
KEY MANAGEMENT OF QUANTUM GENERATED KEYS IN IPSEC

Andreas Neppach, Christian Pfaffel-Janser, Ilse Wimberger
Program and System Engineering (PSE), Siemens AG Austria, Gudrunstrasse 11, Vienna, Austria

Thomas Loruenser, Michael Meyenburg
Smart Systems Division, Austrian Research Centers GmbH, Vienna, Austria

Alexander Szekely, Johannes Wolkerstorfer
Institute for Applied Information Processing and Communications, Graz University of Technology, Austria

Keywords: Quantum cryptography, Key management, Virtual Private Networks (VPN), IPsec, Security gateway, Internet
Key Exchange (IKE).

Abstract: This paper presents a key management approach for quantum generated keys and its integration into the
IPsec/IKE protocol. The solution is used in a security gateway that integrates quantum key distribution (QKD)
and IPsec as a system-on-chip solution. The QKD acquisition module and the IPsec part of this prototype are
implemented in hardware to provide a high level of integration as well as high encryption throughput. To make
use of these fast encryption capabilities, a flexible key management approach is necessary to provide keys just
in time. Thus, the presented key management approach focuses on an efficient key update mechanism and
minimizes the communication overhead. Furthermore, the presented approach is a first step to integrate QKD
solutions into real-world commercial applications using standardized interfaces.

1 INTRODUCTION

Virtual private networks (VPN) are a standard in to-
day’s network infrastructure. Nearly all business ar-
eas use the Internet to exchange data and information.
Many parts of this information are confidential and
thus have to be protected. A VPN provides this func-
tionality and ensures the confidentiality and integrity
of data transferred between two endpoints, even if the
transport medium is insecure.

VPNs typically operate at OSI layer 2 - 4. One
popular protocol is the Internet Protocol security
(IPsec) (Kent, 2005). It operates at layer 3, and pro-
tects all protocols in upper layers (e.g. HTTP, FTP
or SMTP). This simplifies the integration into exist-
ing network infrastructures. Many IPsec implemen-
tations are available for different operating systems
and enable client PCs to perform remote access to e.g.
company intranet or confidential network resources.
In case of e.g. data replication of large databases or
interconnection of a headquarter with its subsidiaries,

IPsec implementations in software are not suitable to
fulfill high throughput requirements. In this case a
VPN gateway with hardware accelerated IPsec stack
will be used to perform the cryptographic operations.

The cryptographic keys in IPsec are negotiated us-
ing the Internet Key Exchange protocol (IKE). IKE is
defined in (Kaufman, 2005) and negotiates security
parameters for the IPsec sessions. The key exchange
is based on the Diffie-Hellman key exchange proto-
col (DH) defined in (Diffie and Hellman, 1976). DH
is based on the problem to solve the discrete loga-
rithm (Menezes et al., 1997). Up to now, no algorithm
is known, that is able to solve this problem in poly-
nomial time (Menezes et al., 1997). However using
short key update rates, the DH key exchanges increase
the network load and decrease the overall through-
put of the VPN by consuming much computational
power.

In our work, we focus on an efficient VPN gate-
way that uses quantum key distribution (QKD) as an
alternative key exchange method in IKE. QKD is an

177
Neppach A., Pfaffel-Janser C., Wimberger I., Loruenser T., Meyenburg M., Szekely A. and Wolkerstorfer J. (2008).
KEY MANAGEMENT OF QUANTUM GENERATED KEYS IN IPSEC.
In Proceedings of the International Conference on Security and Cryptography, pages 177-183
DOI: 10.5220/0001926601770183
Copyright c© SciTePress



Figure 1: Network Architecture.

emerging field in security engineering. The technique
was invented in 1984 by C. Bennett and G. Brassard
(Bennett and Brassard, 1984) and enables theoreti-
cally secure distribution of random strings. The secu-
rity of QKD is based on the laws of quantum physics.
All practical attempts to eavesdrop QKD generated
keys can be noticed.

Using the QKD generated random strings, we im-
plemented a fast key update mechanism for the un-
derlying IPsec engine. The goal was to get a key
update rate of at least one key update per second.
Therefore, the prototype is implemented as a System-
on-Chip (SoC). The IPsec engine and parts of the
QKD module are implemented in configurable hard-
ware (Lorünser et al., 2008). This was mainly neces-
sary to accelerate encryption and to offload constant
cryptographic tasks. The key management is imple-
mented in software.

