
NEW TECHNIQUES TO ENHANCE THE CAPABILITIES OF
THE SOCKS NETWORK SECURITY PROTOCOL

Mukund Sundararajan and Mohammad S. Obaidat
Computer Science Department, Monmouth University, West Long Branch, NJ, U.S.A.

Keywords: Security protocols for computer networks, SOCKS, telecommunications, multicast, UDP tunneling.

Abstract: SOCKS is an industry standard network security protocol used in private networks to allow secure traversal
of application layer traffic through the boundaries of the network. Standardized by IETF in Request for
Comments (RFC) 1928 (Leech et al., 1996) as SOCKS Version 5, this protocol has found widespread use in
various security frameworks to allow a variety of application layer protocols to securely traverse a firewall.
This paper is the result of research performed on the usability of the protocol in application domains such as
multicast. We discuss some of the shortcomings of the SOCKS protocol and provide a framework and the
methods for enhancing the capabilities of the protocol in areas such as multicast and advanced TCP and
UDP capabilities not addressed by the current standard of the protocol. The methods proposed are being
implemented in a reference implementation by the authors.

1 INTRODUCTION

In today’s global and geographically dispersed
organizational world, network security is a key
concern to organizations and individuals. With
advances in technology, most of today’s
organizations have their key resources and data
distributed across powerful transactional databases,
Lightweight Directory Access Protocol (LDAP)
directories and N-tier application servers. There is
also an increasing use of tools for collaboration like
instant messaging, voice and video conferencing over
IP and unified communications portals. With a large
amount of confidential data flowing through the
private network, it is important to ensure that none of
this data leaves the network in an un-intended way. It
is also equally important to ensure that only trusted
and reliable data enters into the private network from
the public Internet.

The SOCKS protocol was developed to allow
application layer protocols to securely leave and
enter a private network. Typically deployed at the
network boundary in a firewall, it allows an
application gaining access into a network to
authenticate itself and authorizes the application to
access the network resource it is trying to access. It
protects a wide range of TCP based applications like
telnet, http, ftp and other TCP based application
specific protocols.

Operating in a client server mode, application
nodes or computers within a SOCKS protected
network are ‘socksified’ by a socks client library that
provides a transparent abstraction layer between the
application and the kernel socket library and hides
the implementation details of the socks protocol from
the application. When an application attempts to
make a socket connection to a node or computer
outside the local network, the socks client library
intercepts the call. It then sends request-response
style messages to the socks server configured for the
client to use. The socks server challenges the client to
authenticate itself. The socks client can be pre-
configured to provide the authentication credentials
or can prompt the application or user to do so. The
SOCKS protocol supports a variety of authentication
modes from simple username-password
authentication to sophisticated models like Kerberos.
Once authenticated and authorized the socks server
allows the client to connect to the remote node while
acting as a proxy server for the connection.

2 RELATED WORK

There are certain inherent limitiations with the
SOCKS protocol which makes it less suitable for
securing certain applications like multicast and IP
telephony. Fung and Chang (Fung and Chang, 2000)

197
Sundararajan M. and S. Obaidat M. (2008).
NEW TECHNIQUES TO ENHANCE THE CAPABILITIES OF THE SOCKS NETWORK SECURITY PROTOCOL.
In Proceedings of the International Conference on Security and Cryptography, pages 197-201
DOI: 10.5220/0001930001970201
Copyright c© SciTePress

in their work on allowing multimedia streams
through a firewall have proposed one framework for
allowing protocols like RTP and RTSP to securely
pass through a firewall. Djahandari and Sterne (1997)
discussed the problems with security in the MBone
and with multicast nodes and provided an approach
for Internet firewalls to pass trusted MBone traffic
into and out of a local area network. Experimental
studies have also been conducted (Vaidya et al.,
2005) on securing audio streams (RTP over UDP)
through IP tunnels and IPSec protocol that is used in
VPNs.

3 IP MULTICAST

Multicast allows a sender to send one copy of a
packet to several recipients without duplication of
data in the network. In contrast to broadcast this
optimizes the use of network resources and has
widespread use in a variety of applications. Internet
newsgroups, videoconferencing over a TCP/IP
network, Internet games, streaming media and video
on demand, distance learning and many more
applications are built using IP multicast. Because of
its nature, multicast is run over UDP and multicast
packets are sent as UDP datagrams. Special multicast
routers in the Internet, called the public M-bone, deal
with the job of maintaining multicast group
information and multicast routing. Special protocols
like Internet Group Management Protocol (Cain,
2002) (IGMP) and Multicast Listener Discovery
Protocol (Vida and Costa, 2004) (MLD) have been
developed for end points or nodes to join multicast
groups to send/receive multicast data and to leave
groups.

