaptation on
mobile robots is hence a challenging problem.

Here we focus on autonomous learning and adaptation in the context of color seg-
mentation, i.e. the mapping from image pixels to color labels such as red, blue and or-
ange. This mapping, called tleelor map, may require extensive manual re-training in
response to environmental changes such as illumination and object configurations. We
enable the robot to autonomously plan an action sequence that facilitates color learning,
which can be combined with prior work that adapts to illumination changes [4].

Traditional approaches to planning [5—7] require that all the actions and their ef-
fects be known in advance, along with extensive knowledge of state and/or all possible
contingencies. Mobile robots operate with noisy sensors and actuators, and typically
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possess incomplete knowledge of the world state and théseduheir actions. Here
the robot autonomously builds probabilistic models of tfieats of their actions. These
models are used to plan action sequences that maximize lealming opportunities
while minimizing localization errors over the entire seqoe. We compare thi®ng-
term action-planning with a typicaireedy approach that uses human-specified heuris-
tics to model the possible results of actions, and planse&iincrementally (one step
at a time) to maximize gain given the current state of the avdife show (Section 5)
that long-term action-planning is more robust than the dyegproach.

2 Reated Work

Color segmentation and color constancy are well-resedrshb-fields of computer
vision [8—11], though the approaches are computationaipersive to implement on
mobile robots with constrained resources.

The color map is typically created on mobile robots by haatitling image regions
over a few hours [12]. Cameron and Barnes [13] learn this rimgpipy constructing
closed image regions corresponding to known environméga#lires. The pixels from
these regions are used to build classifiers, but the appnmeaghres human supervi-
sion and offline processing. Jungel [14] maintains layerstdr maps with increasing
precision levels, colors being represented as cuboidghBilgegmentation is not as ac-
curate as the hand-labeled one. Schulz and Fox [15] estolies using a hierarchical
Bayesian model with Gaussian priors and a joint posterianbot position and illumi-
nation; the approach requires extensive prior informagioen for testing under two il-
luminations. Anzani et al. [16] model colors using a mixtaf&aussians and compen-
sate for minor illumination changes. But the method requimeor knowledge of color
distributions and suitable parameter initialization. dinet al. [3] distinguish between
safe and unsafe road regions, modeling colors as a mixtueao$sians whose param-
eters are updated using EM. The approach does not helpgligmbetween overlap-
ping colors. Our prior work enables the robot to detect lalfgmination changes, and
learn colors through planning using human-specified héafisnctions [4]. Research
in planning on mobile robots has lead to several approadhéq,[which typically re-
quire manual description of the possible states that thetrcdn be in and/or the effects
of the actions that the robot can execute. Here we enablebitd to learn probabilistic
models that predict the results of actions, and generat@letenaction sequences that
maximize color learning opportunities while minimizingkdization errors.

3 Experimental Platform and Color Model

The experiments were run on the SONRS-7 Aibo, a four-legged robot whose pri-
mary sensor is a CMOS color camera with a limited field-ofaw{6.9° horz.,45.2°
vert.). The images are capturedatz with a resolution o208 x 160 pixels. The robot
has three degrees-of-freedomin each leg and three in itk Akgrocessing for vision,
localization, motion and strategy is done using an on-board 576MHz processor.
Applications on mobile robots with cameras typically inv@k color calibration phase
that is repeated when the environment changes. An applicdtimain for Aibos is the
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RoboCup Legged League [17], where teams of four robots plegnapetitive game
of soccer on an indoor field (see Figure 1). We compare twonsekdor autonomous
color learning.

Fig. 1. Image of Aibo and field.