The prototype can be used to get a basis of re-
quirements for QKD integration in existing applica-
tions using standardized interfaces. In this paper, we
focus on the key management approach, showing the
key management protocols and internal interconnec-
tion of key management related components.

In the remainder of this paper we present the over-
all architecture of the prototype in Section 2. Sec-
tion 3 describes the key management approach and
presents the adaptations of the IKE protocol. Sec-
tion 4 concludes the paper.

2 ARCHITECTURE

The overall network architecture of the prototype is
presented in Figure 1. The system acts as a security
gateway and provides an end point of a secured IP tun-
nel. All data arriving at gateway 1 from the protected
LAN is processed using a policy database. Depending
on the policy the data is either rejected, transferred in
plain or encrypted using the QKD generated keys.

Figure 2 shows the components of the VPN gate-
way solution. The QKD module generates the secure
random bit strings that are processed by a key man-
agement module. The key management approach is
based on a key distribution component and an adapta-
tion of the IKE protocol. Using IKE, so called secu-
rity associations (SAs) are established. These SAs are

SPDB

Key Man.

IPsec

SADB

MACMAC

QKD

Key-
store

W
A

N

Quantum System

L
A

N

Figure 2: Prototype Architecture.

stored in the security associations database (SADB)
and contain QKD generated keys that are used by the
IPsec engine to process arriving data packets. Details
about the QKD and IPsec hardware modules are pre-
sented in the next subsections. The key management
approaches are presented in Section 3.

2.1 QKD

The QKD sub-system is responsible for the genera-
tion of the shared secrets and it is used to replace
the original IKE scheme. In general, a quantum key-
exchange system provides provably secure distribu-
tion of random secrets over a quantum channel, which
can either be an optical fibre link or a free-space line
of sight connection.

Light particles (photons) are encoded on one side
and transmitted to the second peer. After continu-
ously measuring the arriving photons the two par-
ties gain correlated data to establish a provably se-
cure shared secret. The distillation of the final key out
of the correlations is done by means of software pro-
cessing and the implementation is referred to as QKD
stack.

Therefore, a complete QKD system consists of a
quantum optical segment, a data acquisition system
(DAQ) and a processing segment (QKD stack). The
latter requires an authenticated classical communica-
tion channel for final key distillation which does not
need to be confidential. The authentication is neces-
sary to prevent from man-in-the-middle attacks like it
is also the case in DH key exchange.

It is seen, that, in comparison to nowadays very
popular key exchange protocols and algorithms, QKD
needs a considerable hardware effort. We developed
electronics and a DAQ core for interfacing with en-
tangled QKD systems applying the BB84E protocol.
The DAQ unit is integrated in the SoC and can handle
up to 30 million events per second (MEvents) peak
rate with a timing resolution down to 80 picoseconds.

SECRYPT 2008 - International Conference on Security and Cryptography

178



The software processing for the QKD stack runs on
the integrated processor and it can generate up to 3
kbps final key material.

QKD introduces a new quality for symmetric key
exchange primitives. It enables provable security and
high key-update rates. But it also has some drawback.
Due to the non-cloning theorem and the attenuation
QKD is limited in distance. The optical signal can-
not be repeated and the damped signals lead to lower
rates over distance. Current QKD links provide key
rates in the kilobit range over distances up to 100 km.
Moreover, some new protocols and advances in sin-
gle photon detection will allow for rates in the Mbps
region.

2.2 IPsec

The Internet Protocol Security (IPsec) suite of pro-
tocols defines a collection of standards to secure IP
traffic. It provides a framework to secure commu-
nication at the network layer by adding authentica-
tion data and/or encryption to IP packets. Our im-
plementation supports only the Encapsulating Secu-
rity Payload (ESP) protocol in tunnel mode. ESP in
tunnel mode is the most useful setting for gateway-
to-gateway VPNs. It provides data authentication,
integrity and confidentiality to IP packets. ESP en-
crypts the whole original packet and adds authentica-
tion data and an ESP header. Encrypted ESP packets
guarantee even the anonymity of sender and receiver
because this information is encrypted too. The final
ESP packet contains the IP addresses of the two gate-
ways as source and destination address.

IPsec defines a bunch of symmetric ciphers. Our
implementation makes uses of the Advanced En-
cryption Standard (AES) (National Institute of Stan-
dards and Technology (NIST), 2001). In accor-
dance to the recommendations of VPN-B in (Hoff-
man, 2005) our implementation uses AES-128 in
CBC mode for data confidentiality and AES-XCBC-
MAC-96 (Frankel and Herbert, 2003) for data authen-
tication. AES is processed by hardware modules.