Securing multicast sessions is challenging
because of the very nature of the traffic where there
can be many senders and many recipients. The issues
involved in securing multicast through firewalls are
documented in RFC 2588 (Finlayson, 1999). Gong
and Shacham (1995) discuss the security issues
involved in multicasting especially in a mobile
environment. For security reasons, most firewalls
block multicast traffic from entering or leaving their
network.

4 SECURING MULTICAST
THROUGH SOCKS

One of the techniques we have identified to securely
allow multicast traffic to traverse a network boundary

is to provide multicast extensions to the socks
protocol. While a draft proposal was made to add
multicast support to socks, it was not well supported
and was never implemented or standardized. The
current standard of the SOCKS protocol, Version 5,
as documented in RFC 1928 (Leech et al., 1996)
does not have multicast support. We provide here a
new technique that has not been previously
implemented and can provide multicast capabilities
to socks.

5 PROPOSED SCHEMES

5.1 Multicasting

Our proposed scheme for multicast applies to nodes
in a network that are capable of multicasting and to a
network that has multicast routing capabilities. Our
technique consists of adding two new request
methods to the original SOCKS protocol. Readers are
referred to RFC 1928 (Leech et al., 1996) for a
complete description of the original SOCKS V5
protocol and the request methods supported.

There are three phases in the SOCKS protocol:
(a) authentication method negotiation, (b)
authentication, and (c) request negotiation.

Our extension to the protocol alters the third phase,
the request negotiation phase. We propose the
addition of a new ‘JOIN_MCAST_GROUP’ and a
new ‘LEAVE_MCAST_GROUP’ request method
to allow clients to securely join and leave multicast
groups through socks. All extensions we propose will
require changes to the socks client and the socks
server. Client computers or nodes will have to be re-
socksified with the new enhanced client to take
advantage of the proposed extensions. Our reference
implementation provides a new socks client and a
new socks server for testing the proposed extensions
in a laboratory test bed. The socks client is being
built using the new socket extensions proposed for
multicast source filters in RFC 3678 (Thaler et al.,
2004).

5.2 JOIN_MCAST_GROUP

When an application within a network firewall
wishes to join a multicast group in the public
Internet, the socks client must authenticate itself to
the socks server and send a JOIN_MCAST_GROUP
request packet to the socks server. The packet will
contain the address of the multicast group. The
structure of this packet will be as follows:

SECRYPT 2008 - International Conference on Security and Cryptography

198

VER|CMD|RSV|ATYP|M.ADDR|M.PORT

Where:
VER – SOCKS protocol version.
CMD – 0x05 for JOIN_MCAST_GROUP
RSV – Reserved
ATYP – IPv4 or IPv6.
M.ADDR – Address of MCAST group
M.PORT – MCAST port.

When a client in the network wishes to join a
multicast group, the socks server will first run
security policies on the provided address. The
security policies can allow the client to receive or
send data to the group or deny both privileges. If
denied access to the group, the socks server sends a
REJECT as a response back to the client and closes
the connection with the client. The structure of a
response packet is shown below:

 VER|REP|RSV|ATYP|ADDR|PORT|LEN|KEY

Where:
VER – SOCKS protocol version
REP – Response code –
 0x00: Success.
 0xB0: Un-authorized to send.
 0xB1: Un-authorized to receive.
 0xB2: Un-authorized to send and
 Receive.
RSV – Reserved
ATYP – Address type IPv4 or IPv6
ADDR – IP Address of multicast relay
 process if authorized.
PORT – Port for multicast relay process.
LEN – The length of the next field
KEY – A variable length encryption key.

If the security policies in place for the client and
the group allow the client to send and receive data
from the group, the socks server will send a response
packet as shown above with the REP field populated
with 0x00. This code indicates that the client is
authorized to send and receive from the group. If the
client is allowed to only send or receive a different
response code as identified above, then it will be sent
back.

