
REBEL
Reconfigurable Block Encryption Logic

Mahadevan Gomathisankaran
Department of Electrical Engineering, Princeton University, Princeton, New Jersey, U.S.A.

Ka-Ming Keung, Akhilesh Tyagi
Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, U.S.A.

Keywords: Block Cipher Function.

Abstract: REBEL is a fiestel network based block encryption function which uses reconfigurable gates instead of substi-
tuition boxes. This novel design approach has many advantages such as the key size can be much greater than
the block size, security can be reduced to boolean square root problem (Kutz, 2004) and resitant to known
cryptanalytic attacks. The implementation results show that our proposed design can better AES in every
design parameter at the same time providing much higher security.

1 INTRODUCTION

Block cipher function is the fundemental building
block of the encryption systems. Thesecurity of
block cipher functions is directly related to itskey
size. This is one of the primary reasons for the NIST’s
AES proposal to replace DES. The key size of DES
(56 bits) was becoming too weak compared the con-
temperorary computing power. The trend of increase
in the computing power is not going to change. The
transistor size reduction together with multi-core ap-
proach will keep the rate of this increase approxi-
mately constant. Thus in the near future we can ex-
pect that 128 (or even 256) bits of keys becoming in-
sufficient. Thus we need to research on new block
cipher functions which can provide much larger key
sizes (for example: 512, 1024 bits). The block size of
these algorithms determine the latency of the encryp-
tion systems and hence it would be advantageous if
the block size can be small (64 bits) compared to the
key size.

Conventional block ciphers (National Bureau of
Standards, 1999; National Bureau of Standards, 2001;
Anderson et al., 2000) derive their security from an
embedded secret, more commonly referred to as a
key. One of the inputs, key, in each round is secret
whereas the round functions themselves are public.
The secret, however, is combined with the state in a
limited way, as an xor, during a round. We propose

a simple yet novel approach wherein the round func-
tions themselves become the secret, while the func-
tion schema is a publicly published algorithm. The
intuition is to use reconfigurable gates as round func-
tions and define their configurations as the secret (or
key). Hence the complexity of such a cryptographic
function is derived from the fact that almost all of the
round processing is driven by the secret (truth tables).
In a traditional block cipher, the secret is combined
with the state with an xor as one of the steps in the
round. This xor step is susceptible to linear model-
ing of the secret and input/output relationship. When
the secret is used as a Boolean gate truth table, it is
inherently non-linear.

The key advantages of our design approach are:

1. Key size is much greater than the block length.
This allows to higher security guarantees without
having to increase latency of cipher operation.

2. Smaller block lengths suite well for instruction
level encryption when placed in-line into a pro-
cessor pipeline (Lie et al., 2000; Suh et al., 2003).

3. Area and time efficient hardware implementation
reduces the security processing overhead drasti-
cally.

Reconfigurable S-boxes have been proposed and
used in GOST (GOS, 970) and TREYFER (TRE,
1997) encryption algorithms. GOST 28147-89 is a
Soviet and Russian government standard symmetric

312
Gomathisankaran M., Keung K. and Tyagi A. (2008).
REBEL - Reconfigurable Block Encryption Logic.
In Proceedings of the International Conference on Security and Cryptography, pages 312-318
DOI: 10.5220/0001922003120318
Copyright c© SciTePress

key block cipher. GOST defines the S-Boxes to be
secret but does not use thekeybits to choose the S-
Boxes. The GOST philosophy is to pre-determine S-
Boxes between communicating parties. TREYFER
is a block cipher/MAC designed in 1997 by Gideon
Yuval. TREYFER has single 8x8 S-Box which is
defined by the secret key. Due to the simplicity of
its key schedule, using the same 8 key bytes in each
round, Treyfer was one of the first ciphers shown to
be susceptible to a slide attack (Biryukov and Wag-
ner, 1999). This cryptanalysis is independent of the
number of rounds and the choice of S-box.

Results. Following are the key contributions of this
paper.

• A novel block encryption algorithm whose secu-
rity is reducible to Boolean Matrix Square root
problem

• Performance characterization of the algorithm in
Software, ASIC and FPGA

2 INTUITIVE DESIGN

Pseudorandom functions form the fundamental build-
ing block of a fiestel network based encryption func-
tion. Pseudorandom function (PRF) should exhibit
two fundamental properties namelyefficient evalua-
tion andeffective similarity. Efficient evaluation re-
quires that the PRF be realizable with a poly sized
circuit (both time and size) and effective similarity
requires that the PRF should exhibit similar charac-
teristics as a truly random function for any poly sized
(both time and space) observerd. So the first step is to
design a PRF.

