
CSTEG: TALKING IN C CODE
Steganography of C Source Code in Text

Jorge Blasco Alı́s, Julio Cesar Hernandez-Castro, Juan M. E. Tapiador
and Arturo Ribagorda Garnacho

Computer Science Department, University Carlos III of Madrid, Av. Universidad 30, 28911, Leganés, Spain

Keywords: Export restrictions, Steganography, Information Hiding.

Abstract: Cryptographic software has suffered in many ocassions from export restrictions. Governments might claim
that cryptographic algorithms are equivalent to military equipment to justify and maintain these restrictions.
Sometimes, these laws are approved under dictatorial rules or even by democratric goverments which exploit
and overstimate a terrorist menace to restrict civil rights. Citizens have evaded these restrictions in many ways:
handwriting the program’s source code and then typing it again, printing the source code in a t-shirt, using
some kind of steganographic technique, etc. In this paper, we present a system called CSteg that hides source
code into plain text by using context-free grammars. This presents the additional advantage that under some
laws plain text is protected (and its exportation allowed) by free-speech and/or intellectual property legislation.

1 INTRODUCTION

Governments have frequently restricted the export
and even the use of cryptographic software and source
code by civilians. Use of cryptography in military en-
vironments has made it a weapon, instead of a tool
to protect confidentiality. During the 90s these re-
strictions were applied when some civilians tried to
export source code of cryptographic tools outside the
United States (R.Karn, 1994; Bernstein, 1992). All
these people found that the United States government
denied the required free export application.

As a justification, the government claimed that the
electronic version of the code was easy to compile
to produce a fully working program. After years of
trials, in 2000 the Sixth Circuit Court sentenced that
electronic source code was protected by freedom of
speech.

In 1995 a group of 40 countries, signed the Wasse-
naar Agreement1. This regulates the transfer of
weapons, and dual-use goods and technologies. Cryp-
tography was included as a dual-use technology.

Now, most of the cryptographic software can be
obtained without export license, but these laws could
be used in the future to restrict its free distribution.

With this work we try to offer a suitable method
to export source code evading any restriction further
those that applied to printed literature or speech. Ex-

1http://www.wassenaar.com

port of some kinds of source code may be restricted
by law, so we will have to transform the source code
into an exportable object. It is obvious that we can-
not use cryptography to solve this problem. In this
scenario, steganography (not included in Wassenar’s
agreement or in most export laws) becomes the best
solution, as stego-objects have the property of going
unnoticed if properly created.

The remainder of this document is structured as
follows. Section 2 describes the basics of steganogra-
phy. Section 3 briefly presents the solution proposed
to solve the problem. Section 4 describes the ex-
periments carried out to verify the proposed solution.
Section 5 shows and analyzes the results obtained in
the experiments. Section 6 discusses the conclusions
gathered in this work.

2 STEGANOGRAPHY

First well-documented usage of steganography was
made by the Greeks. On 480 B.C, Demaratus wanted
to warn the Spartans against an invasion by Xerxes,
the Persian leader. Demaratus sent a message written
on a wooden table covered by wax, so it could pass
all the guard controls and arrive to Sparta.

Since those days, steganography has developed as
a science, and many different approaches have been
used to cover contents of any kind. Image Steganog-
raphy (Neil F. Johnson, 1998) is one of the most used

399
Blasco Alís J., Cesar Hernandez-Castro J., M. E. Tapiador J. and Ribagorda Garnacho A. (2008).
CSTEG: TALKING IN C CODE - Steganography of C Source Code in Text.
In Proceedings of the International Conference on Security and Cryptography, pages 399-406
DOI: 10.5220/0001925403990406
Copyright c© SciTePress

techniques. Most simple techniques hide information
on the least significant bits (LSB) of each pixel. An-
other widely used cover are digital audio files. Au-
dio steganography also includes techniques such as
LSB (similar to image LSB steganography). Audio
steganography can be performed also in compressed
audio files like MP3s. Some tools like MP3Stego (Pe-
titcolas, 2006) can hide information during the inner
loop step, by modifiying the DCT values.