3.1 Color Map and Model

In order to operate in a color coded environment, the robetiaeacolor map that
provides a discrete color label for each point in the col@acgp
I : {my i, maj,m3r} — Llicon—1), Vi, j,k € [0,255] 1)

wherem;, ma, m3 are the values along the color channels (e.g. R, G, B) aefiérs to
the numerical indices of the color labels (blue, orange dygically, the color map is
obtained by generalizing from samples provided by a humaemer who labels spe-
cific image regions 30 images) over a period of an hour or more [12]. We compare
two action-selection algorithms that enable autonomol éearning: (a) a long-term
approach that maximizes learning opportunities while miring localization errors
over the entire action sequence, and (b) a greedy approatpl#ims one action at time,
maximizing gain based on manually-tuned heuristics andtineent state of the world.

Both planning schemes generate a sequence of fosgd) that the robot moves
through, learning one color at each pose. We assume thatlio¢ can use the known
structure of the environment (positions, shapes and calml$ of objects of interest)
to extract suitable image pixels at each pose, and modeldlwe distributions. As
described in our prior work [4], each color distribution imdeled as a 3D Gaussian or
as a 3D histogram (normalized to obtain a pdf), the choicedriade autonomously
for each color, based on statistics collected in real-tifte color space is discretized
and each color map cell is assigned the label oftbst likely color’s pdf, by a Bayes’
rule update.

4 Planning Algorithms

In both action-selection algorithms for color learningg tiobot starts out with no prior
information on color distributions — the illumination issasned to be constant during
learning. The robot knows the positions, shapes and cdb@ldaof objects in its envi-
ronment (structuré) and its starting pose. The robot’s goal is to plan a actigueece,

1 Approaches exist for learning this structure autonomously
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extract suitable image pixels at each pose, learn a mod#idarolor distributions, and
generate the color map to be used for segmentation, objxymnéion and localization.

4.1 Long-term Planning

Algorithm 1 presents the long-term planning approach, tvhiens to maximize learn-
ing opportunities while minimizing errors over the moticggsience — the robot may
obtain more training samples by moving a larger distancethist motion may cause
larger localization errors. Three components are intredua motion error model, a
statistical feasibility model, and a search routine.

Algorithm 1 Long-term Action-Selection.

Require: Ability to learn color models [4].
Require: Positions, shapes and color labels of the objects of interdéke robot’s environment
(Regions). Initial robot pose.

Requwe Empty Color Map; List of colors to be learned’olors.
Move between randomly selected target poses.
CollectMEMDat4) — collect data for motion error model.
CollectColLearnStafs— collect color learning statistics.
NNetTrair() — Train the Neural network for the MEM, Equation 2.
UpdateFM) — Generate the statistical feasibility model, Equation 3
GenCandidateSéy- Generate candidate sequences, Equation 4.
EvalCandidateS€l— Evaluate candidate sequences.
SelectMotionSeg — Select final motion sequence.
Execute motion sequence and model colors [4].

. Write out the color statistics and the Color Map.

NN E

Iy
o

Motion Error Model (MEM). The MEM predicts the error in the robot pose in re-
sponse to a motion command (tardet y, )), as a function of the colors used for
localization (the locations of color-coded markers areviimp Assuming an even dis-
tribution of objects in the environment, the inputs are tifiledence between the starting
pose and target pose, and the list of colors the robot haadyllearned. The output is
the pose error that would be incurred during this motion. WiteM is represented as
a back-propagation neural network [18] with+ 3 inputs, three outputs and a hidden
layer of 15 nodes:

{Az, Ay, Ag,c1,¢2,...,cn}— {errg, erry,errg} (2)

where{A,, A,, Ag} represent the desired difference in pose, éadcs, ..., cn} are
binary variables that represent thecolors in the environment. If the robot knows all
the colors it can recognize all the markers and localize \Weith only some colors
known, some markers aren’t recognizable and localizatiffess. During training the
robot moves between randomly chosen poses running twoizatiah routines, one
with all colors known (to provide ground truth), and anothéth only a subset of
colors known. The difference in the two pose estimates pes/ihe outputs for training
samples.
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Statistical Feasibility Model (FM). For each robot pose, the FM provides the proba-
bility of learning each of the desired colors given that aaiarset of colors have been
learned previously. The possible robot poses are diserkiio cells. Given the robot’s
joint angles and camera field-of-view, a feasibility chelttamates several cells — if the
robot’s camera is not pointing towards a valid object it aatriearn colors. Each FM
cell also stores a probability:

FM(d,e, f,v;) =p, ¥{d,e, f} €0, K — 1] 3)

whered, e, f are cell indices corresponding to the K discrete pdses, 6), andv;, i €

[0, M — 1] represents all possible combinations of colors. As the trafmves during
training, its pose maps into one of the cells. Assuming pkimowledge of a set of
colors, it attempts to learn other colors and stores a cousticcesses. At the end of
the training phase, the normalized cell counts provide thbability.

Search for Motion Sequence. In the training phase the robot moves between ran-
domly chosen target poses and collects the data/statistingld the MEM (lines 2, 4)
and the FM (lines 3, 5). The FM has to be re-learned when thecbbpnfigurations
change, but even with just the geometric constraints thetristable to provide motion
sequences leading to successful color learning. Then that iterates through all can-
didate motion sequenceSénCandidateSeq— line 6), i.e. all possible paths through the
discretized pose cells. The search depth is equal to the @unfilsolors to be learnéd

i.e. to learnN colors:

path : {x;,y;, 04, color;} Vi€ [0, N —1] (4)

This formulation results in a large number of paths 10%). But only a much smaller
subset £ 10%) is evaluated completely. The MEM provides the expectea @osor if
the robot travels from the starting pose to the first pose. vidmor sum of the error
and the target pose provides the actual pose. If the desited@an be learned at this
pose (evaluated using FM), the move to the next pose in tHeipatvaluated. If the
whole path is evaluated, the net pose error and probabfliguocess are computed
(EvalCandidateSeq — line 7). Of the paths that provide a high probability of sers;
the one with the least pose error is executed by the r@sbddtMotionSeq — line 8) to
extract suitable image pixels and learn the parameterseafdltor models [4].

4.2 Greedy Action Planning

Algorithm 2 describes greedy action-selection. Actioresalanned one step at a time,
maximizing utility based on current state knowledge. Théndéference compared to

Algorithm 1 is that the functions that predict the resultsofions are manually tuned
and heuristic, as with typical planning approaches [7]

Due to the noise in the motion model and the initial lack ofugisinformation,
geometric constraints on object positions are used tovesanflicts during learning.
The robot needs to decide the order in which the colors are tedrned, and the best
candidate object for learning a color. The algorithm makes¢ decisiongreedily and

2 \We assume that the robot learns one color at each pose.
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Algorithm 2 Greedy Action-Selection.
Require: Ability to learn color models [4].
Require: Positions, shapes and color labels of the objects of intaréke robot’s environment
(Regions). Initial robot pose.
Require: Empty Color Map; List of colors to be learnedolors.
1: : =0, N = MaxColors
2: whilei < N do
Color = BestColorTolLearfi );
Target Pose = BestTargetPoge olor );
M otion = RequiredMotiolt T'arget Pose )
PerformM otion {Monitored using visual input and localizatipn
Model the color [4] and update color map.
i1=1+1
9: end while
10: Write out the color statistics and the Color Map.