The whole IPsec handling of the prototype is per-
formed by an IPsec offload engine, as the power of
the embedded PowerPC CPU on the system-on-chip
is very limited. To support throughput rates in the
gigabit region, most components of the IPsec func-
tionality are implemented in hardware. The software
subsystem is only used to configure and monitor these
hardware modules.

The IPsec engine is composed of three main com-
ponents: A filter module, an encryption unit and a
routing module. The filter module holds a copy of the
security policy database (SPD) and decides if an ar-

riving IP packet should bypass the system, or if it has
to be encrypted/decrypted, or if needs to be discarded.
The encryption unit consist of a key store, which re-
sembles the SADB, and AES encryption and decryp-
tion modules. The key store can hold up to 32 SAs
per direction and manages their lifetime without soft-
ware interaction. After leaving the encryption unit,
the packets are forwarded to their destination gateway
by the routing module. Routing is necessary because
the destination IP address is known just after decrypt-
ing the ESP packet. The according Ethernet MAC
address of the destination has to be obtained for each
packet.

The software part of the IPsec engine runs on a
Linux 2.6 kernel. It is responsible for the configura-
tion of the hardware modules. The software receives
the configuration and key material via the PF_KEY
interface. Hence it is compatible with all standard
IPsec key management implementations.

2.3 WBEM

VPN gateways offer complex functionality. Config-
uration of its services usually involves setting many
parameters on at least two endpoints. A secure man-
agement interface has to assure that the configurations
on all devices are synchronized. To prevent temporary
security holes a strict sequence of commands needs to
be executed. This is error-prone and leads to security
risks, especially when traditional configuration tools
like secure shell (SSH) are used.

For this reasons, we decided to use Web-Based
Enterprise Management (WBEM) (DMTF, ) as man-
agement technology. It is one approach of solving
the management problem in heterogeneous networks.
WBEM is a set of standards that has been developed
by the Distributed Management Task Force (DMTF).
WBEM-based solutions provide out-of-the-box capa-
bilities to make policy deployment on different ma-
chines transparent to the user.

Our implementation uses the Small Footprint CIM
Broker (SFCB) from IBM (Standards Based Linux In-
strumentation, ) as WBEM server running on each
gateway. In addition we developed a graphical tool
that allows to easily configure and monitor VPN gate-
ways.

3 KEY MANAGEMENT

The presented key management approach focuses pri-
marily on high key update rates for IPsec. Addition-
ally, the management of the generated QKD keys is of
interest. Figure 3 shows the key related operations of

KEY MANAGEMENT OF QUANTUM GENERATED KEYS IN IPSEC

179



Figure 3: Key Management Overview.

Figure 4: QKD Software Architecture.

the prototype. First, the QKD module generates the
random bit strings and buffers them. This buffer is
accessed by a separate process (called Keymanager)
that establishes the end-to-end key buffers for local
applications. The Keymanager distributes the gener-
ated keys to registered applications and ensures that
key buffers of local and remote applications remain
synchronized. One of these applications is an adapta-
tion of the IKE protocol called QIKE. The main task
of QIKE is to negotiate SAs and parameters to reserve
a QKD key stream. Using the negotiated parameters,
a key buffer can be requested from the Keymanager
and the SADB can be filled with SAs containing QKD
generated keys. These SAs are used later on by the
IPsec module that processes arriving data packets.

3.1 QKD Key Generation

In our implementation the QKD sub-system is con-
tinuously generating secrets. The DAQ unit streams
the incoming raw data into a buffer and hands it over
to the QKD stack, which distills final keys. The in-
coming raw data are sifted, error corrected, privacy
amplified and pushed into the keystore. We make use
of well established protocols and algorithms for the
QKD stack.

The necessary classical communication between
the two parties is managed over TCP/IP connections

Figure 5: Allocated key buffers.

in plaintext but authenticated. The software stack is
programmed under heavy usage of multi-processing
and Linux/Unix based interprocess communication to
optimize CPU and network usage. Its overall archi-
tecture is shown in 4.

During the sifting phase the bases of the protocol
are exchanged. VPN gateway 1 starts the process after
receiving a fixed block of data from the measurement
core.

The data are then passed to the error correc-
tion stage, which run a performance optimized ver-
sion of the Cascade protocol (Brassard and Salvail,
1994). Optionally, the stack supports low density par-
ity checking (LDPC) as error correction scheme.