More steganographic techniques can be found in
the literature, including subliminal channels (Sim-
mons, 1996), SMS (Mohammad Shirali-Shahreza,
2007), TCP/IP packets (Murdoch and Lewis, 2005),
executable files (El-Khalil, 2003) and games (Castro
et al., 2006).

3 HIDING SOURCE CODE

We have developed a stego-system (Csteg) based on
context-free grammars. Our design allows transform-
ing a source code file into a plaintext file (stego-text).
A grammar describing the source code structure is
used to produce the stego-texts. The stego-text gen-
erated has no export restrictions 2. Stego-text can be
recovered at its destiny applying the reverse grammar.
Recovered source code keeps all the functionality of
the original source code.

Other text steganography systems based on
context-free grammars have been developed in the
past: Spammimic3 can convert a short text message
into an email Spam message. Another tool is C to En-
glish to C (Schwarz, 2001) which translates C source
code to the English explanation of it. In 2001, Mart-
tila (Marttila, 2001) conceived a system to hide source
code inside a text.
Martilla designed a tool called c2txt2c that, by using
context-free grammars, was able to produce an En-
glish text from the source code of the Blowfish ci-
pher. Martilla’s c2txt2c is very limited as it was not
able to hide another cryptographic algorithm except
for Blowfish. We have continued Marttilia’s research
and designed and implemented a tool that hides con-
sistently any source code into plain text. On the other
hand, using context-free grammars to produce stego-
text has its drawbacks. Producing meaningful texts is
difficult and, additionally, the used grammar should
be able to parse any source code provided. Finally,
the use of the same grammar to hide all the input files
may generate similar stego-texts which might ease an
attack. To improve the security of the system it could

2at least in the reviewed legislations
3http://www.spammimic.com

be advantegeous to have the possibility of generating
very different stego-texts, even from the same source
file.

Our system uses a plain text file to produce
context-free grammars. The aim is to be able to pro-
duce different grammars just by changing the input
file. This will also help to build meaningful stego-
texts. These plaintext files should have special char-
acteristics.

• The content of the text file should have sense and
meaning.

• Text file should have the maximum possible
length. Our system will extract portions of the file
to generate the grammar.

• Files used by the system should not be restricted
by any copyright.

To perform the recovery process, our stego-system
will need the stego-text and the same input text file
that was used to hide the source code (Figure 1). In
this case a reverse grammar will be generated, pro-
ducing the original source code as output. The text file
used to hide and restore the source code can be con-
sidered as the key of the stego-system, as it is needed
to restore the source code and a different file will pro-
duce different stego-texts.

Figure 1: Stego-system scheme.

3.1 Grammar Generation

Grammar generation can be divided in two different
steps. First step builds the grammar to hide the source
code. Second step builds the grammar to restore the
source code (recovery grammar). Both grammars
must be generated with the same cover-text as input.

3.1.1 Creating the Hiding Grammar

The first step in creating the hiding grammar is to
read the source code files. The resulting grammar
is closely related to the programming language to be
hidden. The cover-text file is used to generate the
output of the parsing process. Output for each rule
(P) of the grammar (G) is extracted from the cover-
text file (Figure 2). To avoid conflicts in the recovery
process, fragments (fi) used to produce output cannot
be repeated. Each of the fragments can be attached

SECRYPT 2008 - International Conference on Security and Cryptography

400

to a terminal symbol (ti) so it will be its output in
the stego-text. Nevertheless, is not necessary to have
only one fragment per terminal symbol. A non termi-
nal (S,A,B) derivation with just one terminal symbol
may use more than one text fragment to produce the
output. In this case, the output for that derivation will
be the concatenation of these fragments.

Figure 2: Hiding grammar construction.

Programming languages have a high redundancy.
This can be exploited to mount a steganographic at-
tack based on frequency analysis. To reduce the fea-
sibility of these attacks, some rules of the grammar
may have different number of outputs from the text
file. This output should be selected randomly between
the random fragments selected from the cover-text file
(Figure3).

