A CONFIGURABLE LINUX FILE SYSTEM
FOR MULTIMEDIA DATA

Nicola Corriero, Vittoria Cozza, Eustrat Zhupa
Dipartimento di Informatica, Universita di Bari, Via Orabona 4 - 70125, Bari, Italy

Vito De Tullio
Dipartimento di Informatica, Universita di Bari, Via Orabona 4 - 70125, Bari, Italy

Keywords:

Abstract:

Fuse, file system, tag, configurable, Linux, mesh network.

In MusicMeshFS the tree structure of the virtual Linux filesystem, extended and made configurable by the Mu-

sicMeshFS language, is adapted for storing and efficiently retrieving multimedia data. In the case of installing
MusicMeshFS inside an embedded system equipped with WIFI card, the multimedia data sharing over an ad

hoc mesh network can be achieved for free.

1 INTRODUCTION

MusicMeshFS (MMEFS) is here introduced as a sys-
tem able to classify and to manage multimedia files
collections of growing size, in such a fast automatic
way, configurable and portable on different platforms.
MMEFS appears as a virtual file system, implemented
on Linux in user space, where multimedia files are
the data source and a directory tree, arranged accord-
ing to end user preferences, represents the output. As
for every Linux file system it’s possible to perform on
it classical operations as read, open, rename and so
on and all these operations will be based mainly on
music tags (for example author, album) values. It’s
either possible to use the shell tools like find to query
the meta information of multimedia files. This ap-
proach enables the user to keep handy collections of
data as well as meta information in order to reorganize
data according his own choices. With meta informa-
tion we mean the tag one can associate to each file
in almost every audio format.The tags we consider in
MMES are information such author of the track, title,
year, album, track number, musical genre, that can
be extracted by almost every musical format thanks
to the TagLib C/C++ library (Wheeler, 2008). MMFS
has been implemented in C language and distributed
under the GNU GPL license '. The project is based
on the use of the FUSE library (Szeredi, 2008, Singh,

Uhttp://code.google.com/p/musicmeshfs/

380

Corriero N., Cozza V., Zhupa E. and De Tullio V. (2008).
A CONFIGURABLE LINUX FILE SYSTEM FOR MULTIMEDIA DATA.

2006) to generate a file system in user space.

2 A MUSIC FILE SYSTEM IN
USERSPACE

The main idea of this work is the managing of mu-
sic information by a file system tree, using the FUSE
library. It avoids the necessity of working in kernel
space and we get rid of the portability problems be-
tween the various releases of the Linux kernel. In-
stead, we can use a simple API to implement a file
system with a series of callbacks depending on the op-
erations to perform. FUSE appears to the kernel like
a classical file system, but its behaviour is defined in
user space. Implementing such file system requires
some extra cost in terms of computation. Anyway,
it’s a fair price to pay for the advantages it offers: all
meta information of the multimedia files are available
for access by shell tools or even by graphical inter-
faces (file browsers).

The use of FUSE library in the project is limited to the
implementation of some of the callback functions de-
fined in the struct fuse_operations. These call-
back functions are self explaining for a Linux user, as
getattr, read, readdir, readlink, mknod, mkdir, unlink,
rmdir, symlink, rename, link, chmod, chown, truncate
and write.

Furthermore, there are some callback functions im-

In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 380-383

DOI: 10.5220/0001937103800383
Copyright © SciTePress

A CONFIGURABLE LINUX FILE SYSTEM FOR MULTIMEDIA DATA

plemented to optimize the code execution.

