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Abstract: In this paper, we propose a new algorithm M-SMFTF which reduces the complexity of the simplified FTF-
type (SMFTF) algorithm by using a new recursive method to compute the likelihood variable. The 
computational complexity was reduced from 7L to 6L, where L is the finite impulse response filter length. 
Furthermore, this computational complexity can be significantly reduced to (2L+4P) when used with a 
reduced P-size forward predictor. Finally, some simulation results are presented and our algorithm shows an 
improvement in convergence over the normalized least mean square (NLMS). 

1 INTRODUCTION 

In general the problem of system identification 
involves constructing an estimate of an unknown 
system given only two signals, the input signal and a 
reference signal. Typically the unknown system is 
modelled linearly with a finite impulse response 
(FIR), and adaptive filtering algorithms are 
employed to iteratively converge upon an estimate 
of the response. If the system is time-varying, then 
the problem expands to include tracking the 
unknown system as it changes over time (Haykin, 
2002) and (Sayed, 2003). There are two major 
classes of adaptive algorithms. One is the least mean 
square (LMS) algorithm, which is based on a 
stochastic gradient method (Macchi, 1995). Its 
computational complexity is of O(L), L is the FIR 
filter length. The other class of adaptive algorithm is 
the recursive least-squares (RLS) algorithm which 
minimizes a deterministic sum of squared errors 
(Treichler, 2001). The RLS algorithm solves this 
problem, but at the expense of increased 
computational complexity of O(L2). A large number 
of fast RLS (FRLS) algorithms have been developed 
over the years, but, unfortunately, it seems that the 
better a FRLS algorithm is in terms of computational 
efficiency, the more severe is its problems related to 
numerical stability (Treichler, 2001). The fast 
transversal filter (FTF) (Cioffi, 1984) algorithm is 
derived from the RLS by the introduction of forward 
and backward predictors. Its computational 
complexity is of O(L). Several numerical solutions 

of stabilization, with stationary signals, are proposed 
in the literature (Benallal, 1988), (Slock, 1991) and 
(Arezki, 2007). Another way of reducing the 
complexity of the fast RLS algorithm has been 
proposed in (Moustakides, 1999) and (Mavridis, 
1996). When the input signal can be accurately 
modelled by a predictor of order P, the fast Newton 
transversal filter (FNTF) avoids running forward and 
backward predictors of order L, which would be 
required by a FRLS algorithm. The required 
quantities are extrapolated from the predictors of 
order P (P << L). Thus, the complexity of the FNTF 
falls down to (2L+12P) multiplications instead of 
8L. Recently, the simplified FTF-type (SMFTF) 
algorithm (Benallal, 2007) developed for use in 
acoustic echo cancellers. This algorithm derived 
from the FTF algorithm where the adaptation gain is 
obtained only from the forward prediction variables. 
The computational complexity of the SMFTF 
algorithm is 7L. In this paper, we propose more 
complexity reduction of the simplified FTF-type 
algorithm by using a new recursive method to 
compute the likelihood variable. The computational 
complexity of the proposed algorithm is 6L and this 
computational complexity can be significantly 
reduced to (2L+4P) when used with a reduced P-size 
forward predictor. At the end, we present some 
simulation results of the M-SMFTF algorithm. 
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2 ADAPTIVE ALGORITHMS 

The main identification block diagram of a linear 
system with finite impulse response (FIR) is 
represented in Figure 1. 

 
Figure 1: Main block diagram of an adaptive filter. 

The output a priori error nL,ε  of this system at time 
n is: 

nnnL yd ˆ, −=ε  (1)

where nLnLny ,
T

1,ˆ xw −=  is the model filter output, 

[ ]T121, ...,,, +−−−= LnnnnL xxxx is a vector containing 
the last L samples of the input signal nx , 

[ ]T1,1,21,11, ...,,, −−−− = nLnnnL wwww is the coefficient 
vector of the adaptive filter and L is the filter length. 
The desired signal from the model is: 

nLLoptnn vd ,
T

, xw+=  (2)

where [ ]T,2,1,, ...,,, LoptoptoptLopt www=w  represents 
the unknown system impulse response vector and 

nv  is a stationary, zero-mean, and independent noise 
sequence that is uncorrelated with any other signal. 
The superscript (.)T describes transposition. The 
filter is updated at each instant by feedback of the 
estimation error proportional to the adaptation gain, 
denoted as nL,g , and according to 

nLnLnLnL ,,1,, εgww += −  (3)

The different algorithms are distinguished by the 
gain calculation. 