If the client is the first node to request access to
the group, the socks server will spawn a new
multicast relay process. This process will be given
the address of the group that the client is interested in
joining. The process will act as a multicast server on
the intranet and pass back to the socks server a
multicast address that the client must use to send and
receive data. This multicast address is different from
the address of the group on the Internet and is visible

only to the intranet. The socks server passes back to
the client the address and port of the multicast relay
process in the ADDR and PORT fields of the
response packet. The client must use this address and
port to send and receive data. In addition, the socks
server gives to the client in the same response an
encryption key that the socks client must use to
encrypt each multicast packet sent to the relay
process. This is an additional security measure to
prevent other nodes on the network from sending
data directly to the relay process, bypassing the socks
server. The relay process decrypts packets it receives
from all the clients in the intranet that have joined the
multicast group that the relay process represents. The
actual length of the key, the type of key and
encryption algorithm used can be implementation
specific and can be configured in the system at run
time. The choice of the encryption algorithm must be
such that it does not cause a huge performance
impact either on the server or on the client. The
system can also be configured to use no encryption at
all by specifying a key of length 0 bytes. In the
reference implementation, a symmetric key will be
used. The relay process proxies multicast traffic
between the real multicast group on the Internet and
its registered listeners on the local intranet.

The socks server actively manages the relay
process. When all clients have left the group or all
client sessions have timed out due to lack of activity
for a long time, the relay process is terminated. The
process is recreated when there is a request to join
the same group again. Policies can also be put in
place to control the number of clients that can join a
group, control which clients can send data, which
clients can receive data and which clients can do
both. Policies can also control if and when a
multicast relay should be terminated due to excessive
use of network bandwidth or if spamming is
detected.

5.3 LEAVE_MCAST_GROUP

A socks client joins a multicast group by opening a
TCP connection to the socks server configured for
the network. After the socks protocol performs
handshaking and authentication, it sends a request
packet to the socks server with the command set to
JOIN_MCAST_GROUP. Once authorized to join the
group, the socks client sends and receives multicast
data from a multicast relay process setup by the socks
server for all nodes in the network that have joined
the group.

NEW TECHNIQUES TO ENHANCE THE CAPABILITIES OF THE SOCKS NETWORK SECURITY PROTOCOL

199

While the client has a separate channel of
communication with the multicast relay process, the
TCP connection with the socks server is kept active.
The socks server can at any time terminate the
control channel and relay process with an appropriate
error message. Reasons for doing so could be a
timeout due inactivity or that the client has exceeded
the amount of time it can be in the group, as dictated
by the security policy in place for the client or the
group. This control channel also enables the client to
send more request messages to the socks server. One
such message that a client can send is the
LEAVE_MCAST_GROUP message.

This message enables a socks client to terminate
its multicast session by sending this message to the
socks server on its TCP control channel. When the
socks server receives this method it passes it on to
the relay process, which removes the client from its
cache of clients for the group it is representing. When
the last client has left the group the relay process
leaves the group by sending an IGMP or MLD
message to the MBone and terminates itself.

5.4 UDP Tunneling

Another extension we propose for the SOCKS
protocol is UDP tunneling. Here the socks server
would relay UDP datagrams emanating from an
application client on the local network securely
through the public Internet to an application server or
node on another protected network. This technique
can be used to establish a TLS/SSL tunnel between
two SOCKS servers implementing our proposed
extensions avoiding the need for expensive
VPN/IPSec tunnels. Figure 1 describes a deployment
scenario.

Figure 1: Deployment scenario.

This extension requires the addition of a new
request method to the SOCKS protocol called
SETUP_UDP_TUNNEL. The request packet will
contain the address, port and transport protocol for
the end point of the tunnel. When the socks server
receives such a command in a request packet from a

client, it first applies security policies on the client. If
authorized to open a secure tunnel to another node on
another protected network, the socks server will
spawn a UDP relay process for the client.
This relay process will open a tunnel using the
transport protocol specified in the request message to
another socks server on the Internet. The local socks
server appears as a client to the remote socks server
and authenticates itself to the remote socks server.
The credentials for authentication must be passed on
to the local socks server by the socks client. Upon
successful authentication the two socks servers
would effectively be tunneling data between two
application nodes on their local networks.

6 TCP BIND EXTENSIONS

SOCKS V5, allows a client to specify a TCP port for
the socks server to bind and wait for a remote node to
connect. This helps protocols like FTP which has a
TCP control channel and requires the client to bind to
another port for sending and receiving data from the
FTP server. This method will enable applications to
have one control channel and a reverse channel for
the server to connect back to the client. This does not
serve the needs of applications that require one
control channel and several reverse channels for the
server to connect back to the client. Furthermore
these reverse channels could be TCP or UDP
channels.

