INCORPORATING SEMANTIC ALGEBRA IN THE MDA
FRAMEWORK

Paulo E. S. Barbosa, Franklin Ramalho, Jorge C. A. de Figueiredo and Antonio D. dos S. Junior
Universidade Federal de Campina Grande, Departamento de Sistemas e Computacao
Campina Grande, Brazil

Keywords: Metamodels, denotational semantics, formal methods and MDA.

Abstract: Denotational semantics is commonly used to precisely define the meaning of a programming language. This
meaning is given by functions that map syntactic elements to mathematically well defined sets called semantic
algebra. Models in semantic algebra need to be processed through reductions towards a normal-form in order
to allow the verification of semantics properties. MDA is a current trend that shifts the focus and effort from
implementation to models, metamodels and transformations during the development process. In order to put
forward denotational semantics in the MDA vision, we turn semantic algebra into an useful domain-specific
language. In this context, this paper describes our proposed MOF metamodel and ATL reductions between
the generated models. The metamodel serves as abstract syntax for semantic algebra. It is useful for static
semantics verifications. The reductions enable processing towards a normal-form to compare semantics. This
process can be guided by using some rewrite system.

1 INTRODUCTION ducing domains and operations, being considered an
abstract data type.
Metamodels play an important role in the Model- Simplifying or evaluating semantic models means

Driven Architecture (MDA) (OMG, 2007) providing reducing its expressions until no more reduction rules
a way to unambiguously define languages. Each Do-can be applied. A reduction rule receives as input a
main Specific Language (DSL) can be associated to asemantic model and returns as output another seman-
different metamodel. A metamodel defines the con- tic model with some different feature. These reduc-
structs of the DSL in the modeling process. Thus, a tions need to be applied in order to compare it with
model is an instance of these constructs. Metamod-the meaning of other programs or formalisms.
els are also used to define model transformation, a The MDA architecture does not provide formal in-
technique to transform one source model into a tar- frastructure and primitives for the definition of arti-
get model. Transformations play a key role in the facts able to represent the required semantic correct-
MDA approach, allowing the transformation of the ness (Kleppe and Warmer, 2003). It deals only with
constructed model into something executable. the definition and manipulation of structural elements,
The formal semantics of a programming or model- related to the syntax defined by metamodels. It is ex-
ing language is the assignment of meanings to the senected that transformations involving programming
tences or components given by a mathematical modeland modeling languages as input and output models
that describes every possible computation in the lan- should have a conformance relation between models.
guage. Denotational semantics is an useful approachThe lack of formalization makes the production of
for precisely defining the meaning of a programming tools difficult because semantics carries the meaning
language (Schmidt, 1986). It is a mapping between a that is essential to enable automation.
program and its meaning, called denotation. The de- In this paper we propose introducing semantic al-
notation is a mathematical value, such as a number orgebra in the MDA infrastructure. In order to achieve
a function. This mapping of the denotational style is this goal, a metamodel for semantic algebra and im-
feasible only if the formal notation is algebraic. The plementation of reductions between the generated
most used algebraic notation is named semantic al-models are suggested. Both are importantin the MDA
gebra. A semantic algebra is a formalism for intro- vision because they: (i) give an abstract syntax to

330

E. S. Barbosa P., Ramalho F., C. A. de Figueiredo J. and D. dos S. Junior A. (2008).

INCORPORATING SEMANTIC ALGEBRA IN THE MDA FRAMEWORK.