Figure 3: Random fragments in hiding grammar.

Programming languages also have specific kinds
of tokens, like identifiers and literals. A specific hid-
ing strategy must be used for each. Strategies used in
Csteg are described in section 4.1.

3.1.2 Creating the Recovery Grammar

This grammar is able to parse stego-text files to pro-
duce source code files. In this case, fragments ex-
tracted from the plain text file are used as terminal
symbols of the grammar. The programming language
grammar is used as a template of the recovery gram-
mar. Terminal symbols in the programming language
grammar are substituted by fragments of the cover-
text file. The output produced by each of the grammar
rules includes the original programming language ter-
minal symbols.

One derivation can have more than one output.
This output is selected randomly between the group
of outputs for that derivation. In the case of the recov-
ery grammar, this translates to multiple derivations
producing the same output. Each of the derivations
parses one of the different outputs produced by the
stego-text grammar.

Hiding methods for special tokens (identifiers,
etc.) have their special recovery mechanism included
inside the description of the recovery grammar.

3.1.3 Specific Programming Languages Issues

A context-free grammar describing the programming
language is not enough to build stego-text files.
Source code is usually split into different files. Some
programming languages, like C and C++, may in-
clude preprocessor directives in their code. All these
must be processed before the parsing process starts.
Decisions taken to solve this issue in Csteg are de-
scribed in section 4.

3.2 Stego-text Generation and Recovery
Process

The stego-text is generated following a typical com-
piler/parser process. Source code is read and a deriva-
tion tree is built. Each of the activated derivations
generates its output which includes fragments of the
cover-text file. The output is concatenated using the
derivation tree. The file produced is the stego-text file.

The cover-text file works as the key of the stego-
system. This file is necessary to recover the original
source code. The recovery grammar parses the stego-
text file to produce the source code files. Generated
source code files have the same functionality of the
original source code.

4 EXPERIMENTS

The system previously described has been tested with
an implementation that hides ANSI C source code.
This implementation has been called Csteg. The
stego-system has been implemented using Ruby and
C. Parsers are produced through Flex 4 and Bison 5

parser generators. Cover-text files have been retrieved
from Project Gutenberg6. Both grammars share non-
terminal symbols. Terminal symbols are different in
each grammar. The C grammar includes the common

4http://flex.sourceforge.net
5http://www.gnu.org/software/bison/
6http://www.gutenberg.org

CSTEG: TALKING IN C CODE - Steganography of C Source Code in Text

401

Figure 4: Parser generation process.

terminal symbols from the C programming language
(if, else, identifiers, literals, etc.). Terminal sym-
bols for the stego-text grammar are extracted from
the Project Gutenberg’s book used as cover-text. In
Csteg, terminal symbols of the stego-text grammar
can be words, phrases or paragraphs of the cover-text.
Parser generation process is described in Figure 4.

4.1 Extraction of Stego-text Terminal
Symbols

This phase extracts terminal symbols from the cover-
text file provided. Terminals are extracted from
Project Gutenberg cover-texts and attached to the
stego-text grammar. The text file used to generate the
stego-text grammar should be able to produce at least
one terminal for each terminal in the grammar. As in
other programming languages, C has some structures
that may be more used than others. The frequency of
appearance of this structures may lead to a specific
frequency appearance of cover-text terminal symbols.

To complicate frequency-based steganalysis, we
have added random stego-text derivations for the most
used C structures. We have analyzed the mostly used
structures and tokens of a group of C source code
files with cryptographic purposes. Files have been
gathered from different sources including eStream
(ECRYPT, 2008), Applied Cryptography (Schneier,
1996) and an implementation of the Anubis cipher
(Vincent Rijmen, 2008).

Table 1: Frequency of C tokens in cryptographic software.

Token type Appearance in %
Punctuator 51.59
Identifier 30.02
Numerical literal 11.63
Reserved word 4.77
String literal 1.29
Preprocessor directive 0.7

Measures have been made with tools taken from
(Jones, 2003). Comments have not been accounted.
Frequency distribution of C tokens gathered in our
tests is described in Table 1.