For semplicity, has been developed a little library
over FUSE, called db_fuse, where a subset of
these functions has been implemented, with the pur-
pose to offer all the necessary functionality to man-
age tags of musical files. db_fuse_getattr(),
db_fuse_readdir () and db_fuse_read () have been
the first functions implemented, because they en-
able navigating inside the file system. Particularly
db_fuse_readdir (), must work with a user schema
considering it a generative grammar to populate the
directory(Love, 2005). Then db_fuse_open() and
db_fuse_release () have been added to the project;
anyway, because generally multimedia files have a big
size, and they are read in chunks by players, it doesn’t
make sense that at each access the player must re-
solve the real file name; the idea is that only at the
moment of opening the virtual file for the first time,
db_fuse_open () analyzes the path name of the file,
finds the first real file matching the user requirements,
opens it in readonly mode and it refers to this file us-
ing the returned file handler. db_fuse_read (), then,
will just use the file handler, and db_fuse_release ()
will refer to it for closing the file. In conclusion,
db_fuse_rename () has been realized with the aim of
invoking rename_local_file (), once done the syn-
tactic controls over virtual path about the name to
modify and the new expected name.

Actually, the role of rename_local_file () is to set
tags with new values inside the multimedia file. Im-
plicitly the database will be updated too, this because
the monitoring process will assure real time synchro-
nization of the database with new data when new
tags are inserted. This is possible thanks to inotify,
a Linux kernel API that makes simpler the monitor-
ing of the changes in files and directories. Inotify
supports event-driven programming; it makes possi-
ble that when directories and files are added, updated
or removed from the pool of monitored directories,
the new files will be parsed and the database will be
updated.

3 MMFSLANGUAGE

MMFS makes possible the indexing of musical
collections and showing of data stored inside the
database by a directories view, as many existing sys-
tem do, but moreover it offers to the end user a con-
figuration language, that allows to query the database
without the need of SQL-like languages knowledge.
From the user point of view, MMFS can be used as a
classical file system, by command line and by graphi-
cal file browser as well. In addition it allows to choose

the multimedia files organization by setting a client
side parameter that is called schema.
By the schema the user can set the final structure of
directories by using some placeholders, for example
Yoartist or %album, to tell the system that the file
name or directory name will contain, in that position,
music belonging to the artist or to the album.

The language to set the schema will follow the Ex-
tended Backus-Naur Form grammar:

<SCHEMA> ::= <NAME> ("/" <NAME>)*
<NAME> ::= <NAME1l> | <NAME2>
<NAME1> ::= <FIXED> (<NAME2>)?
<NAME2> = <KEYWORD (<NAME1l>)?
<FIXED> ::= (["%/] | "%%")+
<KEYWORD> ::= "%artist" | "%year"

| "%album"| "S$track" | "$title"

| "%genre" | "%host"| "%path"

| "S$type" | "$filename"

Generally talking, a schema is divided into direc-
tory and file name, each of them represented as a se-
quence of keywords and fixed elements. Keywords
and their semantic must be defined in a configuration
file that will be used inside db_fuse library.

The schema aims to give the possibility of introducing
an order relation amoung source files: a conceptual
order with respect to file system tree levels, a lexi-
cographical order among sibling nodes. In figure 1.a

%artist | (%year) %album / %track - %title.%type

(@ — "

/Artista1/(1999) Album1/01 - TitoloA.ogg

IArtista1/(1999) AlbumA
O/Amsta1/(1999)A\bummo - TitoloB.ogg

/Artista1/(2008) AlbumN/01 - TitoloC.mp

IArtista1/(2008) AlbumN E O/Artista‘\/(zuo&) AlbumN/14 - TitoloD.mpZ

(b) /ArtistaN/(2005) AlbumM/03 - TitoloE.ogg

IArtistaN/(2005) AlbumM
O/Ams«aw/(zoos) AlbumM/10 - TitoloF-flac

/ArtistaN/(2007) AlbumZ/02 - TitoloA.ape

IArtistaN/(2007) AlbumZ E O/Artis'aN/(Zmﬂ) Albumz/12 - TitoloZ.ape
SELECT artista FROM "...%

SELECT anno,album FROM '..' WHERE artista ="...";
SELECT traccia fitolo,tipo FROM '..." WHERE artista = "...' AND anno ="..." AND album ="...\;

IAttistal

IAttistaN

Figure 1: Schema.

you can see an example of schema inserted by the fi-
nal user and in 1.b the resulting tree. The root obvi-
ously is 7’ (this example is suppose to follow the file
system mount point). The schema can be divided into
levels, each separated by the directory separator char-
acter (’/’). Then %artist (%year) album/$track