NGO AW

heuristically — it uses heuristic action models to plan deg st a time. The aim is to
obtain a large target object while moving minimally, esp#igiwhen not many colors
are known. Three weights are computed for each color-obgobination(l, 7):

w1 = fd( d(l,l) )a w2 = fs( S(Z,Z) )a w3 = fu( 0(lvi) ) (5)

where the functiongl(l,), s(l,i) ando(l,4) represent the distance, size and object
description for each color-object combination. Functfat d(Z, ) ) assigns a smaller
weight to larger distances — the robot should move minintallgarn the colors. Func-
tion fs( s(l,i) ) assigns larger weights to larger candidate objects — lafgjects pro-
vide more samples (pixels) to learn the color parametensctin f,,( o(l, ) ) assigns
larger weightsff the particular object (i) for a particular color (l) is unigu.e. it can
be used to learn the color without having to wait for any ottwor to be learned. In
each planning cycle, the robot uses the weights to dynalyici@boses the color-object
combination that provides the highestue. TheBestColorToLearn (line 3) is:

argma( | max { fa(d(ld) + fo(d(0)) + fulo(bi))})  (6)

1€]0,9]  “€[0,N;—1]
where the robot parses the different objed{s)@vailable for each colof € [0, N —1])
— the color with the maximum value is chosen to be learned Titgt robot determines
the best target object to learn that color as:
argmax ( fa(d(1.1)) + fo(d(L.3)) + Fulo(1.)) ) ™
i€[0,N;—1]

For a chosen color, the target object provides the maximuight/galue. The robot
then computes the target pose where it can learn from thgettabject, based on the
known field-of-view constraints (line 5). The robot exesutke motion command to
move to the target pose, extract suitable image pixels ardehtioe color’s distribution
(lines 6-7). The known colors are used to recognize objtmtalize, and providéeed-
back, i.e.the knowledge available at any given instant is exploited to plan and execute
the subsequent tasks.
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5 Experimental Setup and Results

We ran experiments to compare the two action-selectiorrighgos in the robot soccer
domain. We aim to ensure that the learned color map is sirmlgerformance to a
hand-labeled color map. But segmentation accuracy is naiod gerformance mea-
sure in the presence of background noise. Hence the lotiafizzccuracy is measured.
Of the colors needed for localizatiopifk, yellow, blue, white, green), the ground col-
ors (@reen, white) are typically learned/modeled by scanning in place (aufeatf the
environment) — the depth of the search process is therdioee.t The algorithms ex-
tend to additional colors, the smaller subset being usey toniake things easier to
understand.

For long-term action-selection, the range of poses wasd@ilinto(6 x 9 x 12) cells,
i.e. divisions of600mm,600mm, and30° along x, y, amd). The back-propagation net-
work was learned using the MATLAB Neural Network toolbox [1& 2000 training
samples). For the greedy action-selection scheme, théstiesiwere modeled as linear
and exponential functions (Equation 5) whose parameters @igerimentally tuned.

Table 1. Planning and Localization Accuracies in challenging canfidions with two planning
schemes. Long-term planning is better.

Config Plan succegs Localization error
X(m) | Y (cm) | 6 (deg)
Long-term 100 7.6£3.7(11.1£4.8] 9+6.3
Greedy heuristic89.3 + 6.7 [11.6 £ 5.1|15.1 £ 7.8/ 11 £ 9.7
Hand-label n/a 6.9+41|92+53(7.1£5.9

Both algorithms were tested under several object configuraiand robot starting
poses — there are six objects that can be placed anywhegth®outside of the field,
but the robot knows their positions. Table 1 shows the ssccaio averaged over
different object configurations, each with different robot starting poses — a trial is
a success if all desired colors are learned. We also had bt noove through a set
of poses using the learned color map and measured locatizatiors (15 trials of 10
poses each) — a tape measure and protractor provided gratindsee Table 1).

With long-term planning, the robot is able to generate advalan overall the tri-
als, unlike in the case with human-specified heuristics. [dbalization accuracy with
long-term planning is better than that with greedy plannargd is comparable to that
obtained with a hand-labeled color map. Figure 2 shows sdames pbtained with our
long-term planning scheme, the starting position denoyedumber '0’, while the di-
rection of the arrows show the orientation. We observe:

1. As all objects with the colopink have another colored blob of the same size,
the robot learnpink only after one of the other two colorsl(ie, yellow) have been
learned.

