Defining and Prototyping a Life-cycle for Dynamic
Service Composition

Eduardo Silva, Jorge Martinez Lépez, Luis Ferreira Pires and Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. Since the Internet has become a commodity in both wired and wire-
less environments, new applications and paradigms have emerged to explore this
highly distributed and widespread system. One such paradigm is service-orienta-
tion, which enables the provision of software functionality as services, allowing

in this way the construction of distributed systems with loosely coupled parts.
The Service-Oriented Architecture (SOA) provides a set of principles to create
service-oriented systems, by defining how services can be created, composed,
published, discovered and invoked. In accordance with these principles, in this
paper we address the challenge of performing dynamic service composition. The
composition process and its associated tasks have to be precisely defined so that
the different problems of dynamic service composition can be identified and tack-
led. To achieve this, this paper defines a life-cycle for dynamic service composi-
tion, which defines the required phases and stakeholders. Furthermore, we present
our prototype in which the different phases of the dynamic service composition
life-cycle are being implemented. This prototype is being used to experiment with
and validate our initial ideas on dynamic service composition.

1 Introduction

During the last years we have observed an increased use of the Internet, on both wired
and wireless environments. Nowadays cellular phones are often sold with a data com-
munication contract, which allows phone users to access numerous applications. Re-
cent studies [1] show that in the upcoming years the continuously increasing use of
small portable communication devices, referredihdsrnet-centric pocketablgevices,

will overcome the use of laptops, especially for users with high mobility. This tendency
brings the Internetlwaysandeverywheretriggering new opportunities and application
areas. As a consequence, many of the biggest software industry companies are invest-
ing in new developments in Internet-based application service provisioBoftvare

as a Service (Saa$2] is a concrete example that is being adopted by some major
software companies. This Internet-based methodology for software delivery provides
the means to deliver services on-demand, as the user requires them, moving away from
some classical approaches to software distribution, such as license-based. These new
developments are based on the Service-Oriented Architecture (SOA) [3], which pro-
vides a set of principles to address the creation, share and use of services. A service is

Silva E., Martinez Lépez J., Ferreira Pires L. and van Sinderen M. (2008).

Defining and Prototyping a Life-cycle for Dynamic Service Composition.

In Proceedings of the 2nd International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 79-90
DOI: 10.5220/0001899900790090

Copyright © SciTePress

80

realized by a given application, or system, and represhatestternal behaviour of the
application, or system. This is the basic definition of segyivhich is going to be used
throughout this paper.

With the emergence of Internet-based application sendoesopen principles for
service creation and use, such as SOA, new opportunitieajgmeaches for service
creation are appearing. One of these approaches is seonggosition, which focus
on the creation of value-added services from existing sesviService composition
should in principle reduce the development time of new sesjiwhile promoting the
re-use of available application services. Furthermoreydigig service composition it
should be possible to create personalised services onrkfvased on specific user re-
quirements. The creation of service compositions on-dehbassed on particular user
requirements, context and preferences, charactadiggsmic service compositioBy-
namic service composition will possibly support servicealepers at design-time, eas-
ing their task on service creation, and end-user, at runfita@y people are working on
different aspects of service composition in general, andhmeffort is being spent on
some issues concerning dynamic service composition incpéat. However, not much
effort is being spent on the precise definition of the dynaseiwice composition life-
cycle. A more precise definition of the dynamic service cosifpan life-cycle should
allow one to identify and reason about the concerns and remeints of this problem.
In this paper we focus on the definition of such a life-cycle] &entify the research
challenges that need to be addressed in each phase of ¢hiydifle. This paper also
presents the prototype we are building to support dynammigcgecompaosition, which
implements the life-cycle phases we have identified. Thasgtype should allow us to
identify new problems that need to be tackled in this area.

The paper is organized as follows: Section 2 motivates dymaarvice composi-
tion by discussing a target application scenario; Sectipne3ents a service composi-
tion life-cycle, aiming at identifying and addressing th#etent phases of the dynamic
service composition process; Section 4 presents the gp#ote are developing to im-
plement the phases of the dynamic service compositiortiitde; Section 5 discusses
some related work; and Section 6 presents our conclusiahtoaits for future work.