Efficient Evaluation. Let N be the block size of the
PRF. LetSN be the set of allN×N functions (gates),
then|SN|= 2N2N

. In order to satisfy the efficient eval-
uation criteria we need to form a subsetGN such that
every gateg∈ GN is realizable in poly-time and poly-
space ofN. Let m be such thatn = O(logN) and
q= N

n . Then any gateg∈Sn, the set of alln×n gates,
is representable withn2n bits. If we design the setGN

with q gates chosen fromSn then every gateg∈ GN is
representable withN2n = O(N) bits.

Effective Similarity. Effective similarity require-
ment can be further broken down intosymmetryand
similarity.

• Symmetry requires that every output bit is influ-
enced by every input bit uniformly.

i →y0 y1 yq−1

j
→

x0

x1

xq−1

γ0 γ1 γ2 γ3 γq−2 γq−1

γ0

γq−3

γq−2

γq−1 γ0 γ1

Figure 1: Construction of̂f .

• Similarity requires that any differential input
causes output differential effectively similar to the
universal set. In other words the output bits should
switch with a probability very close to12.

Let f̂ represent theN×N gate realized by theq,
n×n gates. Letγi represent theith n×n gate where
0 ≤ i ≤ q−1. There areq gates and each of these
gates are chosenindependently(remember key bits
are chosen uniformly at random and key bits form the
configuration bits for theseq gates). LetX andY be
the input and output tôf . Letxi andyi be theith group
of n bits ofX andY respectively,i.e., xi = bits i ∗n to
i ∗n+ n−1 of X andyi = bits i ∗n to i ∗n+ n−1 of
Y.

The first design goal is to achieve symmetry. The
simplest way to achieve this goal is by passing every
input group through every one of theq gates. So we
defineyi as follows,

yi =
q

⊕

j=1

γ(i+ j)%q(x j)

Figure 1 shows this construction diagramatically. In
this figure every circle represents then 7→ n gate. All
the gates in thejth row are fed with the inputX j . The
outputs of all the gates in theith column areXORed
to produce the outputYi .

This structure ensures the symmetry property with
respect to both input and the key bits. Also the use of
XORgate ensures that the influence of everyγi andxi
on the output is equal. Such a gatef̂ has some nice
properties. It can produce allN bit symbols with equal
probability. The collision probability, that is two dif-
ferent inputs producing the same output symbol, is
equal to that of the universal set. In other words,
P[f̂ (x) = f̂ (x′)|x 6= x′] = 1

2N .

Security. We want to base the security of our design
on a hard problem. The problem that is of interest to

REBEL - Reconfigurable Block Encryption Logic

313

us is the Boolean Matrix Square Root problem which
is proven to be NP-Complete by Martin Kutz (Kutz,
2004). Kutz (Kutz, 2004) refers to this problem as
digraph rootproblem for thekth root fork≥ 2. Given
a graphG, the problem is to find its factors such that
G(X) = F(F(X)) or to determine that such a factorF
(square root) exists. Kutz shows that this problem is
NP-complete (Theorem 1, (Kutz, 2004)).

We can model the function̂f as a 2N×2N boolean
matrix where a bit in theith row and jth column (bi, j)
is set to 1 if f̂ (i) = j. If we composef̂ twice and
use this composition̂f 2 as the round function in LR-
network then any security question related to con-
struction could be answered only if a solution to the
Boolean Matrix Square Root of̂f 2 can be found.

3 THEORY

3.1 Notations

In the following definitionsx andy are binary strings
of arbitrary but equal lengths,i and j are non-negative
integers.

