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Abstract: We propose a new surveillance system that uses both omni-directional (OD) and Pan/Tilt/Zoom (PTZ) 
cameras with heterogeneous characteristics and a relatively simple image processing algorithm to achieve 
the goal of real time surveillance. The system is demonstrated for detecting the occurrence of human’s 
fall-down event. An OD camera has a 360º viewing angle. It is used here to replace the multiple traditional 
cameras having limited viewing angles in order to reduce the system cost. A PTZ camera is also used in the 
system to track the target of interest and verify the occurrence of the event. Various unique features obtained 
from OD images are used for fall down detection and a multi-classifier approach is used for better 
recognition performance. Experimental results show that the system is quite robust to sudden changes of 
walking paths and different directions of falling. During the tracking process, a moving target is captured 
and its representative coordinates is obtained based on the processing of continuous OD images. The 
coordinates of the target in the OD camera space will be converted to its corresponding three dimensional 
(3D) coordinates in a real-world space. This derived information is served as guidance for the automatic 
control of the PTZ camera to track the moving target as closely as it can. By combining the advantages of 
two heterogeneous types of cameras, our experimental results show that the proposed system can track the 
moving target well without the need of a complicated method, showing the feasibility and potential of the 
system.

1 INTRODUCTION 

With the rapid development of technology and 
medical treatment, the average life span of human 
increases. As a result, the percentage of the 
population group with age 65 or more becomes 
higher and higher in many parts of the world. The 
number of the elderly with chronic disease, 
melancholia, and psychosis is increasing as well. 
The elderly suffer from the fall accidents more than 
young people according to the statistics. A fall 
accident not only causes physical injury but also 
produces emotional disturbance for the elderly. 

More and more elderly need long-term care 
(Chen, 2002). However, there may not be enough 
manpower to take care so many elderly. One way to 

alleviate the seriousness of this manpower shortage 
problem is to deploy a surveillance system for the 
detection of fall down events and other dangerous 
situations.  

A traditional camera usually has a fixed viewing 
angle that limits the possible coverage of 
surveillance in an environment. Multiple cameras 
are usually needed to cover the entire surrounding of 
the environment. A Pan/Tilt/Zoom (PTZ) camera can 
extend its viewing angles by constantly panning and 
tilting the camera with a motor-controlled 
mechanism. However, this is not very practical for 
long-term surveillance because of the considerable 
waste of power and the quick wearing of 
motor-driven mechanical parts. Besides, the event of 
interest may not be observed if the scanning cycle of 
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the PTZ camera is much longer than the duration of 
the event. Another way to extend the viewing angle 
of a tradition camera is to put it on a moving carrier. 
Although it can increase the cruising range of a 
surveillance area, the area covered by the camera at 
a time instant is still limited. And there may be some 
dead spots left un-attended. 

To solve the problems mentioned above, 
Greiffenhagen et al. developed a new surveillance 
system based on the use of an omni-directional (OD) 
camera which basically consists of a traditional 
camera and a convex mirror such that it has a 360º 
viewing angle at any time instant (Greiffenhagen, 
2001). After the OD camera was proposed, many 
applications were developed based on the use of the 
camera. For example, with the images taken by the 
OD camera, Mituyosi et al. tried to capture and track 
the features of a human face (eyes, mouths, etc) 
(Mituyosi, 2003). 

Although an OD camera can capture the image 
from every angle at one shot, the resulting image is 
distorted due to the use of the convex mirror. 
Normally, the distortion level increases as it moves 
from the center of the image to the border of the 
image. In order to cover large surveillance areas 
with reasonably good image quality, Morita used 
several OD cameras and a computer network system 
to connect them (Morita, 2003). Similarly, Lee also 
used multiple OD cameras for outdoor surveillance 
(Lee, 2002).  