2 Motivation

Service composition is mainly motivated by the principlesvided by the Service-
Oriented Architecture (SOA) [3]. The Organization for thdvancement of Structured
Information Standards (OASIS) defines SOA as [4]:

A paradigm for organizing and utilizing distributed caphfies that may be

under the control of different ownership domains. It pr@gdiniform means
to offer, discover, interact with and use capabilities toguce desired effects
consistent with measurable preconditions and expectstion

According to the SOA principles, service developers caateraew services, and make
them available to potential service users. To make a seaviaéable, a service descrip-
tion document has to be produced, which describes the sepvaperties, operations

81

and how the service can be invoked. Fig. 1 shows the basiautiens in a service-

oriented architecture and the different parties involuethie architecture. SOA is not
an implementation technology, but rather a set of concégtisdan be implemented
using different concrete technologies. Currently, thetrpogular technology to imple-

ment SOA is Web services [5, 6]. Many aspects of Web serviaes been standardized,
making this technology mature and highly accepted by thestrg.

Service Registry

sx Service
Description

3

‘.‘—71) publish service

i) request serfice L . “‘(J()S(,‘\I[] ion

B t
Re ‘o’ AN AN
i RARe . Sx
L clii) retrieve service s
)

descriptions
[ey N
¢ | Sx

N Service
S Sx o
= Description

-I Service
) L [
Service Service

User Provider/Developer

Fig. 1. Service-Oriented Architecture elements and interactions

SOA fosters the re-use of available services as componesésvice compositions.
Traditionally, service composition is performed duringid@-time, resulting in service
compositions that have to be used during runtime as they bege designed. How-
ever, new application scenarios have been identified thdtldmenefit from dynamic
service composition. We define dynamic service composétihe process of creating
a service on demand (at design or at runtime) to match speggc requirements and
preferences by composing existing services

Amongst the scenarios in which dynamic service compositem be beneficially
applied ismobile computingwhich is presented in [6]. This scenario involves two main
system parts, namely the user’s mobile device and the badlkygplication server. Ser-
vices in this scenario are call&ield Web servicesThe user has field mobile device,
which is used to input the user’s service request, store se€suprofile and service
preferences. The user's mobile device is also usedsensorfor the user’'s context.
Provided with such a field mobile device, the user can creataace request and for-
ward this request to the back-end server system. The batkezuer system performs
all the necessary operations to provide the user with acthiat matches the require-
ments expressed in the service request. This architedtavesaadvanced functionality
and added-value services to be provided to the user on gpwelktable device#\n-
other potential benefitis the increase of the battery lifeetof the mobile devices, since

82

some power-consuming processing is shifted to the baclsemnver system. Saving bat-
tery life-time is a key issue in mobile computing nowadays.

3 Dynamic Service Composition Life-cycle

The life-cycle of dynamic service composition defines thguieed phases and the
stakeholders that participate in the service compositimtgss. Fig. 2 presents the
life-cycle for the dynamic service composition processsidered in our work.

_—— — — — —— —)|Serv|ce publication |<__|Servwce Cmatiﬂnl‘-— %

I

Service
I developer/provider
|

% Service registry

Service developer Servicedrscover 3 2 =
Service request very ervice composition
and composition selection

ﬁ Service Delivery <

A

End-user

Fig. 2. Dynamic service composition life-cycle.

We assume that three stakeholders participate in theyliferService developerSer-
vice providers andEnd-usersThe life-cycle depicted in Fig. 2 consists of two main
flows, namelycreation and publication of (atomic) servigés be performed by service
developers and service providers, gdginamic) service compositipto be performed
by end-users on demand, at runtime, or by service develogtatesign-time. Each one
of these flows is discussed below in terms of the phases aridshes to be solved in
each phase.

3.1 Services Creation and Publication

Although the service provider and the service developetwoedifferent stakehold-
ers with well-defined roles, in this discussion we do notelisdchem. We assume that
the service provider/developas usually a professional user or company, which fo-
cus on creating and providing services for a potential sesefs Application Service
Providers (ASPsg))7] are organizations that play the combined roles of thesesold-
ers. A service provider/developer creates services, wiigp be built from scratch by
programming new applications and making them availableeagsces. A service may
also be built by hand by re-using existing services in a caitjpm, making the com-
position available as a service. The service creation pt@assists on theonstruction

of the service functionality and the respective servicedpson document.

83

The service description document is used in the serviceigatldn phase to pub-
lish the necessary information to allow potential servisera to discover the service.
Furthermore, the service description document also haerttain all the required in-
formation to deal with the invocation of the service, suctihesaddress of the service
end-points and specific technical details (protocols, dimgp etc.). The service descrip-
tion document may also contain other non-functional infation, such as quality-of-
service, Service Level Agreements (SLAS), and possiblyragtual conditions to use
the service.