• % represents the modulus operator

• Let In be the set of alln bit binary stringsi.e., In
= {0,1}n

• Let BIT(x, i) be theith bit of x counting from left
(wlog)

• Let BITS(x, i, j) = (BIT(x, i),BIT(x, i + 1),
. . . ,BIT(x, j)) where j ≥ i

• Let GRP(x, i,n) = BITS(x, i ·n, i ·n+n−1) i.e., the
ith group (from left end) ofn bits ofx (wlog)

• Let γk,l be theIk 7→ Il reconfigurable gate

• Let γk,l [tt] be the truth table bits ofγk,l and|tt| =
l ·2k

3.2 Function f̂

Construction 1. f̂ : X×κ 7→Y where X,Y ∈ IN and
κ ∈ I(N+n)2n

f̂ is constructed fromN
n +1, γn,n component gates,

where n = O(logN). Let q = N
n . Let γn,n

i be the
ith reconfigurable gate, where 0≤ i ≤ q and the
truth table is assigned asγn,n

i [t] = GRP(κ, i,n2n). Let
Xi = GRP(X, i,n) andYi = GRP(Y, i,n). Let f̂κ repre-
sent the function realized by configuring the reconfig-
urable gates with the key bitsκ. Then the outputY is
defined as follows.

Then,

Yi =
q−1
⊕

j=0

γn,n
(i+ j)%(q+1)(X

i)

Note that the construction of̂f defined above dif-
fers from the intuitive construction given in Section 2.
In Section 2 we had used onlyq, γn,n gates, whereas
in Construction 1 we have usedq+1 gates. This en-
sures that everyYi differs from every otherY j (i 6= j)
by at least one gateγn,n, thereby makingYi andY j

independent.
In the following discussions the properties of the

function f̂ refers to the properties of the set of all the
gates realized over the universe of configuration bits
κ.

3.2.1 Properties of f̂

Two important relevant properties of any Boolean
function including f̂ are controllability and observ-
ability. These are similar to the notion of controlla-
bility & observability in VLSI testing. In plain terms,
given the ability to control the input tôf what proper-
ties of the output can be controlled. Similarly, given
the ability to observe the output what properties of the
input can be inferred. These two properties are essen-
tial building blocks of any cipher function. The dis-
tinction between controllability and observability ex-
ists only when the internal nodes of a function block
are considered. In the context off̂ , we assume that the
adversary can directly access only the primary input
X and primary outputY. In such a case, both notions
become identical.

Definition 3.1 (Controllability/Observability). Con-
trollability/Observability refers to the maximum
probability with which any output bit can be con-
trolled by controlling the inputs to a gate. Formally,
Controllability/Observability(̂f) =

max0≤i, j<N

(

δYi
δXj

)

. The Boolean derivativeδYi
δXj

is defined in the standard way as(Yi)Xj
⊕ (Yi)Xj

,

where(Yi)Xj
and(Yi)Xj

denote the Shannon cofactors
of Yi with respect to Xj and it’s complement.

Symmetry. f̂ exhibits the following symmetry. Every
output bit is equally probable to switch for any differ-
ential input pair. This property is easy to observe as
every input bit has the same level of influence on ev-
ery output bit. More formally, the controllability of
each input/output bit pair is the same averaged over

the entire gate space:Σκ∈ I(N+n)2n

(

δYi
δXj

)

is the same

for all 0≤ i, j < N.
Strength of f̂ 2. In f̂ 2, let X be the input,Y be
the output, andZ be the intermediate output,i.e.,

SECRYPT 2008 - International Conference on Security and Cryptography

314

X|L

X|R

Y|L

Y|R

f̂2

κ
f̂κ f̂κ

f̂2

κ

Figure 2: Construction ofRκ.

Z = f̂ (X), Y = f̂ 2(X) = f̂ (Z). Due to symmetry
property (Property 3.2.1), no static bias model can
be developed. Biases, however, do exist in specific
instantiated keysκ, which an adversary can attempt
to model through multiple differential input experi-
ments and their effects on the output. Constructionf̂ 2

takes away that opportunity. The observable outputY
does not provide any information about the switch-
ing (or differential state) of any particular bit ofZ
(since from the static model, all of them are equally
probable). The only means to extract the information
about the secret configurations of the gates seems to
be the brute force search. Alternately, if the adver-
sary could factorf̂ 2 into f̂ . f̂ , then a differential con-
trollability/observability attack becomes more feasi-
ble. Martin Kutz (Kutz, 2004) shows that such factor-
ing is NP-Complete. NP-Completeness off̂ 2 problem
does not guarantee that every instance of the problem
is hard or even that an average instance of the problem
is hard. But we do believe that this problem is a hard
problem on the average. This intuition is based on the
prevalent belief that prime factoring of an integer is
difficult on average.