Again, the distortion from the convex mirror in a 
PTZ camera could cause a serious problem for some 
applications but it does have the advantage of the 
broadest viewing angle. Thus, we use a PTZ camera 
to replace the possible use of the second or more OD 
cameras in our surveillance system. These two 
heterogeneous types of cameras can be operated in a 
complementary manner. We use an OD camera for 
the preliminary tracking of a moving object in the 
OD space and if the moving object presents the 
features of interest, the system automatically 
controls the PTZ camera to capture a sequence of the 
undistorted and clear images that contain the moving 
object for further visual inspection (by naked eyes). 
Several advantages are associated with the system 
that has such dual but heterogeneous cameras. First, 
one OD camera can cover large enough surveillance 
area with little dead spots. Second, the pan, tilt, and 
zoom capability of the PTZ camera is fully exploited 
to get clear visual information of the moving object 
for better visual assessment. Third, the moving 
object may be locked and stayed in locked by a PTZ 

camera much more easily if the object’s location 
information obtained from the OD images is 
available. This dual camera system can be used in 
many long-term and smart surveillance applications. 
In this paper, we demonstrate its use in the detection 
of human falling event in an indoor environment, 
such as living room or sanatorium. Once a true 
falling event is identified, emergency care may be 
activated immediately to save lives. In this 
application, we use an OD camera to detect the 
falling event. If a suspicious event is detected by the 
system, an alarm and/or message as well as PTZ 
images will be sent to designated person who will 
verify the event based on the PTZ images by naked 
eyes. This will eliminate unnecessary false alarms 
and enhance the reliability and credibility of the 
system. 

In the following sections, we will discuss the 
issues of moving object extraction, fall-down event 
recognition, and moving object tracking. The 
experimental results and conclusion will be given in 
the last two sections, respectively. 

2 SYSTEM FRAMEWORK AND 
FLOWCHART 

We use the system framework shown in Figure 1. 
First, we use an OD camera to capture the image of 
the whole scene in a surveillance area. The resulting 
OD images will be used to detect the existence of a 
moving object. If a moving object is identified, its 
representative coordinates on the OD image plane 
will be converted to the real-world coordinates in a 
three-dimensional (3D) space. The coordinate 
information in 3D can be used to control a PTZ 
camera such that the moving object can be tracked 
and locked by the PTZ camera easily. The images 
taken by the PTZ camera will be sent back to an 
intended user of the surveillance system via some 
network links for further visual inspection and 
verification. 

The system flowchart on signal processing tasks 
is shown in Figure 2. Here, we use only simple and 
basic image processing methods to capture a moving 
object. Once the moving object is detected, we do 
the coordinate conversion and fall detecting. If a 
suspicious fall-down event is detected, PTZ images 
will be sent to intended users to verify the event and 
see if it is a true event or just a false alarm. 
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Figure 1: System framework. 

 

Figure 2: System flowchart.  

2.1 Object Capturing 

The moving object detecting approach that we use 
here is the background subtraction method which is 
simple and well-known. As usual,   background is 

updated on a regular basis in order to overcome the 
problem of light intensity change and/or chromatism. 
We use Equation (1) to capture a foreground image. 

),(),(),( yxbfyxcfyxD −=  (1) 

where ),( yxf c denotes the pixel intensity at location 
(x, y) of input image, ),( yxf b represents the pixel 
intensity of background image at the same location, 
and ),( yxD denotes a difference image. Then we use 
Equation (2) to eliminate the potential noise and 
shadows and get a binarized image: 

⎩
⎨
⎧ >

=
else0,

),( if,255
),(ˆ TyxD

yxD  (2) 

where T is an empirical threshold. When TyxD >),( , 
the system considers that a pixel at location (x, y) is 
a potential pixel of the foreground image; otherwise, 
it could be just part of noises or shadows that need to 
be removed. Then we use some techniques in 
morphology to capture a complete foreground image. 
Finally, we use the well-known connected 
component labeling method to identify the moving 
object. Figure 3 shows an original image and a 
foreground image after performing the image 
processing tasks discussed above. 

After the object of interest is captured, we use 
two sub-systems for further processing. One is the 
fall detecting sub-system, and the other one is the 
object tracking sub-system.  

 
(a)                      (b) 

Figure 3: The results of foreground image capturing. (a) 
An original image; (b) A binarized image after noise 
removal and connected component labeling. 