2.1 The NLMS Algorithm 

The Algorithms derived from the gradient (Macchi, 
1995), for which the optimization criterion 
corresponds to a minimization of the mean-square 
error. For the normalized LMS (NLMS) algorithm, 
the adaptation gain is given by: 

nL
nx

nL cL ,
0,

, xg
+

=
π

μ

 
(4)

where μ  is referred to as the adaptation step and 0c  
is a small positive constant used to avoid division by 
zero in absence of the input signal. The stability 
condition of this algorithm is 0< μ <2 and the fastest 
convergence is obtained for μ = 1 (Slock, 1993). 
The power of input signal nx,π  is given by: 

L
nLnL

nx
,

T
,

,
xx

=π  
 

(5a) 

It can alternatively be estimated using following 
recursive equation (Gilloire, 1996): 

2
1,, )1( nnxnx xγπγπ +−= −  (5b) 

 where γ  is a forgetting factor ( L/1≈γ ). The 
computational complexity of the NLMS algorithm is 
2L multiplications per sample for the version with 
the recursive estimator (5b). 

2.2 The SFRLS Algorithm 

The filter nL,w  is calculated by minimizing the 
weighted least squares criterion according to 
(Haykin, 2002): 
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(6)

where λ denotes the exponential forgetting factor 
(0<λ≤1). The adaptation gain is given by: 

FRLS

,,

RLS

,
1
,,

~
nLnLnLnLnL kxRg γ== −

 
(7)

where nL,R  is an estimate of the correlation matrix 
of the input signal vector. The variables nL,γ and 

nL,
~k  respectively indicate the likelihood variable 
and normalized Kalman gain vector. The calculation 
complexity of a FRLS algorithm is 7L. This 
reduction of complexity has made all FRLS 
algorithms numerically unstable. The numerical 
stability is obtained by using some redundant 
formulae of the FRLS algorithms (Benallal, 1988), 
(Slock, 1991) and (Arezki, 2007). The numerical 
stability is obtained by using a control variable, 
called also a divergence indicator nξ  (Arezki, 
2007), theoretically equals to zero. Its introduction 
in an unspecified point of the algorithm modifies its 
numerical properties. This variable is given by: 

⎩
⎨
⎧
≠
=

−=
practical0
theory0f

,, nLnLn rrξ
 

(8)

where nLr , , 0f
,nLr  and 1f

,nLr  are the backward a priori 
prediction errors calculated differently in tree ways. 
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We define three backward a priori prediction errors 
( γ

nLr , , β
nLr , , b

,nLr ), theoretically equivalents, which 
will be used to calculate the likelihood variable nL,γ , 
the backward prediction error variance nL,β and the 
backward prediction nL,b . We introduce these 
variables into the algorithm, and we use suitably the 
scalar parameters ),,( bμμμ βγ  and sμ , in order to 
obtain the numerical stability. For appropriate 
choices, we selected the following control 
parameters: 

1,0 === bμμμ βγ ; sμ =0.5 (9)
It can be shown that the variance of the numerical 
errors in the backward predictor, with the 
assumption of a white Gaussian input signal, is 
stable under the following condition (Arezki, 2007): 

5.32
11

74
54

+
−=

+
+

>
LL

Lλ  (10) 

These conditions can be written in another simpler 
form pL/11−=λ , where the parameter p  is a real 
number strictly greater than 2 to ensure numerical 
stability. The resulting stabilized FRLS (SFRLS) 
algorithms have a complexity of 8L; it is given in 
Table 1. Note that numerical stabilization of the 
algorithm limits the range of the forgetting factor 
λ (condition (10)) and consequently their 
convergence speed and tracking ability. 

Table 1: SFRLS (8L) algorithm. 