Service creation and publication are essential phase®idythamic service com-
position life-cycle, since service composition can onlketalace if services that are
candidates to be used in compositions are available andecdistovered for usage.

3.2 Service Composition

We assume here that an end-user or a service developer waeis service to satisfy
his specific needs. Fig. 2 shows an end-user, which usuadiynbdechnical skills on
service composition and wishes a new servigeatime and a service developer, which
has technical skills on service composition, but wants ¢éater a new service in a faster
and more automated way given some specific requiremeni@ljyiatidesign-time

The first phase of this process is the specification eéraice requestThe service
request should provide enough information on the user remqugints and preferences for
the service. In the case of an end-user, additional contéxtrhation can also be gath-
ered to further adapt the service creation to the concretesitiation. In this phase,
the end-user or the service developer interacts with theeisythat performs the dy-
namic service composition, but most of the other phasesxqrected to be performed
transparently for these stakeholders. This is because swaresthat dynamic service
composition should be an automated process in which a seis/icreated without re-
quiring the direct intervention of a human user, as oppos#u&t service creation phase
discussed in Section 3.1.

After the service request is defined, thervice discovery and compositiphase
starts. The different services that could be used in a coitipoare discovered accord-
ing to the composition algorithm. Service discovery is parfed by invoking the inter-
face provided by the service registry, based on informatmmtained in the published
service description documents. The service discoveryeptapends on the publica-
tion phase discussed in Section 3.1. This implies that tferimation published in the
publication phase should be compatible with the informrmateEquired in the discovery
and composition phase, which can be achieved by complyingen standards even if
different organizations implement their own publicatiordaliscovery mechanisms. In
the service discovery and composition phase, an algorgtofiéen performed that takes
the user service request to build candidate compositiottseoervices that have been
discovered previously or whenever the algorithm needs them

As a result of the discovery and composition phase, severapositions may be
generated that match the service request, which meansthgeherated services may
have to be selected. This happens in seevice composition selectigghase. In the
case of an end-user, a single service (composition) shautétarned, which implies
that this phase is performed by the system that support®thpasition process. This is

84

because we have assumed that an end-user does not havéhttieakskills necessary
to select the most appropriate composition. However, thleteser may be asked to indi-
cate which properties should have the highest priority éngélection of a composition
(e.g., the aggregate cost of using the services in the cdtigm®r the performance of
the composition in terms of response delay). In any caseptise should be as trans-
parent as possible for the end-user, i.e., the resultingoosition should be selected
only based on the service request and the user’s preferandesontext. In the case of
a service developer, a list of services that match the sengquest may be returned.
Mechanisms to rank the generated service compositions maxséd to facilitate the
selection of the composition that is finally used.

Service deliverys the phase that follows service composition selectiod, iars
concerned with the activities that are necessary to all@vetid-user to use the ser-
vice composition. This phase is necessary because th¢ingstdbmposition may still
be represented in some (formal) technology-independeation, while an executable
representation is necessary to deploy and execute the &itiopcas a concrete ser-
vice. In the case of a service developer, a service compogigscription may also be
required to allow the composition to be published as a nevicgrso these issues are
also relevant to this phase.

Service deploymerg a phase that applies only to the end-user case. The end-use
expects a running service, so the selected compositiorohas deployed to allow its
instantiation and invocation by the end-user.

At the end of the life-cycle some actions may still occur, eleging on the stake-
holder. In the case of an end-user, the service composgiamvoked to deliver the
service requested by the end-user. In the case of a serwietoger, the list of services
is returned so that the most suitable composition the dpeeloeeds can be selected.
The service developer may possibly adapt the compositicthdr to include some
additional functionality. Fig. 2 shows an additional ph&sethe case of service devel-
opers, in which the service developer publishes the contpesevice so that it can be
used later by end-users or other developers.

4 Prototype for Dynamic Composition of Services

This section discusses the prototype we are building toempht the different phases
of the dynamic service composition life-cycle. We are maaiming at developing a
modular, scalable and extensible architecture, to ad@ds of the life-cycle phases,
but also at supporting different concrete technologiesh as, for example, different
service description languages.

In our prototype we are currently using Spatel [8], which isrmguage developed
in the European project IST SPICE [9] in which this work is exdbted. Spatel sup-
ports service description, creation, composition and @tkeg. It also supports seman-
tic description of services, through references to ontedontologies are formal rep-
resentations of conceptualizations, and are necessany iapproach to automate the
different tasks of the service composition life-cycle yading the abstraction and trans-
parency needed in the dynamic service composition process.