2.2 Fall Detecting Sub-System 

2.2.1 Method 

When a falling event occurs, the human body 
usually has significant movement. Thus, we define 
body line of human body next and use the features 
associated with the body line for fall-down 
recognition later. Figure 4 shows the two scanning 
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methods to find the body line. One is horizontal 
scanning, and the other is vertical scanning. In 
Figure 4, the ellipse is used to represent the 
foreground and the rectangle is used to represent the 
smallest bounding box that encloses the foreground. 
All we need is the human body, so each scan line is 

dΔ  pixels away from its closest sideline to avoid 
the inclusion of head and feet parts. The a1, a2, b1, 
and b2 are the intersecting points at which the scan 
lines and the boundary of the foreground object 
intersect. In addition, Points S and T are the 
midpoints for a1 and a2, and for b1 and b2, 
respectively. Finally, ST  segment is the potential 
body line. Figure 4 shows the results of horizontal 
scans and vertical scans, resulting in two body lines, 
and we choose the longer one as our final body line. 
We need both horizontal and vertical scans instead 
of one of them in order to avoid the situation of 
wrong body line selection when the major axis of the 
ellipse is parallel to the x-axis or y-axis.   

 

 

(a)                  (b) 

Figure 4: Finding a body line segment. (a) Vertical 
scanning; (b) Horizontal scanning. 

After the body line segment is found, we rename 
the end points of the segment and call them I and J 
according to the following rule: The end point closer 
to the center M (where the OD camera is located) is 
called I and the other end point is called J, as shown 
in Figure 5. Next, we define a body line vector 
IJ and a reference line vector MI as follows:  

OMOIMI −=               (3) 
OIOJIJ −=                (4) 

where O is the origin located at the top left corner 
of the image. The angle θ between these two 
vectors is defined as 

)(1cos IJMIIJMI ⋅−=θ           (5) 

where IJMI ⋅ is the inner product of the vectors 
MI and IJ , and • denotes the norm operation. Figure 
6 shows a typical body line vector and a reference 
line vector imposed on a real-world OD image. 

Next, we define the features used for the 
recognition of fall down event: 
(1) The angleθ defined in Equation (5). 
(2) The length L of body line vector IJ . 
(3) The x coordinate of the midpoint of body line. 
(4) The y coordinate of the midpoint of body line. 
(5) The ratio ρ between the length and the width of 
the rectangle shown in Figure 4. 

One set of these five features can be obtained for 
one image frame. Multiple sets of features can be 
obtained for the multiple frames contained in an 
observing window. Let K be the number of frames in 
the observing window. Then this sliding window is 
moved such that any two adjacent windows contain 
K - 1 identical image frames and one different frame. 
In this study, we set K to be 15.  

 
Figure 5: A pictorial representation of body line and 
reference line vectors.  

 

Figure 6: A typical OD image imposed by body line and 
reference line vectors and a bounding box (rectangle). 

Figure 7 shows the recognition flowchart of the 
proposed system. Here, a two-stage multiple 
classifiers is designed to classify the feature vectors 
form by the feature values discussed above. The first 
(stage) classifier attempts to classify three classes: 
normal (do not fall), falling down in non-radial 
direction, and suspicious fall-down in radial 
direction. If the last class is determined by the first 
classifier, then the system uses a second (stage) 
classifier to reduce the false alarm rate. The second 
classifier is based on the Back-Propagation Neural 
Network (BPNN).  
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Figure 7: System flowchart of our multiple classifiers. 

2.2.2 First Classifier – Simple Decision 
Criteria 

We found that the angle feature defined in Equation 
(5) does not change much when a target is walking 
in a normal way or standing according to our 
experiment. Furthermore, a large angle variation 
occurs when the fall-down in non-radial direction 
happens. The simple decision criteria below are used 
to determine whether the non-radial directional 
falling occurs.  

(1) The average of angle feature values is higher 
than a preset threshold (indicating the target may be 
falling). 

(2) The displacement of body line midpoint is 
lower than another preset threshold (indicating the 
target ceases moving). 

If both conditions above are met, the system 
determines that a non-radial directional fall-down 
event occurs. However, we can not get a high 
enough angle variation for radial-direction fall-down, 
as shown in Figure 8. Thus, we need new 
recognition features and decision criteria for this 
situation. We found that when the target falls in 
radial direction, the length of body line vector 
changes significantly in some observing windows. 
Thus, we define two other decision criteria with 
different features below to deal with this situation:  

(1) The variance estimate of body line lengths is 
higher than a preset threshold. 