2. Among the other two color®lue, yellow) the robot first learns the color which
requires motion that would result in smaller localizatioroe

3. For colors which exist in several objects the robot autarally makes a trade-
off between object size and distance to be moved.
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Fig. 2. Sample motion plans generated by long-term planning. Alhgllead to successful learn-
ing on the robot.

In addition to the ’best’ motion-plan, several of the top weces lead to successful

learning. The algorithm works well when additional coldnattoverlap with existing
colors (orange, red etc) are also learned.

PINK-YELLOW YELLOW-PINK

|

PINK-BLUE

BLUE-PINK

3

BLUE GOAL

3

YELLOW GOAL

Fig. 3. A configuration where heuristic planning fails.

The reason behind the better performance of the long-tesinmjptg algorithm, as com-
pared to the heuristic planning scheme, is determined blyzing the configurations
where the heuristic planning failed to work. Figure 3 showe example, where the
robot has to move a large distance to obtain its first colardimg opportunity (from
pose 0 to 1). This sometimes leads the robot into poses elifférom its target pose
(pose 1) due to slippage, and it is then unable to find any datelimage region that
satisfies the constraints for the target. Autonomous lagrof models for motion errors
and color learning feasibility enables long-term planrim@nticipate pose estimation
errors and account for it in the learning procedure. The-@mm planning scheme fails
only due to unforeseen reasons (say the environment chafiges plan is created).
Then the roboteplans a path starting from current state — the learned MEM and FM
are still applicable.

The color learning with either planning approach proceedsreomously in real-
time: long-term planning takes 7 minutes, while greedy planning takes6 minutes
of robot effort —hand-labeling takes ~ 2 hours of human effort. The additional time
taken by the long-term planning scheme is due to the iniGatch for the motion se-
guence. The initial training of the models (in long-termrpiang) takes 1-2 hours, but it
proceeds autonomously (human supervision only for changatteries), andeeds to
be done only once for an environment. The greedy planning scheme, on the other hand,
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requires manual parameter tuning of heuristics (over a faysy which is typically
sensitive to (and may need to be repeated in response toy chiaages, for instance
different object configurations. The learned models areisbln such environmental
changes.

(d) (e) ®
Fig. 4. Sample images. (a)-(c) Original, (d)-(f) Segmented.

The segmentation performance (Figure 4) of the learned owdg is similar with either
planning scheme. Ové&0 images, the average segmentation accuracies of the learned
and hand-labeled color map &¢.9 4+ 3.9 and96.7 + 4.3 respectively (no difference
at95% significance). Ground truth is provided by a human.

6 Conclusions

The potential of mobile robots can be exploitddthey operate autonomously. The
robot needs to be able to plan action sequences that feeilita autonomous learning
(and adaptation) of models for environmental features. magr challenges for robots
with color cameras are manual calibration and sensitigiiilumination changes. Prior
work has focused on modeling known illuminations [11], téag a few distinct col-
ors [3], and using heuristic models to plan action sequethegsacilitate learning [4].

In this paper, we enable the robot to autonomously learn ladoiemotion error and
learning feasibility. The long-term action-selection rimizes learning opportunities
while minimizing errors over the entire action sequencsyltéeng in better performance
than the greedy, heuristic approach that involves extensignual parameter tuning.
Though we have presented results for color learning in a maely structured scene,
similar techniques can be devised for other higher-dinmeradifeatures. In addition, the
planning scheme used to model colors can be applied to athmrihg/modeling tasks.

Both planning schemes require the environmental struetsiieput, which is much
easier to provide than hand-labeling several images. Oaleclge is to combine this
work with autonomous vision-based map building (SLAM) [2@)] that structure can
also be largely learned by the robot. We also aim to combieepthnned learning
approach with our prior work that detects and adapts to ithation changes [4]. The
ultimate goal is to develop algorithms for autonomous nebilbot operation under
natural conditions.
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