85

Fig. 3 shows our initial prototype for dynamic service comifion by indicating
how each phase of our proposed life-cycle for dynamic sers@nposition is mapped
onto the components of the prototype.

—_ —— — — —_— —_— —_— —_— — —

Domain Ontologies

CS/O\ED P

2 H
Service publication Service creation
Imp: Java + jUDDI API Imp: SPATEL-tools
Service
developer/provider

Service developer Service request Service discovery |
Imp: XML + Java Imp: Java + jUDDI API i

B | e, ,
| v Hi
Service delivery Sevice composition | & Graph-based 43
< l€—| selection ld—]| service composition ||

CLM Construction
Imp: Java + FACT++| 1}

Imp: Java + SPATEL + EMF Imp: Java | 1 Imp: Java

v

Service deployment

End-user

Fig. 3. Prototype for dynamic service composition.

4.1 Service Creation

The service creation process makes use of the Spatel tduts) wffer a graphical inter-
face to define the interface of services and the service eidsp This component also
allows one to semantically annotate service operationsiwguts outputs precondi-
tionsandeffects to define theservice goalwhich reflects the purpose of a service, and
to definenon-functional propertiesf a service, such as, for example, cost and response
time. All these annotations refer to concepts formally dediin ontologies, which in
our case have been produced in the scope of the SPICE project.

Other languages than Spatel may be used in the serviceargatase as long as
these languages support semantic annotations.

4.2 Service Publication

The component responsible for service publication analyseservice description doc-
ument, extracting the necessary information to publishstwwice in the service reg-
istry. The operation of extracting the information from avéee description document
depends on the used description language, which meandffeatit interpreters have
to be available to parse the supported description langu&jece we use Spatel for
service description, in order to parse a Spatel servicaigisn document we generate
a Java API from the Spatel Ecore model with the Eclipse Modefiramework (EMF).

This allows us to extract the semantically annotated ptagsefrom the Spatel service

86

description document, namely Inputs, Outputs, PrecantitiEffects, Goals and Non-
functional properties. These semantically annotated qitm@s are always considered
for semantic service description in our prototype, so irheiently of the description

language a service is always published in the service rgdgisthis same way.

The extracted information is organized and published in &bUbased registry.
We use jUDDI [10] as service registry, which is a Java-basaglémentation of the
Universal Description, Discovery, and Integration (UDBpecification [11] for Web
Services. Our purpose is to make use of the jJuDDI API for mation and discov-
ery of services, creating the necessary UDDI models to sh@reemantic annotations
mentioned above.

4.3 Service Request

The service request component allows the specification eflace request, using a set
of semantic annotations that describe the properties ofi¢lseged service. The prop-
erties considered are the same as those used for servidegtialol: Inputs, Outputs,

Preconditions, Effects, Goals, and Non-functional prtpser All these annotations re-
fer to ontologies that are valid in the application domaimbeonsidered, in our case
telecom services. This process is implemented using a simfarface that allows the
construction of a (XML-based) service request documerit thi¢ following structure:

<Servi ceRequest >
<l nput s>.. </ | nput s>
<Qut put s>. . </ Qut put s>
<Precondi tions>..</Preconditions>
<Effects>..<Effects/>
<Coal s>. . </ Goal s>
<Non- functi onal >. . </ Non-functional >
<Ont ol ogi es>. . </ Ont ol ogi es>
</ Ser vi ceRequest >

4.4 Service Discovery

In our approach the component responsible for service dsyds goal-based. The
list of candidate services for the service composition taldshed before the actual
composition is performed. The service request is analys®tithe goal annotations are
extracted. Given these annotations, the service registguéried through the jJUDDI
API Inquiry function for services with goals that are senzailty related to the goal of
the service request. This is possible because both thecesraind the service request
are described using the same properties, and ontologiesn\tfie service registry is
gueried, not only semantically exact matches are retridvetother partial semantic
matches are also possible, suciPaggin, Subsumeandintersection12].

4.5 Service Composition

Once the list of services with matching service goals isalisced, they are first anal-
ysed and organized in a formalism call@dusal Link Matrix (CLM)12], and after that
they are composed using a graph-based algorithm [13].

87

CLM allows one to model all possible semantic connectionsamsal links, be-
tween the discovered services. We use CLMhich is an extension of CLM, in order
to capture the services’ non-functional properties as.\Welh-functional properties are
used later in the composition, and in the selection phase.