In Proceedings of the Third International Conference on Software and Data Technologies, pages 330-336
DOI: 10.5220/0001899703300336

Copyright © SciTePress

INCORPORATING SEMANTIC ALGEBRA IN THE MDA FRAMEWORK

apply semantic algebra as a DSL; (ii) provide inter- elements and the basic operatigrias and equals
operability between semantic specifications of many (lll) the Identifiersdomain, commonly employed as
languages, enabling processing of the denotations;specific memory addresses, being a set with no op-
(i) enable formal refinement of the involved models, erations; and (IV) thestoredomain, that models a
which can be applied both in endogenous and exoge-computer store as a mapping from identifiers of the
nous transformations (Czarnecki and Helsen, 2003); languages to their values. The operations over the
and (iv) are important pieces in an ongoing frame- store include: (i)newstorefor creating a new store;
work for semantic preserving in MDA transforma- (ii) accesdor accessing a store, and (itipdatefor
tions having as basis the well-founded theory of De- placing a new value into a store. This is the model-
notational Semantics. ing of the classical concept of memory manipulation,
The paper is structured as follows. Section 2 always presentin imperative languages.

presents the semantic concepts necessary to underl-. Truth Values IIl. Identifiers

stand the proposed work. Section 3 describes the se- pomaint c Tr=8 Domaini € Id = Identifier
mantic algebra metamodel. Section 4 analyzes the Qperations IV. Store
implementation of reductions between models in this true, false: Tr Domairs € Store= Id — Nat
formalism. Section 5 gives an example of the meta- not: Tr— Tr Operations
model instantiation. Section 6 discusses some similar ”bNatU@ Nu’r\lnbtersN ”tEWStf’)\VQZ Store
H omainn € Nat= newstore =Al.zero
works. Section 7 concludes the paper. Operations dcods: larSidre—s Nat
zero, one,...:Nat accessvis.s(i)
plus: Natx Nat— Nat update: Id- Nat— Store— Store
2 DENOTATIONAL SEMANTICS equals: Natx Nat— Tr update SAiAnAS.[i—n]s

AND SEMANTIC ALGEBRA
3 THE SEMANTIC ALGEBRA

The framework of denotational semantics, provided
by Scott and Strachey (Scott and Strachey, 1971), pro- METAMODEL
vides a proper mathematical foundation for reason-
ing about programs and programming languages. It We propose a metamodel as the abstract syntax for
is based on denotations, that are typically a function the definition of a semantic algebra. Due to space
with arguments that represent expressions before andestrictions, aspects of the metamodel were summa-
after execution. They are defined inductively, using rized. The diagramin Fig. 1 shows six MOF packages
A-Calculus (Bohm, 1975) to specify how the denota- covering concepts and relationships in this domain.
tions of components are combined. The core package represents the identification of
To give the semantics of a language, a collection @ semantic algebra, and how it is composed by sev-
of meanings is necessary. The most used frameworkeral domains. ThenetaDomainpackage represents
is Domain Theory which employs structured sets, €xisting sets or structures which are used as basis
called domains, and their operations as data structuredor defining the semantic algebras. Themantic-
for semantics. Domains plus the operations constitute Domainspackage represents a set of elements shar-
a semantic algebra. According to Schmidt (Schmidt, ing common properties. Domains may be nothing
1986), the semantic algebra: more than sets, lattices or topologies. Accompany-
. ing a domain we have a set of operations that can
e clearly states the structure of a domain and how 5 considered functions. ThembdaCalculupack-

elements are used by the functions. age represents theCalculuscomputational formal-
¢ modularizes and provides reuse of semantic defi- ism which is responsible for function specifications.
nitions. TheenrichedLambdaCalculysackage represents the

inclusion of extra constructs, such as a superset, orig-
inating theenriched lambda calculuslt is provided

As an example, we chose a subset of the speci-through themerge operatobecause any expressionin
fication of an imperative programming language ex- theA-Calculus is also an expression in the enriched
tracted from (Schmidt, 1986). It will also be dis- Calculus syntax. Thabstractiongpackage contains
cussed and instantiated in Section 5. This semantic al-specific abstractions identified in several parts of the
gebra has four domains: () tAeuth Valuesddomain, metamodel.
corresponding to the boolean type and ha® and Thecore package is responsible for capturing the
false as atomic values andot as operation; (l) the beginning of the denotational specification. The se-
known Natural Numbersdomain, their uncountable mantic algebra concept is represented by the meta-

e makes analysis easier.