After correcting all errors and confirmation of the
bit error rate, the stream enters the privacy amplifica-
tion stage. This module shrinks the keys according
the amount of information revealed in the public con-
versation during the error correction and the error rate
itself. The privacy amplification is in principle a para-
metric hash function based on the universal 2 classes
of hash functions. The keys are pushed into the key-
store over a very simple interface.

To prevent man-in-the-middle attacks all commu-
nication has to be authenticated and checked for in-
tegrity. This is done by applying message authenti-
cation codes (MAC) developed for theoretical secure
systems based on evaluation hashes (Shoup, 1996).
Therefore, all communication is routed through the
dedicated authentication module. It calculates and
verifies the MAC tags. To do this it needs key ma-
terial itself.

3.2 Keymanager

The Keymanager is a multi-threaded server running as
a UNIX system daemon and is necessary to provide a
network layer for QKD. It is necessary to interconnect
several QKD links and, furthermore, to distribute the
continuous stream of keying material from the QKD
sub-system to different consuming applications.

SECRYPT 2008 - International Conference on Security and Cryptography

180



The Keymanager has two main types of threads.
Client threads handle local communication on the lo-
cal host and link threads establish connections to re-
mote hosts and manage the client threads’ key buffers.
The Keymanager is based on the master-slave prin-
ciple. The master is the one Keymanager with the
lower IP address. The communication between lo-
cal and remote Keymanager daemon is based on a bi-
nary TCP/IP protocol that is protected through con-
figurable hashed MACs (HMAC) against man-in-the-
middle attacks and through the inclusion of time tags
and message sequence counters against replay at-
tacks. The keys necessary for the HMAC are taken
from the quantum link.

During the initialization phase of the control chan-
nel, a pool of keys with a well known size is filled
on both keymanagers with keys from the QKD de-
vice (see communication key buffer in Figure 5). The
first bits are used for authenticating the control chan-
nel and the second bits are stored for reset purposes.
The rest is used for the subsequent control messages.

In the basic configuration the client listening port
is only active on the local host interface. Any attack
on the Keymanager would thus originate from the lo-
cal host which can be prevented more easily.

The message exchanges to establish common key
buffers for a local and remote application are pre-
sented in Figure 6. First, the client application regis-
ters to the client thread and submits an application ID
and the host address of the Keymanager the client is
registering to. If the application ID has already been
registered the call for registration fails. A wrong mes-
sage to the Keymanager results in a client’s termina-
tion to lower the risks of denial of service (DOS) at-
tacks.

Second, the client application sends a connec-
tion request containing the remote node’s address, the
maximum key length (maxlen) that will be requested,
the desired key rate (rate) and a timeout. If all those
parameters are valid and the requested key rate can
be satisfied by the local Keymanager, it either tries
to connect the client to the remote Keymanager if the
local node is the designated master or it queues the
client’s connect request until a valid connect request
from the remote Keymanager is received otherwise.
If the connection cannot be established to the remote
system within a defined time interval, a timeout oc-
curs and the local client-Keymanager connection is
terminated.

After the connection phase, an application can
query its keystore to get the current fill level or to get a
key of a specified length. If the requested length can-
not be satisfied only the amount available is returned.
The key data and the actual size of the data retrieved

Figure 6: Message flow during connection establishment.

is sent back to the client.
Every client connection has associated key buffers

whose size can be calculated using Equation 1, where
time is the amount of time for which to try to hold
keying material.

bu fsize = max(lenmax, time · rate) (1)

Whenever the fill level of a key buffer drops below a
buffer threshold which can be calculated using Equa-
tion (2) with a configurable global threshold parame-
ter, a refill procedure for all buffers is started.

bu fthreshold = max(lenmax,size · globalthreshold) (2)

The key refill procedure has the following prior-
ities. First, the key store to authenticate the mes-
sage exchanges between local Keymanager and re-
mote Keymanager is served. If keying material is
available, it is assigned to the client key stores with
a fill level below their thresholds, according to their
registered key rate. If further keying material is left,
all remaining key stores are served in proportion to
their registered rate.