3.3 REBEL Cipher Function R

Construction 2. R : X × κ 7→ Y where X,Y ∈ I2N
andκ ∈ I(N+n)2n

R is a LR-network with four levels as shown in
Figure 2. LetRκ represent theREBELcipher func-
tion whose key isκ. Rκ has four levels. The pseudo-
random function associated with first and last levels
is f̂ 2

κ . The middle level pseudorandom function isf̂κ.
This design choice ensures that every internal node is
neither observable nor controllable by the adversary.
In REBEL encryption and decryption algorithms are
the same.

3.3.1 Key Space

The keyκ of R is nothing butq+1 n 7→ n gates cho-
sen at random from the universal set. Eachn 7→ n
gate can be further considered asn n 7→ 1 gates thus
making the key comprising ofN + n n 7→ 1 gates.

In order to strengthen the key space we removelin-
ear and theconstantgates from the universal set.
Let Kn be the set of validn 7→ 1 gates then|Kn| =
22n

−2n+1−2. LetK be the set of valid keys forR
thenK = {Kn}N+n.

4 CRYPTANALYSIS

In this section we investigate the resilience ofREBEL
toward the well known cryptanalysis methods. First
we will show the class of attacks which use theinvari-
anceproperty of system,i.e., the idea of these attacks
is to find the properties of the system which are not
dependent or least dependent either on the secret or
the input.

4.1 Linear Cryptanalysis

Linear cryptanalysisis a general form of cryptanal-
ysis based on finding affine approximations to the
cipher function. The technique (Matsui, 1993) has
been applied to attack ciphers like FEAL (Miyaguchi,
1990) and DES (National Bureau of Standards, 1999).
Linear cryptanalysis exploits the high probability of
occurrences of linear expressions involvingplaintext,
ciphertext, andsub-keybits. This attack becomes pos-
sible on theconventionalcipher function design as
thekeybits are primarily XOR’ed with round inputs.
The linear approximations of known components (S-
boxes) in the system further aid the analysis. In the
case ofREBELnone of these required conditions are
present. Everyγn,n gate is chosen randomly from the
set of nonlinear gates.

4.2 Differential Cryptanalysis

Differential cryptanalysis(Biham and Shamir, 1991)
exploits the property of difference being propagated
from input to the output of the cipher function. This
attack again requires the properties of the known com-
ponents in the system (S-boxes) in order to estimate
the difference propagation probabilities. InREBEL
such an analysis is not possible as there are no known
components in the system. A variant to this attack
is impossible difference attack(Biham et al., 2005)
which again uses the principle of identifying differ-
ences that do not propagate from input to output.

4.3 Boomerang Attack

This attack (Wagner, 1999) relies on the difference
analysis of round function properties and existence of
some block in the system which is independent of the

REBEL - Reconfigurable Block Encryption Logic

315

input to cipher function. This can be thought of as
meet-in-the middle version of differential cryptanaly-
sis. AgainREBELis resistant as there are no blocks
(gates) in the system that is either independent of key
or the input.

4.4 Sliding Attack

This attack (Biryukov and Wagner, 1999) exploits the
weakness of the round functions. It assumes that
given two pairsP,C andP′,C′ such thatP′ = f (P) and
C′ = f (C), the round function can be deciphered or at
least a significant fraction of key bits can be extracted.
These attacks once again use the property of round
functions being built using some known components
(S-boxes) andkeybits being used only in XOR oper-
ations.

In REBELfirst and last round functions aref 2
κ .

Section 3.2.1 argues why such round function can-
not be deciphered given a polynomially many input
output pairs. Hence sliding attack is also ineffective
againstREBEL.

5 IMPLEMENTATION

In this section we discuss the REBEL cipher function
R implementation forN = 32 bits. The major ad-
vantage of REBEL is that the block size can be much
smaller than the key size. We choosen = 4 as it sat-
isfies the requirement thatn ≤ logN. Also, reconfig-
urable gates ofn > 4 are impractical. Thus we get
576(|κ|= (N+n)2n) key bits or configuration bits for
the function f̂ . We implemented the REBEL cipher
functionR with a block size of 64 bits and key size
of 576 bits both in software and hardware.

5.1 Software

We implemented the software version in C language.
Our optimization goal was performance. Hence we
traded area or in software memory space to increase
the performance. In̂f every 4 bits of input is oper-
ated on by 8 4x4 LUTs. So we created 64 such LUTs
so that each input group can be operated on indepen-
dently. Thus we require a memory space of 512 bytes.
This is less than 0.025% of a L2 cache of 2MB which
is very common in contemporary processors.