Initialization: 100/2
0 LE xσ≥ ; 00,00,0, ;;1 EE L

L
LL === βλαγ ; 

LLLLL 0
~

0,0,0,0, ==== kbaw  

Variables available at the discrete-time index n: 
1,1,1,1,1,1,1, ;;;;

~
;; −−−−−−− nLnLnLnLnLnLnL wkba βαγ  
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b

nL
b

nL rr ξμ+= ,, ; 

1,,1,,
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~
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nLnLnnL d ,
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1,, xw −−=ε ; nLnLnLnLnL ,,,1,,
~
kww γε+= −  

2.3 The SMFTF Algorithm 

The Simplified FTF-type (SMFTF) algorithm 
(Benallal, 2007) derived from the FTF algorithm 
where the adaptation gain is obtained only from the 
forward prediction variables. The backward 
prediction variables, which are the main source of 
the numerical instability in the FRLS algorithms 
(Benallal, 1988), (Slock, 1991) and (Arezki, 2007), 
are completely discarded. By using only forward 
prediction variables and adding a small 
regularization constant ac  and a leakage factorη , 
we obtain a robust numerically stable adaptive 
algorithm that shows the same performances as 
FRLS algorithms. 

Discarding the backward predictor does not 
mean that the last components nL,w  are not updated, 
but they are updated by components coming from 
lower positions of nL,

~k . To avoid the instability of 
the algorithm, we append a small positive constant 

ac to the denominator )/( 1,, anLnL ce +−λα , and it 
might be preferable to have the forward predictor 

nL,a  return back to zero by doing nL,aη , where η  
is a close to one constant (Slock, 1993). The 
computational complexity of the SMFTF algorithm 
is 7L; it is given in Table 2. 

Table 2: SMFTF (7L) algorithm. 

Initialization: 
LLLL 0

~
0,0,0, === kaw ; ;;1 00,0, EL

LL λαγ == 100/2
0 LE xσ≥  

Variables available at the discrete-time index n: 
1,1,1,1,1, ;;;

~
; −−−−− nLnLnLnLnL wka αγ  

New information: nx , nd  

1,
T

1,, −−−= nLnLnnL xe xa ; 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−− 1,1,

,

1,

, 1
~

0

*

~
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nL

nL

nL

c
e

ak
k

λα
; 

{ }1,1,,1,,
~

−−− += nLnLnLnLnL e kaa γη  ; 2
,1,1,, nLnLnLnL e−− += γλαα  

nLnL
nL

,
T

,
, ~

1
1

xk+
=γ ; 

nLnLnnL d ,
T

1,, xw −−=ε ; nLnLnLnLnL ,,,1,,
~
kww γε+= −  

3 PROPOSED ALGORITHMS 

3.1 The M-SMFTF Algorithm 

We propose more complexity reduction of the 
simplified FTF-type (M-SMFTF) algorithm by using 
a new recursive method to compute the likelihood 
variable. Let us replace the quantity (*), that has not 
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been used in nL,
~k  of the MSFTF algorithm (Table 

2), by the variable nLc , , we obtain: 

⎥
⎦
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⎢
⎣

⎡
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+⎥
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⎤
⎢
⎣

⎡
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−− 1,1,

,

1,,

, 1
~

0~

nLanL

nL

nLnL

nL

c
e

c ak
k

λα
 (11) 

By exploiting certain invariance properties by 
shifting the vector input signal extended to the order 
(L +1), we obtain two writing manners of input 
vector: 

[ ]TT
,,1 , LnnLnL x −+ = xx  (12a) 

[ ]TT
1,,1 , −+ = nLnnL x xx  (12b) 

By multiplying on the left, the members of left and 
right of the expression (11) by equations (12a) and 
(12b) respectively, the following equality is 
obtained:  

=+ −LnnLnLnL xc ,,
T

,
~kx  

anL

nL
nLnL c

e
+

+
−

−−
1,

2
,

1,
T

1,
~

λα
kx  

(13) 

By manipulating the relation (13), we obtain a new 
recursive formula for calculating the likelihood 
variable as given below: 

1,,

1,
, 1 −

−

+
=

nLnL

nL
nL γδ

γ
γ  (14) 
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anL

nL
nL xc

c
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= ,
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2
,

, λα
δ  (15) 