3.3 QIKE

The implementation of QIKE is based on Racoon,
a popular IKE daemon developed by the KAME
project (http://www.kame.net/racoon) and IPsec-
Tools (http://ipsec-tools.sourceforge.net). It is an
open source implementation and distributed under the
BSD license. Standard IKE consists of two phases.
In the first phase, a so called ISAKMP SA is es-
tablished. ISAKMP means Internet security asso-
ciation key management protocol and is specified
in (D. Maughan and Turner, 1998). The ISAKMP SA
is used within the IKE protocol to protect all further
message exchanges in phase 2. The negotiated SAs in
Phase 2 are called IPsec SAs and are used to establish
an encrypted session between two IPsec end points.

The following subsections present the major adap-
tations of IKE to enable QKD support and high key
update rates.

KEY MANAGEMENT OF QUANTUM GENERATED KEYS IN IPSEC

181



3.3.1 Authentication in QIKE

In IKE, authentication of the communicating devices
is based on pre-shared key (PSK) or asymmetric cryp-
tography. Like already mentioned our solution is
based on QKD and thus uses the PSK approach. Sim-
ilar to one-time passwords, we use QKD random
strings for authentication purposes. The first commu-
nication needs an initial shared pre-shared secret since
the communication to the Keymanager is triggered by
QIKE. After the first Phase, a key buffer is requested
that is filled with new shared secrets obtained from
the QKD module.

3.3.2 Phase 1

The first communication phase of QIKE is similar
to IKE. First, security association proposals are ex-
changed. A proposal contains parameters like encryp-
tion algorithm, authentication algorithm and key life-
time. Additionally, we introduced the QKD key rate
to be reserved and an application ID to establish a key
buffer using the Keymanager. After the ISAKMP SA
is negotiated, QIKE authenticates the messages using
the configured shared secret. If the authentication suc-
ceeds, the communication to the Keymanager starts.
The QIKE process registers on both sides to the Key-
manager using the application ID and the remote IP
address. Furthermore, the QKD key rate is used to
request a key buffer. If the both QIKE daemons per-
form their registration in time, a key buffer based on
the negotiated QKD key rate and the maximum key
size is allocated.

The maximum key size is computed using the
requirements of the negotiated encryption and au-
thentication algorithms. Using AES-128 for encryp-
tion (National Institute of Standards and Technology
(NIST), 2001) and AES-XCBC-MAC-96 for authen-
tication (Frankel and Herbert, 2003), a maximum key
size of 256 bits has to be requested (not consider-
ing the initialization vector for CBC encryption). Us-
ing a key lifetime in seconds or milliseconds, the key
rate can be computed without negotiation. However,
because of synchronization problems with lifetimes
in milliseconds, we decided to choose a lifetime in
bytes. Thus, the key rate varies depending on the uti-
lization.

3.3.3 Phase 2

To establish an IPsec SA another SA proposal ex-
change takes place. This exchange is protected by the
ISAKMP SA. The initiator sends an array of SA pro-
posals to the responder, which chooses an appropriate
one. Similar to Phase 1, the SA proposal contains

Figure 7: IPsec SADB and QKD Key Buffers.

beside the standard IKE parameters, QKD key rate,
an application ID and the maximum number of SAs
supported by the SADB. The IPsec SA generation is
based on the IKE Quick Mode.

The QKD key rate specifies the rate that is re-
quested from the Keymanager. The application ID
identifies the initiator and responder QIKE daemon.
The Keymanager uses these IDs and establishes the
requested application key buffers. For each direction
a separate buffer is allocated. Thus, the key buffer of
the outgoing IPsec connection of the initiator QIKE is
identical to the key buffer of the incoming IPsec con-
nection of the responder QIKE and vice versa (see
Figure 7).

The parameter of the maximum number of sup-
ported SA in the SADB is necessary to enable a high-
speed IPsec implementation. If the IPsec engine has
to wait for new key material, the throughput of the
prototype will be decreased. Therefore, multiple SAs
can be stored in the SADB. The SADB follows the
FIFO principle, in difference to the Linux SADB that
uses LIFO. Additionally, only SAs that are currently
in use can expire. In some SADB implementations,
the SA lifetime in time decreases as soon as the SA is
stored into the SADB.

Our solution uses a key lifetime in bytes, since
a lifetime in milliseconds will cause synchronization
problems. If a lifetime expires, the IPsec engine no-
tifies QIKE using the PF_KEY interface. QIKE uses
this notification and generates a new one by request-
ing new key material from the Keymanager. In differ-
ence to IKE, no renegotiation of the SA is performed.
This renegotiation is primarily necessary to exchange
new DH values and to trigger the remote IKE daemon
to check the SADB and to delete not expired SAs.