The configuration table in memory is laid out as
a two dimensional array of 16 rows and 8 columns of
32 bits. The column signifies the input group (input to
f̂). The action of choosingith row in a jth column is
equivalent to the operation of passing theXi through
eight 4x4 LUTs. Thus the function̂f is implemented

with 8 memory lookups and 7 XOR operations of 32
bits. In totalR takes 94 operations to produce the
result of 8 bytes. Thus we can achieve a rate of 11.75
cycles per byte assuming one operation per cycle.

We simulated the algorithm in a x86-64 Intel Pen-
tium D CPU 3.20GHz machine with a 2MB L2 cache.
The program was compiled with gcc-4.1.0 with opti-
mization level 3. We did 1 Billion encryptions (or
decryptions) to estimate the performance. On the av-
erage it took 36.08 seconds to perform 1 Billion en-
cryptions. Thus REBEL can achieve a rate of 1.77
Gbps or 14.432 cycles per byte. This is very close the
theoretical minimum of 11.75 cycles per byte. The
fastest known implementation of AES takes 15 cy-
cles per byte. The eStream (eStream, a) project lists
AES performance as an random number generator in
counter mode. The Pentium 4 figures (eStream, b) of
AES show that it takes 17.81 cycles per byte. REBEL
outperforms AES-128 even though the key size is 4.5
times that of AES.

5.1.1 Heuristic Testing

Table 1: Test Suites Tested on REBEL Counter Mode.

Test Suite Parameters # Statistics Results
Small Crush Standard 15 PASS

Crush Standard 144 PASS
Big Crush Standard 160 PASS
Alphabit 231 bits 17 PASS
Rabbit 231 bits 40 PASS

FIPS-140-2 20000 bits PASS

Any Encryption function can be used as a Ran-
dom Number generator in counter mode. We can
heuristically test the encryption algorithm by test-
ing for randomness in the output stream. We used
the TestU01 (L’Ecuyer and Simard, 2007) to test the
randomness of the bit-stream generated by REBEL
in counter mode. We tested for p-values within the
boundary[10−4,1− 10−4]. We considered any p-
value lying outside this boundary as a failure. Table 1
lists the test suites and the results.Standardparam-
eters in Table 1 refers to inbuilt test parameters of
test suites. In all, 376 statistical tests were performed
and REBEL counter mode passed all of them. We re-
peated all these tests 10 times (except for Big Crush)
to increase the confidence level of the test results and
all of them passed. This heuristically proves the fact
that the f̂ is a pseudo-random function andR is a
pseudo-random permutation function.

SECRYPT 2008 - International Conference on Security and Cryptography

316

Rebel

clk

config

datain

X

Config Bits

F0

F1

...

F7

XOR

32

32

32

32

32

32

CB[511:0]

CB

[575:64]

CB[575:448,383,]

32

Y

Figure 3: ASIC implementation of̂f (Register)).

5.2 Hardware Implementation and
Result

We implement REBEL in ASIC and FPGA to mea-
sure its area, power and throughput. There are two
ASIC REBEL designs. REBEL(reg) uses registers
to store the key while REBEL(sram) uses SRAM to
store the key. The REBEL is implemented in VHDL,
synthesized by Cadence Physically Knowledgeable
Synthesis and placed and routed by Cadence En-
counter with TSMC 130nm and 65nm technologies.

The design of f̂ (N=32, n=4) is shown in Fig-
ure 3. The 576-bit configuration bit memory stores
the REBEL’s key. REBEL takes 18 cycles to store
a new key. The memory provides 512 configuration
bits for each functionF . FunctionF implements 8,
64-to-4 multiplexers signifying 8 47→ 4 LUTs. Thus
64 bits of configuration signifies a 4x4 LUT. The con-
figuration bits are rotated by 64 bits and fed to the
multiple instances ofF. The XOR unit XORs the out-
puts from all functionF units and produces outputY.
The SRAM version is pretty similar to the software
version. The SRAM has 8 blocks. Each block has 16
rows and 32 bits. All these blocks are accessed paral-
lely. We used CACTI to estimate the delay, area and
energy parameters of the SRAM.