(2) The displacement of body line midpoint is 
lower than another preset threshold. 

We also found that the body movements for 

sitting and squatting also satisfy the two conditions 
above. Thus, if the two conditions above are met, we 
can only claim that we have a suspicious case of 
radial-direction fall-down. Further differentiation 
between radial-direction fall-down and sitting or 
squatting is necessary. This is the objective of the 
second classifier discussed next. 

 

Figure 8: Body line vector and reference vector almost 
align with each other in radial-direction fall-down. 

2.2.3 Second Classifier and Multiple 
Classifiers 

We observed that at least 15 frames are required to 
complete the process of sitting, squatting, and 
radial-direction falling. Thus, the system monitors 
15 continuous frames and record five parameter 
values. These five parameters correspond to the five 
features defined in Section 2.2.1:  

(1) The angleθ defined in Equation (5); 
(2) LΔ : The difference of the length L obtained 

from two adjacent frames; 
(3) xΔ : The displacement in X direction for the 

x coordinates obtained from two adjacent frames; 
(4) yΔ : The displacement in Y direction for the 

y coordinates obtained from two adjacent frames; 
(5) ρΔ : The variation between the two ratios 

ρ obtained from the bounding boxes in two adjacent 
frames. For each frame in the observing window, 
these five parameter values are obtained. For 15 
consecutive frames, we have a total of 75 parameter 
values which become the input to the BPNN for 
training and testing.  

2.3 Object Tracking Sub-System 

Once an object is obtained, a critical point is defined 
as the object point that is closest to the center of OD 
image. The coordinates of this critical point in the 
OD space will be converted to the real-world 3D 
coordinates that could be useful for the guidance 
control of PTZ cameras. Because the image taken by 
an OD camera is projected from real-word space (as 
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shown in Figure 9), it is possible to find the 
corresponding point in real-world space for a point 
in the OD space. In other words, we need to find the 
point mapping from OD space to real-world space.   

 
 (a)                    (b)  

Figure 9: Two different coordinate spaces. (a) A real-world 
3D space; (b) Image taken by an OD camera in the OD 
space. 

We know that a point Q’ in the real-world space 
as shown in Figure 9(a) can be projected to the CCD 
sensor in an OD camera through the reflex of the 
convex mirror, resulting in the corresponding point 
Q in the OD space as shown in Fig. 9(b). This idea is 
further illustrated in Figure 10. After we capture the 
critical point in the OD image [marked by ◎ in 
Figure 11(a)], we can calculate some useful 
parameter values as follows:  

22
YX QQd +=             (6) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

X

Y

Q
Q1tanα              (7) 

where d represents the distance between the critical 
point to the center of OD image and α is the angle of 
that point with respect to the x-axis, as shown in 
Figure 11. 

 

Figure 10: Imaging principle of an OD camera (Yu, 1999). 

In addition, the coordinates of 'Q can be derived 
as  

 -  
tan
sin

,
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,
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⎥
⎥
⎦

⎤

⎢
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mm
Q

β
α

β
α        (8) 

where m denotes a known constant, representing  
the vertical distance (or height) from the floor to the 
OD camera, and β denotes the vertical angle of the 

critical point with respect to the x-y plane in Figure 
10. 

 
(a)                   (b) 

Figure 11: Position of a critical point in OD space. (a) an 
OD image; (b) parameter calculated from the OD image 
information. 

We can find the corresponding position of the 
critical point in real-world space by Equation (8) but 
we still need one more value for the parameters 
other than the d and α calculated previously. 
Specifically, we need to find the value for the 
parameter tanβ. However, it can not be obtained 
directly from OD images. In fact, we need to 
estimate it and one way to do so is as follows. First, 
design an n-point line array pattern as shown in 
Figure 12. Then, we attempt to find the position 
mapping between the points in the OD image and 
their corresponding points in real-world space. As 
shown in Figure 12, we have  

l
hi

i =βtan                (9) 

 
r
d

k i
i =                (10) 

where iβ  denotes the angle β for Point i (or Pi), ih  
represents the vertical distance between the plane x-y 
in real-world space and Point i (or Pi), l  is the 
horizontal distance between the line in the array 
pattern and the center of the OD camera in 
real-world space, id  is the distance from Point i to 
the OD image center in OD space, r is the radius of 
the largest circle containing meaningful image data 
in OD images, and ik is a known ratio for Point i. 
Numerical values of these parameters are shown in 
Table 1 (only one third is shown). Given these data 
set, we use a MATLAB curve fitting tool to calculate 
the best relationship curve between tan β and k. The 
result is in Equation (11): 22