Instead of renegotiation of expired SAs, QIKE
is based on the ISAKMP informational messages.
These messages can contain delete notifications
that inform the remote daemon about expired SAs.
ISAKMP delete messages are unidirectional and
no response is expected from the remote daemon.
If QIKE receives a delete message, the SADB is
checked and not expired SAs are replaced with new

SECRYPT 2008 - International Conference on Security and Cryptography

182



Figure 8: Delete messages and SADB synchronization.

ones (see Figure 8). The ISAKMP informational mes-
sages are protected using the ISAKMP SA.

Nevertheless, synchronization problems can occur
if ISAKMP delete messages are lost. In our prototype,
we use increasing SPIs per connection. This gives the
possibility to resynchronize the SADB even if a delete
messages gets lost. The QIKE process checks the SPI
in the delete payload with the SPIs in the SADB and
can perform the SADB resynchronization by request-
ing the correct keys from the Keymanager. In IKE, it
is recommended that the SPI number is chosen ran-
domly. Up to our knowledge, this is primarily nec-
essary to circumvent DoS attacks using IPsec packets
with estimated SPIs. Because of the hardware imple-
mented IPsec engine, this type of attack is not appli-
cable to our prototype. The hardware can handle all
possible Gigabit scenarios and hence the performance
is not decreased. Another possibility to implement
random SPIs is to allocate a separate key buffer from
the Keymanager and to use the cryptographic keys as
SPIs.

4 CONCLUSIONS

In this work, we presented a prototype for QKD-
enabled IPsec. Up to our knowledge, it is the first pro-
totype on such an advanced level that tries to integrate
QKD in a security gateway. To serve the demanding
throughput requirements of commercial applications,
many components of the system are implemented in
hardware. The presented key management approach
acts a starting point for further integration and devel-
opment approaches and verifies that high key update
using QKD in IPsec are possible. Up to now, we
simulated a key update rate of one update per sec-
ond in software. The simulation was performed using

User Mode Linux and allows the simulation of com-
plete networks including hosts, clients and gateways
on a single PC. Further tests measuring the CPU con-
sumption and robustness against packet-loss will be
performed in the near future using the final SoC pro-
totype.

REFERENCES

Bennett, C. H. and Brassard, G. (1984). Quantum Cryptog-
raphy: Public Key Distribution and Coin Tossing. In
Proceedings of International Conference on Comput-
ers, Systems and Signal Processing.

Brassard, G. and Salvail, L. (1994). Secret key reconcilia-
tion by public discussion. Lecture Notes in Computer
Science, 765:410–423.

D. Maughan, M. Schertler, M. S. and Turner, J. (1998). Rfc
2408: Internet security association and key manage-
ment protocol (isakmp).

Diffie, W. and Hellman, M. E. (1976). New directions in
cryptography. IEEE Transactions on Information The-
ory, IT-22(6):644–654.

DMTF. Web-Based Enterprise Management (WBEM).
website.

Frankel, S. and Herbert, H. (2003). RFC 3566: The AES-
XCBC-MAC-96 Algorithm and Its Use With IPsec.
RFC 3566 (Proposed Standard).

Hoffman, P. (2005). RFC 4308: Cryptographic Suites for
IPsec. RFC 4308 (Proposed Standard).

Kaufman, C. (2005). RFC 4306: Internet Key Exchange
(IKEv2) Protocol. RFC 4306 (Proposed Standard).

Kent, S. (2005). RFC 4303: IP Encapsulating Security Pay-
load (ESP). RFC 4303 (Proposed Standard).

Lorünser, T., Querasser, E., Matyus, T., Peev, M., , Wolk-
erstorfer, J., Hutter, M., Szekely, A., , Wimberger, I.,
Pfaffel-Janser, C., and Neppach, A. (2008). Security
Processor with Quantum Key Distribution.

Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A.
(1997). Handbook of Applied Cryptography. Series
on Discrete Mathematics and its Applications. CRC
Press. ISBN 0-8493-8523-7.

National Institute of Standards and Technology (NIST)
(2001). FIPS-197: Advanced Encryption Standard.

Shoup, V. (1996). On fast and provably secure message au-
thentication based on universal hashing. Lecture Notes
in Computer Science, 1109:313–328.

Standards Based Linux Instrumentation. Small Footprint
CIM Broker (SFCB) Website. website.

KEY MANAGEMENT OF QUANTUM GENERATED KEYS IN IPSEC

183