381

SIGMAP 2008 - International Conference on Signal Processing and Multimedia Applications

- %title.%type must be considered as composed
of three parts: %artist, then (%year) album and
finally $track - %title.%type. In this simple
example the whole first level is just a keyword:
%artist, then implicitly the user is asking for all
the artist names belonging to the database. The sys-
tem then will perform a query such as “SELECT
artist_ name FROM ...;” where “artist_name” is the
table corresponding to the keyword “%artist”, fig-
ure 1.c. The sublevels will be calculated in a sim-
ilar way, but using the WHERE clause too, impos-
ing stronger restriction going deeper in the tree. Each
couple “database column”, “value” corresponds to the
variable terms found inside the hierarchy at that time.
Then, to have the enumeration of files presents in the
directory - let’s say “U2” - will be performed a query
such as “SELECT year, album FROM ... WHERE
(artista = “U2”);” and so on.

4 MUSICMESHFS
ARCHITECTURE

The modular architecture of the system can be seen
mainly as formed by a demon and a client. Mu-
sicmeshfsd is the process that aims to ensure consis-
tency among real data (information inside monitored
files and directory) and the internal database. More
in detail, it has to monitor local files but it can be ex-
tended to intercommunicate with other instances of
musicmeshfsd in other hosts so to work over remote
files.

Musicmeshfsc is the process that makes possible to
show informations like in a file system tree according
to a user defined schema. Then the tree will be popu-
lated with the information stored by musicmeshfsd.
The file system is implemented in quasi-read-only
mode, as it won’t be possible to create or to move ex-
ternal multimedia files, and the only reasonable mod-
ification consists of renaming. This because seman-
tically it doesn’t make sense deleting or creating a
virtual file. The reason why renaming is allowed is
that it can be useful to change the file, in the sense
of renaming its tag. Obviously, it’s not possible to
move a file inside a virtual file system because there
is not any physical place (source directory) where to
move the file. Remind that the file collection can be
established just adding files to the monitored direc-
tory and then modifying the database. A nonsense
case is the one of creating an empty file. In this case
the user will create just a name in the database not
associated to any real file. The role of renaming is
important for enabling the end user to correct tag-
ging mistakes or eventually to add missing informa-

382

tion. So rename acts only on the tag and is imple-
mented in such a tricky way that is possible to move
directories and files without limitation, but the new
file name must contain the same information with the
original file. Obviously, the destination file will fol-
low the user schema and, even more, the depth level
between old and new name must be the same to avoid
ambiguity between the tag types or having an incon-
sistent database. In figure 2 the general architecture
is showed. The two main components intercommu-
nicate by a shared relational database. Musicmeshfsc
implements the previously analyzed FUSE functions,
that correspond to a realization of the Linux Virtual
File system Switch.

The usage of a database to manage information, ap-
pears as a solution that makes our file system able to
manage any kind of information that includes meta-
data. Currently the db_fuse library manages data once
they are stored inside the database. The same ap-
proach has been used as well to arrange in a file sys-
tem fashion metadata retrieved from emails (data, ob-
ject, subject, sender, receiver and so on).

Tnotify subsysten

Figure 2: Architecture.

In the project’s architecture there is a compo-
nent included in the musicmeshfsc, that represents
a reusable and extendable library that can be used
for general purpose application to create a virtual file
system for any kind of data stored inside a sqlite3
database.

Musicmeshfsc has been divided in two well separated
logical parts: one database content dependent, the
other not.

First part accomplishes generation of the file system
hierarchy, starting from a generic database and a con-
figuration schema; the second part accomplishes man-
agement of insert, update and remove operations ref-
ered to single tuples inside database tables, as well
as the interpretation of keywords choosed by the end
user.

The user must define the database table names, the
keywords to use inside the schema to arrange the file
system and the related table column name and finally
in case of JOIN the tables that is possible to merge
and the constraints to impose in the WHERE state-
ments (T1.externKey == T2.referencedValue). Once

A CONFIGURABLE LINUX FILE SYSTEM FOR MULTIMEDIA DATA

the user sets these values, it will be easier to execute
the right query for the information retrieval.