6032.0
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Therefore, given the radius r and the distance d, 

we get k from Equation (10) and then obtain the 
value for tan β  from Equation (11). Finally, we get 
the converted coordinates in real-world space by 
using Equation (8).  

After we get an estimate for the coordinates of 

α

β

x

y
z

Q

"Q

'Q sensorCCD

YQ

XQ
α

Q

SIGMAP 2008 - International Conference on Signal Processing and Multimedia Applications

296



 

 

the critical point in real-world space, we can send 
proper commands to the PTZ camera via RS232 port 
by properly setting panning, tilting, and zooming 
such that the moving target can be centered in the 
resulting PTZ images with appropriate size. For a 
new critical point detected, the PTZ camera may 
need a different set of commands to control it 
properly. Continue in this way, the moving object 
can be tracked effectively.  
 

 
(a)                (b) 

Figure 12: Experiment trying to find the relationship 
between two coordinate spaces (Hsu, 2004). (a) Data 
points in real-world space; (b) data points after projection. 

Table 1: Relationship between tan β and k. 
i l (mm) h (mm) tanβi ki d (pixel) r (pixel)
1 33.0 0.24 0.90 104 
2 36.0 0.27 0.88 102 
3 41.0 0.30 0.86 100 
4 47.0 0.35 0.84 97 
5 57.5 0.43 0.80 93 
6 68.0 0.50 0.76 88 
7 84.2 0.62 0.72 83 
8 100.5 0.74 0.66 76 
9 122.0 0.90 0.59 69 
10 143.0 1.06 0.52 60 
11 170.0 1.26 0.47 54 
12 197.0 1.46 0.41 47 
13 229.0 1.70 0.36 42 
14 261.0 1.93 0.32 37 
15 

135 

298.5 2.21 0.28 33 

116 

3 RESULTS AND DISCUSSION 

3.1 Fall Detecting 

Figure 13 shows a possible value variation for 
Feature (5) and Feature (1) given in Section 2.2.1. It 
is found that the values for ratio features may change 
significantly in both walking and falling, while the 
values of angel feature change significantly only in a 
falling situation. Thus, the angle feature may be 
more robust than the ratio feature with respect to 
different walking paths.  

The evaluation criteria we use for the fall 

detection sub-system are accuracy, specificity, and 
Kappa values (Siegel, 1988) (Lee, 2000). Table 2 
shows the performance comparison between the 
results of using a single (first stage) classifier and a 
multiple classifiers. The multiple-classifier approach 
always outperforms the single classifier method. 
This demonstrates the effectiveness of the second 
stage classifier in the sub-system. 

 

Figure 13: A comparison between ratio and angle features. 

Table 2: Performance comparison between single classifier 
approach and multiple-classifier approach. 

 Accuracy Specificity Kappa 
Simple 

criterion 0.82 0.72 0.64 

Multiple 
classifier 0.87 0.88 0.73 

3.2 Real-Time Tracking 

We give a simple experiment to evaluate the 
precision of the tracking sub-system. A target is 
asked to walk along a specified path. Then the 
system predicts the walking path based on the 
information from OD images and the coordinate 
conversion formula given in Equation (8). The result 
shows that the predicted walking path is quite close 
to the actual walking path, but some errors exist. The 
errors may come from image processing (wrong feet 
or critical point positions are obtained) and the 
curving fitting formula given in Equation (11) for 
tan β . 

We check several fixed and known points to 
verify the precision of the coordinate conversion 
formula. Eight points shown in Figure 14 are 
selected in our experiment. The results are shown in 
Table 3. 