After a propagation analysis of the numerical 
errors of the 1st order and an asymptotic study of the 
equations of errors propagation, we approximate the 
errors in the forward variables ( nL,aΔ , nL,αΔ ) and 

the Kalman variables ( 1,
~

−Δ nLk , 1, −Δ nLγ ) by the 
linear first order models deduced from 
differentiating ( nL,a , nL,α ) and ( nL,

~k , nL,γ ) 
respectively. We can thus say that the system is 
numerically stable, in the mean sense, for λ and η  
between zero and one. It can be shown that the 
variance of the numerical errors in the forward 
predictor, with the assumption of a white Gaussian 
input signal, is stable under the following condition: 

)2(

)2(1111
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⎛
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η

λ  
(16) 

We notice that the lower bound of this condition 
is always smaller than the lower bound of condition 

(10) of the original numerically stable FRLS 
algorithm, which means that we can choose smaller 
values for the forgetting factor for the proposed 
algorithm and consequently have faster convergence 
rate and better tracking ability. The computational 
complexity of the M-SMFTF algorithm is 6L; it is 
given in Table 3. 

Table 3: M-SMFTF (6L) algorithm. 

Initialization: 
LLLL 0

~
0,0,0, === kaw ; ;;1 00,0, EL

LL λαγ == ; 100/2
0 LE xσ≥  

Variables available at the discrete-time index n: 
1,1,1,1,1, ;;;

~
; −−−−− nLnLnLnLnL wka αγ  

New information: nx , nd . 

1,
T

1,, −−−= nLnLnnL xe xa ; 
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⎥
⎦
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⎥
⎦
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c
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; 

{ }1,1,,1,,
~

−−− += nLnLnLnLnL e kaa γη  ; 2
,1,1,, nLnLnLnL e−− += γλαα  
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c
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−
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δ ; 

1,,
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, 1 −
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γ
γ  

nLnLnnL d ,
T

1,, xw −−=ε ; nLnLnLnLnL ,,,1,,
~
kww γε+= −  

3.2 The Reduced M-SMFTF Algorithm 

The Reduced size predictors in the FTF algorithms 
have been successfully used in the FNTF algorithms 
(Moustakides, 1999), (Mavridis, 1996) and (Benallal, 
2007). The proposed algorithm can be easily used 
with reduced size prediction part. If we denote P the 
order of the predictor and L the size of adaptive 
filter, the normalized Kalman gain is given by: 

⎥
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 (17) 

where P is much smaller than L. The first (P+1) 
components of the nL,

~k  are updated using the 
reduced size forward variables, the last components 
are just a shifted version of the (P+1)th component of 

nL,
~k . For this algorithm, we need two likelihood 
variables: the first one nP,γ , is used to update the 
forward prediction error variance nP,α , where nPc ,  

is (P+1)th component of nL,
~k . The second likelihood 

variable nL,γ , is used to update the forward predictor 

nP,a  of order P and the transversal filter nL,w . 
The computational complexity of this algorithm 

is (2L+4P); it is given in Table 4. 
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Table 4: Reduced M-SMFTF (2L+4P) algorithm. 

Initialization: 100/2
0 PE xσ≥ ; 

00,0, ;1 EP
PP λαγ == ; 10, =Lγ ; LLL 0

~
0,0, == kw ; PP 00, =a . 

Variables available at the discrete-time index n: 
1,1,1,1,1, ;;;

~
; −−−−− nLnLnLnLnL wka αγ ; 

New information: nx , nd . 

1,
T
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γ
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nLnLnnL d ,
T

1,, xw −−=ε ; nLnLnLnLnL ,,,1,,
~
kww γε+= −  

4 SIMULATION RESULTS 

To confirm the validity of our analysis and 
demonstrate the improved numerical performance, 
some simulations are carried out. For the purpose of 
smoothing the curves, error samples are averaged 
over 256 points. The forgetting factor λ and the 
leakage factorη  for the M-SMFTF algorithm are 
chosen according to (16) with the stationary input. In 
our experiments, we have used values of ac  
comparable with the input signal power. 