We propose an extension to the socks protocol to
allow a client to request the server to bind to more
than one TCP port or setup one or more UDP relay
processes for the remote end point to connect or send
datagrams to. This will help custom applications to
have one TCP control channel and several other TCP
or UDP channels for application sessions. A case in
point is protocols like RTP and RTSP for multimedia
streaming. While RTP and RTSP protocols run on
top of UDP, the SOCKS version 5 call model does
not have enough support for these protocols to
seamlessly proxy through a SOCKS firewall.
Allowing multiple TCP binds or UDP relays on
behalf of a multimedia streaming application can
greatly enhance the usability of the protocol for
multimedia.

S
O
C
K
S

UDP
 UDP TCP/TLS

tunnel

Public Internet

Private network Private network

S
O
C
K
S

SECRYPT 2008 - International Conference on Security and Cryptography

200

7 DISCUSSION AND
CONCLUSIONS

Our proposed extensions to the SOCKS protocol
could lead to a new version of the protocol, which
when implemented, would greatly enhance the
capabilities of the protocol in securing and auditing
application layer traffic. With the convergence of
voice, video and data and the global adoption of IP as
a low cost medium for conducting multimedia
communications, it is highly valuable to add
multicast capabilities to a proven protocol like
SOCKS. While the new features we are
implementing will add value to the protocol, the
performance of the system will only be limited by the
network with no additional performance overhead
added by the new extensions. The application of
security policies and the initial setup of the channel
through socks might cause some delay in the setup
phase when an acpplication is reaching out to the
socks server to cross the network boundary but once
authenticated and authorized, there will be no further
delays added by socks. We expect the proposed
multicast relay process in socks to improve the
performance of multicast routing within the network
compared to other schemes where multicast packets
would need to be routed in a unicast fashion to
listeners in the protected network. We expect the
benefits of adding UDP tunneling and multiple TCP
and UDP bind support in the protocol to be well
received in a variety of application domains,
especially in the N-tier application server domains
and IP telephony.

REFERENCES

Leech, M., Janis, M., Lee, Y., Kuris, R., Koblas, D.,
Jones, L.,”RFC 1928, SOCKS Protocol Version 5”,
www.ietf.org/rfc/rfc1928.txt, March 1996.

Fung, K.,P., Chang, R.,K.,C., “A Transport-Level Proxy
for Secure Multimedia Streams”, IEEE Internet
Computing, pp. 57-67, November 2000.

Djahandari, K.,Sterne, D., “An MBone Proxy for an
Application Gateway Firewall”, Proceedings of the
1997 IEEE Symposium on Security and Privacy, pp.
72-78, 1997.

Vaidya, B., Kim, J.,W., Pyun, J.,Y., Park, J., Han, S.,
“framework for Secure Audio Streaming to Wireless
Access Network”, 2005 Systems communications, pp.
122-127, 2005.

Cain, B., Deering, S., Kouvelas, I., Fenner, B.,
Thyagarajan, A., “Internet Group Management
Protocol, Version 3”, RFC 3376,
www.ietf.org/rfc/rfc3376.txt, October 2002.

Vida, R., Costa, L., “Multicast Listener Discovery V2
(MLDv2) for IPv6”. Internet Engineering Task Force
(IETF), RFC 3810, www.ietf.org/rfc/rfc3810.txt, June
2004.

Finlayson, R., “RFC 2588, IP Multicast and firewalls”,
www.ietf.org/rfc/rfc2588.txt, May 1999.

Gong, L., Shacham, N., “Multicast security and its
extension to a mobile environment”, Wireless
Networks, ACM-Baltzer, Vol. 1, No. 3, pp. 281 – 295,
August 1995.

Thaler, D., Fenner, B., Quinn, B., “Socket interface
extensions for multicast source filters”, RFC 3678,
www.ietf.org/rfc/rfc3678.txt, January 2004.

Mazumder, A.S., Almeroth, K., Sarac, K., “Facilitating
robust multicast group management”, Proceedings of
the International Workshop on Network and Operating
Systems Support for Digital Audio and Video, pp.
183-188, 2005.

NEW TECHNIQUES TO ENHANCE THE CAPABILITIES OF THE SOCKS NETWORK SECURITY PROTOCOL

201