Table 2: Freq. of punctuator tokens in analyzed software.

Token Frequency Token Frequency
, 21.52 -> 2.05
; 13.21 . 1.82
(12 * 1.73
) 12 | 1.34
= 5.41 # 1.19
] 4.8 v++ 1.11
[4.8 + 1
{ 2.21 *v 0.92
} 2.21 Other 11.68

Table 3: Freq. of reserved words in cryptographic software.

Word Frequency Word Frequency
if 14.84 static 2.93
int 13.79 register 2.84
unsigned 9.25 case 2.83
char 8.84 while 2.60
for 8.30 break 2.54
void 5.85 sizeof 1.54
else 5.09 extern 1.21
return 5.02 short 1.14
long 3.74 struct 0.98
const 3.49 Other 3.15

Most used punctuator tokens are described in Ta-
ble 2. Reserved words frequency is more homoge-
neous (Table 3).

We have found that inside each group of possi-
ble tokens (punctuators and reserved words) there are
only a few tokens which are commonly used. The rest
of the tokens are used rarely compared with the com-
mon tokens (Figure 5).

To reduce the difference in the redundancy of frag-
ments linked to most used programming language to-
kens, we have introduced random derivations. Each
time a symbol from this group is derived, his output
will be chosen randomly from a group of cover-text
fragments.

Table 4: Random derivations per punctuator.

Additions Gap Tokens
1 20 100%-14% ,
2 14 14%-6% ; ()
3 4 6%-2% = [] { } ->
4 1 2%-0% Other

Most used tokens in each of the analyzed sets have
been grouped defining boundaries on their frequency
(Tables 2 and 3). For each group, a number of random
cover-text derivations have been added. The number
of derivations added in a group is directly related with

SECRYPT 2008 - International Conference on Security and Cryptography

402

Figure 5: Most used tokens.

boundaries selected for that group. Four groups have
been created for each set (punctuator tokens and re-
served words). The highest appearance group will
correspond to the one with more random derivations.
The last group will not have any random derivation
on it. Groups deduced for punctuators are shown in
Table 4.

The same procedure has been used for reserved
words. The results are shown in Table 5.

Table 5: Random cover-text derivations per reserved word.

Additions Gap Tokens
1 10 100%-9% if,int,unsigned
2 8 9%-5% char,for,void,

else,return
3 3 4%-1% long,const,case,short

static,register,extern
while,break,sizeof

4 1 1%-0% Other

There are elements inside the source code that can
not be hidden with substitutions from the cover-text.
These elements have been hidden by using special
techniques.

• Identifiers are replaced by names. Each time an
identifier is found, a symbol table is looked up. If
the identifier is not in the symbol table, it is stored
on it and associated with an English name. The
output in this case is the identifier concatenated
with the associated name. If the identifier is in the
symbol table, nothing is added to the table and the
output produced is just the English name associ-
ated with that identifier.

• A String literal can use any kind of character. We
have implemented a simple Caesar cipher to hide
the content of this kind of literals. The ciphered
string will be imperceptible inside the stego-text.

• Numerical literals that appear in the code are
translated into “poems” with a substitution algo-
rithm. The digits of the literal are substituted by

poem words. Each of the different digits has ten
different words to choose randomly for its substi-
tution.

4.2 Parser Generation

Terminal symbols extracted from the cover-text must
be introduced into the grammar description file. We
have used Flex and Bison to produce our parsers.
Each time an operation is performed only one parser
is generated. A hide operation will generate a C parser
producing a stego-text as output. A recovery oper-
ation will generate a stego-text parser that produces
C source code as output. To produce the parsers the
source code generated by Flex and Bison is compiled.

4.3 Covering Process

The C parser is able to parse any kind of C source
code. The output of this parser is the stego-text. C
preprocessor directives have not been hidden. Source
code files that are going to be hidden have to pass
through a C preprocessor.