Inside the db_fuse library two parsers have been im-
plemented, one for the configuration schema, the sec-
ond to parse the virtual file system pathnames. These
features will allow the user of this library to be able
to configure the file names by a schema.

S MUSIC SHARING OVER
EMBEDDED DEVICES

Every embedded device can use Linux and MMFS.
One way to boot a kernel on mobile devices by a non-
invasive approach is showed in (Corriero et al., 2008);
the idea is to install the kernel over a miniSD card, us-
ing Haret(REF, 2007) as bootloader.

The compilation kernel phase appears quite tricky be-
cause of special configurations and optimized patches
for the used device. The kernel version used is
2.6.21.hh18, where hh stands for handhelds. The
source code was already patched with needed mod-
ules for htc blueangel family devices’. Compiled
the kernel, a minimal embedded distribution has been
created. Embedded devices offer technologies well
suited to implement wireless versatile functionalities
for creating ad hoc mesh network; The idea is to build
up a decentralized ad hoc mesh network without static
servers. In this kind of network is possible to reach far
nodes inside the network exploiting the shared band
among all network nodes. The nodes then will act
both as clients and as servers. Generally wireless de-
vices are used for managed connection, in the sense
that there is an access point to allow a node to con-
nect to network services. In this work an ad hoc con-
nection is proposed but in the opposite it’s possible to
create a peer to peer communication without the need
of a server node and then it’s possible to create a mesh
network infrastructure; depending on the kind of con-
nection, the way of configuring the wifi card changes.
In all the case where mobility plays an important rule
(smartphone), it’s better to consider a special case of
Wifi Mesh network in mobility context linked in ad
hoc manner: the manet. Routing protocols refering to
manet take into consideration the high level of mobil-
ity of network nodes, particularly the Ad hoc On De-
mand Distance Vector reactive protocol (aodv) gen-
erates a path between nodes only on a source node
demand. To allow a smartphone to natively use mesh
network, the aodv-uu module(aod, 2008) has been in-

2To download hh-kernel source code:

cvs —-d :pserver:anoncvs@anoncvs.handhelds.org:/cvs

checkout linux/kernel26

cluded while compiling the kernel. Installing MMFS
on such embedded devices in the manet, brings to the
creation of a framework for sharing musical informa-
tion among mesh nodes. The virtual music file system
will be able to managing, analyzing and monitoring a
set of directories and extracting multimedia data from
files of supported types and offering a file system view
of these data inside a directory tree arranged accord-
ingly to the user preferences. One open problem is
that of shared music author copyright. A system to
certify licenses is needed to avoid the spreading of il-
legal detected music by any network node.

6 CONCLUSIONS AND FUTURE
WORKS

Managing the music data inside a virtual file system
seems to be a perfect solution for users that must hang
with a big musical data bank and that don’t accept the
static data organizations proposed from almost all the
music players. As well, it seems to be a good way for
managing the organization of exchanged and shared
multimedia files coming from different sources inside
a mesh, hiding to the end user the classification but
allowing him to impose his own hierarchy. A further
extension of this work would be to extend the number
of analyzed tags and to insert personal metainforma-
tion, for example about personal opinions of the user
refering to a music track, generating an always origi-
nal music tree.

REFERENCES

(2007). Haret reverse engineering tool.

(2008). Aodv-uu homepage - uppsala university. http://
www.it.uu.se/research/group/coregroup.

Corriero, Cozza, Pistillo, and Zhupa (2008). Wifi mesh for
handhelds in linux.

Love, R. (September 2005). Kernel korner - intro to inotify.

Singh, S. (2006). Develop your own filesystem with fuse.
http://www.ibm.com/developerworks/linux/library/
Ifuse.

Szeredi, M. (2008). Fuse. http://fuse.sourceforge.net. Home
page.

Wheeler, S. (2008). Taglib, http://developer.kde.org/
wheeler/taglib.html. Home page.

383