To construct the CLM matrix we use FACT++ [14], which is a reasoner for De-
scription Logics (DL). This reasoner is used to infer DL tigas such as Consistency
and Subsumption. Based on these relations the Clovatrix can be constructed, and
once the CLM matrix is available the actual service composition prot¢akss place.
In our prototype, the service composition process is impleted in Java, using a graph-
based composition algorithm. The algorithm dynamics &ta%f finding a combina-
tion of services, previously organized in the CitNhatrix, which makes it possible to
match the service request. The process starts by analysngltM™ matrix for ser-
vices that provide the requested outputs. Once this is dbe@|gorithm proceeds with
a backwards composition strategy, resolving the inputefdervices of the graph.
The composition process consists of a matching the inputseo$ervices in the graph
with the outputs of services from the CLLiMmatrix. If multiple services match a given
service input, an alternative composition graph is creaiegresenting an alternative
service composition. During each step in the algorithm ahgregated non-functional
properties in the composition graph are checked, to vertfgtiver they match the re-
guested non-functional properties. If a composition grépés not match the requested
non-functional properties, it is not further considered @ndiscarded from the set of
valid service compositions. The algorithm finishes (ileg tomposition is complete)
when all requested inputs and goals are resolved.

4.6 Service Composition Selection

In the service composition process, several alternatigécgecompositions that match
the service request may be generated. This is possiblealiecrative services can pro-
vide the same (or similar) functionality. It is thereforecessary to rank the generated
composition graphs according to some criteria. The rankindpe generated compo-
sition graphs can be made based on the graphs’ aggregateédmaiional properties
(e.g., total cost), and the semantic connections of théce=in the composition graph.
For the end-user case the best service composition is ed]eutd for the service de-
veloper case all generated service compositions are stotbd ranked order.

4.7 Service Delivery

In our case, the service delivery phase consists of trangléte service composition
from our graph formalism to Spatel. We do this by using the EdvB the Spatel Ecore
models. We have not yet addressed this issue in detail, butlifective is to create a
Spatel description of the generated composition servic¢hat the service developer
can further adapt it to his needs, and the end-user can irarukexecute the composi-
tion.

The service deployment phase will be considered in our éuteork.

88
5 Related Work

Service composition has received a lot of attention fronugtdal players and academia.
Different aspects of service composition are being addrgsacluding the (partial)
automation of service composition methodologies. Howeaherintegration of the dif-
ferent parts of the life-cycle for dynamic service composithas not been addressed
that often. This is in our opinion a very important step toateeand evaluate suitable
solutions to the dynamic service composition.

In [15] the problem of interleaving web service discovery amomposition is ad-
dressed, by considering only simple workflows where webisesvhave one input and
one output parameter. In this case the web service compogitan is restricted to a
sequence of limited web services corresponding to a lineakflow of web services.
In our framework we propose a formalism to support the coritiposof services with
multiple inputs and outputs, and also address the othereglafsthe life-cycle of the
service composition process.

In [16] an algorithm for automatic composition of servicepresented. The service
composition is considered as a directed graph, where naddimked by the seman-
tic matching compatibility Exact, Subsume, Plugln, Disjoint) between input and
output parameters. Based on this graph, the shortest semoénveb services from
the initial requirements to the goal can be determined. &pisroach computes the
best composition according to the semantic similarity afpatiand input parameters
of web services, but it does not consider any non-functipnaperties of the service
composition. We consider this to be a very pertinent poirtai@ into account, since
the selection of the most suitable service compositionféndased on such properties
(for example, costs and security).

In [17] a semi-automatic composition process is proposequetéorm the compo-
sition of web services. This approach supports the systeminghe selection of web
services during each step in the composition process, amdate flow specifications to
link them. The discovery process consists of finding magkarvices, which consist of
web services that provide outputs that can be fed as inptetsdrvices of the service
composition. After selecting all the services, the systemegates a composite process
[18]. The composition is executed by calling each servigagately, and passing the
results between services according to the flow specificatibnis process allows more
control over the composition process, which is sometimagagle for service devel-
opers. However, since the composition process is semivaito, end-users without
technical knowledge probably cannot make use of this aghrd@ur framework deals
with the composition process in a more abstract and automaty, which allows its
usage by both service developers and end-users.

6 Conclusions and Future Work

In this paper we motivate the dynamic composition of sewsjidecusing on how to
address all the necessary phases of the dynamic serviceosdiop life-cycle. We

propose a life-cycle following the SOA principles, furthextended with the neces-
sary phases to perform dynamic and automatic compositisemvices. The life-cycle

89

focuses on creating new services (i.e., service compasitibased on a service user
service request. The discovery, composition and seleptiases are transparent to the
end-user or service developer.

