
algorithm NFPCA against MMSE (Umbaugh, 
1998), AMVR (Umbaugh, 1998), and GMNR.  
The values of the variances to model the noise in 
images processed by NFPCA represent the 
maximum of the variances per pixel resulted from 
the decorrelation process. The implementation of the 
GMNR algorithm used the masks  
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
⎛
=
256
1
64
1
128
3
64
1
256
1
64
1
16
1
32
3
16
1
64
1
128
3
32
3
64
9
32
3
128
3
64
1
16
1
32
3
16
1
64
1
256
1
64
1
128
3
64
1
256
1
1
h and  
⎟
⎟
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎜
⎜
⎝
⎛
=
20
1
10
1
20
1
10
1
5
2
10
1
20
1
10
1
20
1
2
h  
A synthesis of the comparative analysis on the 
quality and efficiency corresponding to the 
restoration algorithms presented in the paper is 
supplied in Table 1. 
Table 1. 
Restoration 
algorithm 
Type of 
noise  
Mean 
error/pixel 
MMSE 52.08 
AMVR 
U(30,80) 
10.94 
MMSE 50.58 
AMVR 
U(40,70) 
8,07 
MMSE 37.51 
AMVR 11.54 
GMNR 14.65 
NFPCA 
N(40,200) 
12.65 
MMSE 46.58 
AMVR 9.39 
GMNR 12.23 
NFPCA 
N(50,100) 
10.67 
REFERENCES 
Bacchelli, S., Papi S. 2006, Image denoising using 
principal component analysis in the wavelet domain. 
In  Journal of Computational and Applied 
Mathematics, Volume 189, Issues 1-2, 1 May 2006, 
Pages 606-621   
Balster, E. J., Zheng, Y. F.,  Ewing, R. L. 2003, Fast, 
Feature-Based Wavelet Shrinkage Algorithm for 
Image Denoising. In International Conference on 
Integration of Knowledge IntensiveMulti-Agent 
Systems. KIMAS '03: Modeling, Exploration, and 
Engineering Held in Cambridge, MA on 30 
September-October 4, 2003 
Cocianu, C., State, L., Stefanescu, V., Vlamos, P., 2006,  
PCA-Based Data Mining Probabilistic and Fuzzy 
Approaches with Applications in Pattern Recognition, 
Proceedings of ICSOFT 2006, Portugal, pp. 55-60, 
2006 
Cocianu, C., State, L., Vlamos, P.,2002, On a Certain 
Class of Algorithms for Noise Removal in Image 
Processing:A Comparative Study, In Third IEEE 
Conference on Information Technology ITCC-2002, 
Las Vegas, Nevada, USA, April 8-10, 2002 
Cocianu, C., State, L., Stefanescu, V., Vlamos, P., 2004, 
On the Efficiency of a Certain Class of Noise Removal 
Algorithms in Solving Image Processing Tasks, In: 
Proceedings of the ICINCO 2004, Setubal, Portugal 
Diamantaras, K.I., Kung, S.Y., Principal Component 
Neural Networks: theory and applications,  John 
Wiley &Sons, 1996 
Gonzales, R., Woods, R., Digital Image Processing, 
Prentice Hall, 2002 
Haykin, S., Neural Networks A Comprehensive 
Foundation, Prentice Hall,Inc. 1999 
Hyvarinen, A., Karhunen, J., Oja,E., Independent 
Component Analysis, John Wiley &Sons, 2001 
Hyvarinen, A., Hoyer, P., Oja, P., 1999. Image Denoising 
by Sparse Code Shrinkage, 
www.cis.hut.fi/projects/ica,  
Pitas, I., 1993, Digital Image Processing Algorithms, 
Prentice Hall 
Portilla, J. 2005, Image Restoration using Gaussian Scale 
Mixtures in Overcomplete Oriented Pyramids. In 
SPIE's International Symposium on Optical Science 
and Technology, SPIE's 50th Annual Meeting, Proc. of 
the SPIE, vol. 5914, pp. 468-82, San Diego, CA, Aug 
2005 
Sonka, M., Hlavac, V., 1997, Image Processing, Analyses 
and Machine Vision, Chapman & Hall Computing 
Stark, J.L., Murtagh, F., Bijaoui, A., 1995, Multiresolution 
Support Applied to Image Filtering and Restoration, 
Technical Report 
State, L, Cocianu, C, Vlamos, P.., 2001, Attempts in 
Using Statistical Tools for Image Restoration 
Purposes, In Proceedings of SCI2001, Orlando, USA, 
July 22-25, 2001 
Umbaugh, S., 1998, Computer Vision and Image 
Processing, Prentice Hall 
SIGMAP 2008 - International Conference on Signal Processing and Multimedia Applications
196