As Table 3 shows, the error could be as high as 
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10 pixels or more. However, the size of the image 
considered here is 752*771 and the errors in 
X-direction and Y-direction are about 0.8% and 
0.84%, respectively. Thus, the error is relatively 
small and thus the formula in Equation (11) is 
acceptable. We can also see that the errors in the 
inside block are smaller than those in outside block. 
The reason is that the input image is distorted more 
seriously in the outside block than in the inside 
block. Therefore, we found that bad image 
processing result (such as wrong feet detecting) is 
the main source contributing the error and the curve 
fitting equation has little contribution on inaccuracy.  

 

Figure 14: Top-view diagram of experimental environment 
(Size: 752*771). 

Table 3: Errors for coordinate conversion. 

 X direction Y direction 

Position Error 
 (pixels) 

Average  
error  

(pixels) 

Error  
(pixels) 

Average  
error 

(pixels) 
a 0.33 7.07 
b 5.30 2.00 
c 7.23 0.27 

Inside 

d 2.99 

3.96 

10.16 

4.88 

e 8.38 1.45 
f 12.00 16.78 
g 0.79 9.67 

O
utside 

h 11.20 

8.09 

6.03 

0.19 

7.02 

5.95 

 
In Li’s work, a PTZ camera must be installed 

directly under an OD camera and no coordinate 
conversion is used (Li, 2006). Several drawbacks are 
associated with the approach proposed by Li. First, 
the installation constraint may prevent its system 
from being practical because the installation of the 
system may not be possible in some environments. 
Second, the PTZ camera can cover a limited 

surveillance area (with only 180�viewing angle). In 
other words, half of the room can not be seen. Third, 
the tracking accuracy in Li’s approach may be 
inferior since no coordinate conversion is used for 
error compensation. In our proposed system, we do 
not have the installation constraint mentioned above. 
Theoretically, it can be installed anywhere in the 
environment. Of course, some locations may be 
more suitable than others in practical consideration. 
We conducted two more experiments to further 
illustrate the problems associated with the approach 
proposed by Li and demonstrate the advantages with 
the proposed approach in this paper. One is for the 
environment where the PTZ camera is installed 
directly under the OD camera (Point A in Figure 15), 
and the other is for the environment where the PTZ 
camera is installed at anywhere except just under the 
OD camera (Point B in Figure 15). Again, we assign 
a walking path for a target to follow and compare the 
prediction accuracy of the path obtained by the two 
approaches.  

In the first experiment, since the PTZ camera is 
put right under the OD camera, the accuracy results 
for the approaches are quite similar and are not 
shown here. In addition, a common drawback of this 
installation is the limited viewing angle. For 
example, suppose someone moves from Point B to 
Point C along the BC segment and the PTZ camera 
points to the exact south from the center in Figure 15. 
In this case, half of the BC segment cannot be seen 
and the tacking can not continue. In the second 
experiment, we install the PTZ camera at Point B. 
Note that the approach by Li uses the detected 
moving target directly from OD images without any 
correction. So if the target walks along the straight 
line BC, the line will be distorted and becomes a 
curve as shown in Figure 15. This curve rather than 
straight line information is provided to the PTZ 
camera for tracking. Thus, with this erroneous 
information, smooth and continuous tracking 
becomes harder in this case. This drawback will not 
occur with the proposed approach. Since we have 
corrected the distortion in some extent, the detected 
path is roughly a line (as Figure 14 shows). With this 
more accurate information, the smooth and 
continuous tracking by the PTZ camera is easier. In 
summary, the proposed approach has advantages 
over the one proposed by Li, although additional 
computation is required.  
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Figure 15: OD image showing an assigned path. 

4 CONCLUSIONS 

In this paper, a smart surveillance system for human 
fall-down event detection based on dual 
heterogeneous cameras is proposed. We attempt to 
combine the advantages of both OD camera and PTZ 
camera. Specifically, we can use the wide viewing 
angle capability provide by the OD camera for 
preliminary tracking and fall detecting, followed by 
the use of a PTZ camera for fall detection 
verification, face detection or other possible 
applications. The precision for the coordinate 
conversion between two coordinate spaces is good. 
The feet detection error in image processing is the 
main contribution of the inaccuracy. In our system, a 
PTZ camera can be installed at the best location for 
surveillance in real-world situation, which can offer 
installation flexibility and convenience.  
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