4.1 The M-SMFTF Case 

We define the norm gain-error by )(nNGE . This 
variable is used in our simulations to check the 
equality of the expressions of the likelihood 
variables. It is calculated by: 

{ }⎟
⎠
⎞⎜

⎝
⎛ Δ=

2
,10 Elog10)( nLnNGE g  (18) 

where ( )nL
f

nLnL
d

nLnL ,,,,,
~~ kkg γγ −=Δ  is gain-error 

vector, d
nL,γ  and f

nL,γ  are likelihood variables 
calculated by SMFTF and M-SMFTF algorithms 
respectively. We have simulated the algorithms to 
verify their correctness. The input signal nx  used in 
our simulation is a white Gaussian noise, with mean 
zero and variance one. The filter length is L=32, we 
run the SMFTF and M-SMFTF algorithms with a 
forgetting factor ( )/11( L−≥λ ) λ =0.9688, the 

leakage factorη =0.98 and ac =0.1. In Figure 2, we 
give the evolution in decibels of the norm gain-
error )(nNGE , we can see that the round-off error 
signal stays constant. The M-SMFTF and the 
SMFTF algorithms produce exactly the same 
filtering error signal. 

 
Figure 2: Evolution of the norm gain-error )(nNGE ; 

L=32, λ =0.9688, η =0.98, ac =0.1, E0=0.5. 

We used a stationary correlated noise with a 
spectrum equivalent to the average spectrum of 
speech, called USASI noise in the field of acoustic 
echo cancellation. This signal, with mean zero and 
variance equal to 0.32, sampled at 16 kHz is filtered 
by impulse response which represents a real impulse 
response measured in a car and truncated to 256 
samples. We compare the convergence speed and 
tracking capacity of the M-SMFTF algorithm with 
SFRLS and NLMS algorithms. The NLMS ( μ =1) 
and SFRLS ( L3/11−=λ ) algorithms are tuned to 
obtain fastest convergence. We simulated an abrupt 
change in the impulse response by multiplying the 
desired signal by 1.5 in the steady state at the 
51200th samples. Figure 3 shows that better 
performances in convergence speed are obtained for 
the M-SMFTF algorithm. 

 
Figure 3: Comparative performance of the M-SMFTF, 
SFRLS and NLMS for USASI noise, L=256, M-SMFTF: 
λ =0.9961,η =0.985, ac =0.5, E0=1;  SFRLS: λ =0.9987; 
NLMS: μ =1. 
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The differences in the final )(nMSE for the M-
SMFTF and SFRLS algorithms are due to the use of 
different forgetting factorsλ . 

4.2 The Reduced M-SMFTF Case 

In this simulation, we compare the convergence 
performance of reduced size predictor M-SMFTF 
algorithm and the NLMS algorithm. Figure 4 
presents the results obtained with the speech signal, 
sampled at 16 kHz, for the filter order L=256. We 
simulated an abrupt change in the impulse response 
at the 56320th samples. We use the following 
parameters: the predictor order is P=20, the 
forgetting factor is P/11−=λ . From this plot, we 
observe that the re-convergence of M-SMFTF is 
again faster than NLMS. 

 
Figure 4: Comparative performance of the M-SMFTF and 
NLMS with speech input, L=256, M-SMFTF: P=20, 
λ =0.950, η =0.99, ac =0.1, E0=1; NLMS: μ =1. 

Different simulations have been done for 
different sizes L and P, and all these results show 
that there is no degradation in the final steady-
state )(nMSE of the reduced size predictor algorithm 
even for P<<L. The convergence speed and tracking 
capability of the reduced size predictor algorithm 
can be adjusted by changing the choice of the 
parametersλ ,η  and ac . 

5 CONCLUSIONS 

We have proposed more complexity reduction of 
SMFTF (M-SMFTF) algorithm by using a new 
recursive method to compute the likelihood variable. 
The computational complexity of the M-SMFTF 
algorithm is 6L operations per sample and this 
computational complexity can be significantly 
reduced to (2L+4P) when used with a reduced P-size 
forward predictor (P<<L). The low computational 
complexity of the M-SMFTF when dealing with 

long filters and it a performance capabilities render 
it very interesting for applications such as acoustic 
echo cancellation. The simulation has shown that the 
performances of M-SMFTF algorithm are better 
than those of NLMS algorithm. The M-SMFTF 
algorithm outperforms the classical adaptive 
algorithms because of its convergence speed which 
approaches that of the RLS algorithm and its 
computational complexity which is slightly greater 
than the one of the NLMS algorithm. 
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