LUT

GROUP0

XOR

R(31:0)

32 Y

X

LUT

GROUP1
R(63:32)X

LUT

GROUP..
R(...)X

LUT

GROUP7
R(255:224)X

Figure 4: FPGA Implementation of̂f .

The FPGA REBEL is shown in Figure 4. The con-
figuration bits are stored in the LUT group. The 32-bit
input X selects a 32-bit wide outputR from the eight

LUT groups. Each LUT group contains 32 LUTs.
The 32-bit wideX is divided into 8 groups(X[3 :
0],X[7 : 4]...). Each group is used to select 4 out-
put bit R from 4, 4-LUTs respectively. Finally an
XOR unit XORs all 32-bit LUT groups’ output and
produces outputY.

Table 2: Data Table A.

um2 ns Gbit/s mW Cycles
Type Area Period Tput Power Cycles

130nm
Rebel(reg) 98300 2.4 4.44 56.4 6
Rebel(sram) 89468 1.72 6.20 76.92 6
AES(Opencore) 158290 4 3.2 90.61 10

65nm
Rebel(reg) 26200 1.4 7.61 26.99 6
Rebel(sram) 22474 1.03 10.37 30.77 6
AES(Opencore) 43049 2 6.4 45.56 10

Table 3: Data Table B.

J/bit um2 ∗us kbit/um2/s nJ∗um2

Type Energy/Bit A*Time Tput/A PAT

130nm
Rebel(reg) 12.69 236 45.2 13310
Rebel(sram) 12.39 153.71 69.4 11823
AES(opencore) 28.32 633.16 20.22 57373

65nm
Rebel(reg) 3.54 36.72 290.5 991.01
Rebel(sram) 2.97 23.1 461.69 710.9
AES(opencore) 7.12 86.1 148.67 3922.84
Better lower lower higher lower

Table 4: FPGA Results.

ns Mbit/s mW
Type Slices LUTs Period Tput Power
Rebel 202 352 3.29 3238.21 1022
AES 2208 3471 5.50 2312.97 1136
Better lower lower lower higher lower

J/bit LUT ∗us Mbit/LUT/s nJ∗LUT
Type Energy/Bit LUT*Time Tput/LUT PLT
Rebel 315.63 1159.49 9.2 1185.09
AES 491.29 19208.51 0.67 21827.21
Better lower lower higher lower

We compare REBEL with the AES-128 IP from
OpenCores (OpenCores,). Tables 2 shows that when
REBEL uses SRAM as key storage, the area de-
creases and the throughput increases. Compared with
AES, REBEL is more compact. REBEL consumes
lower power and chip area and has higher throughput.
As hardware implementation is a multi-dimensional
design which considers power,area and frequency, we
derived the measurements in Table 2 into four data
which are commonly used in cryptography hardware
comparison. The derived data are energy consumed
per bit, area time product, throughput per area and
triple product of power/area/time(PAT). These data
can show the efficiency of the cryptography imple-
mentation. The data is shown in Table 3. We can see
that REBEL has lower PAT, AT, energy/bit and higher
throughput/area compared with AES.

The FPGA implementation result (Table 4) agrees
with the ASIC implementation. REBEL occu-

REBEL - Reconfigurable Block Encryption Logic

317

Table 5: FPGA Throughput/Area Comparison.

Type LUTs Gbps Gbps/LUT

REBEL 352 3.24 9.2

AES(Opencore) 3417 2.31 0.68

AES (Chodowiec, 2001) 2507 0.41 0.17

AES (Hodjat, 2004) 9446 21.64 2.29

AES (Zambreno, 2004) 16938 23.57 1.39

AES (Zhang, 2004) 11022 21.56 1.96

pies lesser slices and LUTs compared with AES.
REBEL has higher frequency, throughput and lower
power consumption compared with AES. In addition
REBEL has higher Throughtput per LUT compared
with other AES implementations (Feldhofer et al.,
2005) as shown in Table 5.

6 CONCLUSIONS

Two of the desirable characteristics of a symmetric
block cipher are larger key size to avoid key collision
attacks, and high throughputs. We have presented a
new block encryption algorithm - REBEL, with these
two attributes. It is able to support significantly larger
key space for the same block size (576 key bits for
32-bit block size for instance). Moreover, the in-
creased key space can be supported with the through-
puts slightly higher than that of AES-128 both in soft-
ware and hardware implementations.