Our preprocessor treats the file inclusion direc-
tives differently than an usual C preprocessor. When
the preprocessor finds an #include directive it checks
if the file included is a system library (with <>) or
a user library (with “ ”). System libraries are not in-
cluded in the auxiliary file. If system libraries were
included the lines of code to be hidden would sig-
nificantly increase. Reference to system libraries is
hidden like a string literal. On the other hand, user
libraries source code is included in the auxiliary file.

The use of a C preprocessor means that most of the
preprocessor directives included in the code are lost in
the recovery process. The hiding process will make
that the recovered source code will not be exactly the
same source code that was hidden, but it will have
exactly the same functionality.

4.4 Recovering Process

Stego-text parser reads the stego-text files and gener-
ates C source code files.

In order to regain the functionality of the original
source code, a post processing is needed. If the pre-
processed file was the result of some file inclusions,
the source code files which were included are created.
This restores the original source code file structure.

All experiments have been performed over cryp-
tographic C source code files. Twelve experiments
have been performed. Each consisted on the con-
cealment and the recovery of the source code of a
cryptographic algorithm. Four different algorithms

CSTEG: TALKING IN C CODE - Steganography of C Source Code in Text

403

have been chosen: Anubis, 3DES, IDEA and DECIM.
Each of the algorithms has been hidden using three
different types of terminal symbols from the cover-
text file (words, phrases and paragraphs). Differ-
ent books from Project Gutenberg’s repositories have
been used as cover-texts.

5 RESULTS

The size of stego-texts generated (Figure 6) strongly
depends on the kind of terminal symbol selected.
Stego-texts generated with words from the cover-text
are naturally smaller than stego-texts generated with
paragraphs. Obviously, the average size of the termi-
nal symbols in the second case is bigger. The hiding
process has removed all preprocessor directives ex-
cept file inclusions, which remain unchanged. Com-
ments have been lost.

Figure 6: File size chart.

We have computed the number of bytes of the
stego-object produced per byte of hidden information
(Table 6). This can be used as a redundancy estima-
tion. To perform this calculation we have divided the
size of the stego-object by the size of the recovered
source code. Our stego-system, as expected, has in-
troduced a lot of redundancy into the stego-object.

Table 6: Bytes of stego-text per byte of source code.

Anubis 3Des Idea Decim
Words 8.32 6.83 5.49 4.32
Phrases 31.42 36.95 66.64 32.72
Paragraphs 136.45 147.08 338.56 108.508

Stego-text compression ratio (using bzip2) com-
pared with original and recovered source code files
(Figure 7) indicates again, that stego-text files have a
considerable redundancy. Stego-text files generated
with words have much less redundancy than those
generated with phrases and paragraphs. Differences

on the compression ratio between phrases and para-
graphs are not significant. A redundancy check by an
attacker of the stego-text would rise suspicions. This
security drawback could be reduced by adding more
random stego-text derivations. In the ideal situation
our stego-text would not have any repetition. In this
case, the compression ratio would not be the same as
the source code but it would be less suspicious.Word
generated stego-texts have the lower compression ra-
tio, but they only are a conjunction of generally mean-
ingless words. Due to the minimum differences be-
tween phrases and paragraphs stego-texts, it should
be a better choice the use of paragraphs to build the
stego-texts.

Figure 7: Compression ratio chart.

Stego-text generated should comply with the fre-
quency distribution of characters in English. We have
measured the frequency of appearance of characters
and digraphs in all stego-texts generated. Unfortu-
nately, distribution of letters in texts depends on the
length, language, and the text itself.

Figure 8: Comparison of character distribution.

Frequency of appearance of characters usually is
similar between text of the same language and length,
but it can be easily manipulated, as in the case of li-
pograms7. Aside from these rare cases we have build

7A lipogram is a text which does not use a specific letter.

SECRYPT 2008 - International Conference on Security and Cryptography

404

frequency distributions for characters and digraphs
based on 235 different books from Project Gutenberg.
This frequency distribution will give a good approxi-
mation of the characteristic frequency distribution for
texts in English.