Based on the proposed life-cycle we are developing a progoiymplementation.
The prototype is based on the use of ontologies to allow thienaation of the ser-
vice discovery, matchmaking and composition processespkifpose a goal-based
discovery and graph-based composition algorithm, usingfoactional properties for
service composition optimization and ranking of the getestaervice compositions.
The whole process of publication/discovery and compasisdanguage-independent,
meaning that different description languages, suppogergantic annotations, can be
published. The generated service compositions can alselivetd in different execu-
tion languages.

The ideas and the prototype presented in this paper areistitr development,
and several issues still need to be addressed. Apart fropostipg service developers,
at design-time, we also intend to support end-users, piryicuntime composition
of services. To achieve this we have to provide an even mateaa way to describe
service requests. The support of end-users also requeeefiioyment of the generated
service compositions. At the moment, the service discoprygess is completely done
before the service composition process, and is goal-basesiapproach has benefits,
but also drawbacks. For example, during composition timmay turn out that the
previously discovered services cannot be combined to fomathing composition.
In this case, on-demand service discovery during comjpositme is necessary. The
proposed prototype is being finalized and further evaluatiwill be performed. We
are currently setting up a demo scenario to evaluate themeaihce of the proposed
prototype.

Acknowledgements

This work is supported by the European IST SPICE project-Q21617) and the Dutch
Freeband A-MUSE project (BSIK 03025).

References

1. Gartner: Gartner highlights key predictions for it origations and users in 2008 and beyond.
http://gartner.com/it/page.jsp?id=593207 (January8200

2. O'Reilly, T.: The open source paradigm shift. In: Perspes on Free and Open Source
Software, The MIT Press (July 2005) 461 — 481

3. Erl, T.: Service-Oriented Architecture: Concepts, Tedbgy, and Design. Prentice Hall
(2005)

4. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Md®.. Reference model for
service oriented architecture 1.0. Technical report, GBA@-ctober 2006)

5. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web seeg: concepts, architectures and

applications. Springer-Verlag (2004)

. Papazoglou, M.P.: Web Services: Principles and TeclggoBrentice Hall (2007)

7. Tao, L.: Shifting paradigms with the application servizevider model. Computer 34(10)
(2001) 32 -39

(o]

90

10.
11.

12.

13.

14.

15.

16.

17.

18.

. Almeida, J.P., Baravaglio, A., Belaunde, M., Falcarin,K®vacs, E.. Service creation in

the SPICE service platform. In: Wireless World Researchuffomeeting on "Serving and
Managing users in a heterogeneous environment”. (Nove206)

. Cordier, C., Carrez, F., van Kranenburg, H., Licciardi, v@n der Meer, J., Spedalieri, A.,

Rouzic, J.P.L.: Addressing the challenges of beyond 3Gie=kelivery: the SPICE plat-
form. In: 6th International Workshop on Applications andhgees in Wireless Networks.
(2006)

Apache: Apache juddi. http://ws.apache.org/juddi/

Clement, L., von Riegen, A.H., Rogers, T.: Universaldsion discovery and integration
(uddi) version 3.0. http://uddi.org/pubs/udeB.htm (October 2004)

Lécué, F., Léger, A.: A formal model for semantic websce composition. In: ISWC 2006.
LNCS, vol. 4273 (2006) 385-398

Lécué, F.,, da Silva, E.M.G., Ferreira Pires, L.: A feamork for dynamic web services com-
position. In: 2nd ECOWS Workshop on Emerging Web Servicehiielogy (WEWSTO07),
Halle, Germany, Germany, CEUR Workshop Proceedings (Nbeer2007)

Tsarkov, D., Horrocks, I.: Fact++. http://owl.manudfactplusplus/

Lassila, O., Dixit, S.: Interleaving discovery and camsition for simple workfows. In: First
International Semantic Web Services Symposium. (2004)

Zhang, R., Arpinar, |.B., Aleman-Meza, B.: Automatiamuosition of semantic web ser-
vices. In: 1st International Conference on Web Service303238-41

Sirin, E., Hendler, J.A., Parsia, B.:. Semi-automatimposition of web services using se-
mantic descriptions. In: 1st Workshop on Web Services: MogeArchitecture and Infras-
tructure. (2003) 17-24

Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D.M¢Dermott, D.V., Mcllraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.P.:|BakVeb service description for
the semantic web. In: International Semantic Web Conferef2002) 348—-363