The REBEL function uses the gate truth-tables as
the secret keys directly. These gates naturally have
the desirable attribute of nonlinearity. Linear crypt-
analysis is less likely to succeed due to this. We use
the square of a Boolean function as the underlying 1-
way function within an LR-network. This takes away
differential controllability and observability making
differential cryptanalysis impractical. This also lends
some provable security to the REBEL construction.

REFERENCES

(1970-).GOST 28147-89. Wikipedia Article.

(1997).TREYFER. Wikipedia Article.

Anderson, R. J., Biham, E., and Knudsen, L. R. (2000). The
case for serpent. InAES Candidate Conference, pages
349–354.

Biham, E., Biryukov, A., and Shamir, A. (2005). Cryptanal-
ysis of Skipjack Reduced to 31 Rounds Using Impos-
sible Differentials.J. Cryptology, 18(4):291–311.

Biham, E. and Shamir, A. (1991). Differential Cryptanaly-
sis of DES-like Cryptosystems.J. Cryptology, 4(1):3–
72.

Biryukov, A. and Wagner, D. (1999). Slide attacks. InFast
Software Encryption, pages 245–259.

Chodowiec, P., Khuon, P., and Gaj, K. (2001). Fast im-
plementations of secret-key block ciphers using mixed
inner- and outer-round pipelining. InFPGA ’01: Pro-
ceedings of the 2001 ACM/SIGDA ninth international
symposium on Field programmable gate arrays, pages
94–102, New York, NY, USA. ACM.

eStream. The estream project.
http://www.ecrypt.eu.org/stream/.

eStream. Performance comparison of vari-
ous stream ciphers by estream project.
http://www.ecrypt.eu.org/stream/phase3perf/2007a/
pentium-4-a/.

Feldhofer, M., Lemke, K., Oswald, E., Standaert, F.-X.,
Wollinger, T., and Wolkerstorfer, J. (2005). State
of the art in hardware architectures. Technical Re-
port D.VAM.2, ECRYPT, European Network of Ex-
cellence in Cryptology.

Hodjat, A. and Verbauwhede, I. (2004). A 21.54
gbits/s fully pipelined aes processor on fpga.Field-
Programmable Custom Computing Machines, 2004.
FCCM 2004. 12th Annual IEEE Symposium on, pages
308–309.

Kutz, M. (2004). The complexity of boolean matrix root
computation.Theor. Comput. Sci., 325(3):373–390.

L’Ecuyer, P. and Simard, R. J. (2007). Testu01: A c li-
brary for empirical testing of random number genera-
tors. ACM Trans. Math. Softw., 33(4).

Lie, D., Thekkath, C. A., Mitchell, M., Lincoln, P., Boneh,
D., Mitchell, J. C., and Horowitz, M. (2000). Ar-
chitectural support for copy and tamper resistant soft-
ware. InArchitectural Support for Programming Lan-
guages and Operating Systems, pages 168–177.

Matsui, M. (1993). Linear Cryptoanalysis Method for DES
Cipher. InEUROCRYPT, pages 386–397.

Miyaguchi, S. (1990). The FEAL Cipher Family. In
CRYPTO, pages 627–638.

National Bureau of Standards (1999). FIPS PUB 46-3: Data
Encryption Standard (DES).Federal Information Pro-
cessing Standard.

National Bureau of Standards (2001). FIPS PUB 197: Ad-
vanced Encryption Standard (AES).Federal Informa-
tion Processing Standard.

OpenCores. Opencores project. http://www.opencores.org.

Suh, G., Clarke, D., Gassend, B., van Dijk, M., and De-
vadas, S. (2003). aegis: Architecture for tamper-
evident and tamper-resistant processing. InProceed-
ings of the 17 Int’l Conference on Supercomputing,
pages 160–171.

Wagner, D. (1999). The boomerang attack. InFast Software
Encryption, pages 156–170.

Zambreno, J., Nguyen, D., and Choudhary, A. N. (2004).
Exploring area/delay tradeoffs in an aes fpga imple-
mentation. InFPL, pages 575–585.

Zhang, X. and Parhi, K. K. (2004). High-speed vlsi archi-
tectures for the aes algorithm.IEEE Trans. Very Large
Scale Integr. Syst., 12(9):957–967.

SECRYPT 2008 - International Conference on Security and Cryptography

318