Frequency distribution of characters (Figure 8)
in stego-texts generated with words from a Project
Gutenberg book differs a lot from the reference distri-
bution. Stego-texts with paragraphs and phrases are
much closer to the reference distribution. Digraphs
frequency (Figure 9) is consistent with this observa-
tion. Stego-texts generated with phrases and para-
graphs fit better the reference digraph distribution.

Figure 9: Comparison of digrams distribution.

Finally, we have compared the main propierties
of CSteg against other text steganography tools de-
scribed in this paper (Table 7).

Table 7: Text steganography tools comparision.

Input Variability Key
CSteg C source. Yes Yes
c2txt2c Blowfish. No No
C to English to C C source No No
Spammimic Text No Yes

6 CONCLUSIONS AND FUTURE
WORK

Our system can hide any C files independently of its
length. As the size of the embedded data increases,
the redundancy of the stego-text also increases, re-
ducing the security of the system against redundancy-
based steganalysis. Our Stego-texts carry the same
functionality of the original source code files.

A notable example is “La Disparition” (Perec, 1969). None
of the 300 pages contained the letter “e”.

Stego-texts generated can avoid cryptographic ex-
port restrictions. Our system is able to produce mean-
ingful stego-texts. A human can find common struc-
tures of the human language. This is an important
issue that will help the stego-text to pass unnoticed
by a passive attacker. On the other hand, grammar
parsers are very sensitive to changes. A change in the
stego-text by an active attacker will probably cause
the embedded data to be lost.

Future lines of work will try to improve the most
important weakness of the system. Robustness of the
system should be improved. This could be achieved
by means of a synonyms system. Redundancy may be
reduced adding random derivations. Others lines of
work may include the use of this kind of stego-system
to hide any kind of information, not only source code.

The software resulting from this research (Csteg)
has been uploaded to SourceForge.net8.

REFERENCES

Bernstein, D. (1992). Bernstein case web page. http://
cr.yp.to/export.html.

Castro, J. C. H., Lopez, I. B., Tapiador, J. M. E., and Gar-
nacho, A. R. (2006). Steganography in games. Com-
puters and Security, 25(1):64–71.

ECRYPT (2008). eSTREAM Project. http://
www.ecrypt.eu.org/stream/.

El-Khalil, R. (2003). Hydan. http://crazyboy.com/hydan/.

Jones, D. M. (2003). The New C Standard: A Cultural and
Economic Commentary.

Marttila, L. (2001). Accurate language to inaccu-
rate language (and back) translator, c2txt2c v0.2.1.
http://www.verkkotieto.fi/∼lm/c2txt2c/.

Mohammad Shirali-Shahreza, M. H. S.-S. (2007). Text
steganography in sms. Int. Conference on Conver-
gence Information Technology, pages 2260–2265.

Murdoch, S. J. and Lewis, S. (2005). Embedding covert
channels into tcp/ip. Information Hiding, pages 247–
261.

Neil F. Johnson, S. J. (1998). Exploring steganography.
IEEE Computer, 31(2):26–34.

Perec, G. (1969). La Disparition. Gallimard, Paris.

Petitcolas, F. A. P. (2006). MP3Stego. http://
www.petitcolas.net/fabien/steganography.

R.Karn, P. (1994). Applied cryptography case
web page. Web. http://people.qualcomm.
com/karn/export/history.html.

Schneier, B. (1996). Applied Cryptography. John Wiley
and Sons, 2nd edition.

Schwarz, O. (2001). C to English to C. http://
www.mit.edu/∼ocschwar/.

8http://www.sourceforge.net

CSTEG: TALKING IN C CODE - Steganography of C Source Code in Text

405

Simmons, G. J. (1996). The history of subliminal channels.
In Proceedings of the First International Workshop on
Information Hiding, pages 237–256.

Vincent Rijmen, P. S. L. M. B. (2008). The Anubis
Block Cipher. http://paginas.terra.com.br/ informat-
ica/paulobarreto.

SECRYPT 2008 - International Conference on Security and Cryptography

406