331

ICSOFT 2008 - International Conference on Software and Data Technologies

metaDomains abstractions enrichedLambdaCalculus
1‘ <<import>> T T <<import>> T
L o o — — — — — i — o — — R o o o — go— j— — f— —
[1 |<<merge>>
—l —| | |<<import>> | | |
<<import>>| ! <<import>>
core = — =¥ semanticDomains — — — = lambdaCalculus

Figure 1: Semantic Algebra metamodel.

class SemanticAlgebracomposed by zero or many
Domainsas represented in Fig. 2. This metaclass
belongs to thesemanticDomainpackage and is de-
scribed in the next subsection.

SemanticAlgebra Domain

(semanticAlgebra.semanticDomains)

Figure 2: The core package.
[}
These domains (semantic domains) are sets that

are used as value spaces in programming language
semantics. They are presented in Fig. 3. They be-
long to thesemanticDomainpackage where are de-
scribed with an underlying mathematical set (e.g. nat-
ural numbers, truth values or any other domain) which
provides the isomorphism to an existing well-defined
theory. This information is stored in tH2escription
metaclass and in its relationship td/eetaDomain

A semantic domain should be represented as a set
and they can be classified according to its composition
as:

e Primitive Domains: represented by th&rimi-
tiveDomainmetaclass. Its elements are atomic
and are used as answers or semantic outputs.
This kind of domain is specialized &haracter-
Strings TruthValuesNaturalNumbersldentifiers

A recursive domain is composed by, at least, an-
other domain that can be considered the base case
of the recursion.

SinceA-Calculus is alanguage with a well-defined

EBNF grammar, we mapped its rules to taenbda-
01 . Calculuspackage represented in Fig. 4. It has four
kinds of expressions:

Variables: represent the storage of some concept
to be manipulated in the program.

Constants: represent an extension of a suit-
able collection of built-in functions, including
arithmetic functions, constants, logical functions,
character constants and more.

Applications: represent the denotation: the func-
tion f applied to the argument. It is used ad

X. In the metamodel those expressions are rep-
resented by the roles operator and operand. This
formatis known asurryingand allows us to think

of all functions as having a single argument.

Lambda Abstractions: represent constructs to de-
note new functions. A-abstraction is a particular
sort of expression which denotes a function. It is
composed by a variable followed by the body of
the function.

These expressions are represented as metaclasses

and grammar constraints are, for instance, relation-

andUnit only. It is incomplete because according ships between metaclasses. It is enough to represent
to the described language and its paradigm, addi- compositionality demanded by recursive definitions.

tional domains should be necessary.
Compound Domains: represented by Bem-

In order to turn the operation specification into a

more suitable task, the syntax of theCalculus is

332

poundDomainmetaclass. It enables the cre-
ation of new domains from existing ones, using
some domain building constructions in the Do-
main Theory. There are a number of assem-
bling and disassembling operations of the com-
pound domain. The previously defined domains
are products, disjoint unions, functions and lift, a
type of empty domain.

Recursive Domains: represented by fRecur-
siveDomainmetaclass. It occurs when certain

improved with operators closer to the functional con-
structs. These enriched constructors are metamodeled
in theenrichedLambdaCalculysackage in Fig. 5. It

is a superset of the-Calculus so that any expression

in theA-Calculus is also an expression in it.

In this caseConstantand Variable are now gen-
eralized intoPatternbecause of some inserted opera-
tions that treat both similarly. In addition, some ex-
tra constructs are provided, suchles caseand the
considered infix operatdat bar. Now, aLambdaAb-
straction receives as parameter a pattern, allowing

programming languages features require domainsthe pattern matching concept, always present in func-

whose structure is defined in terms of themselves.

tional languages. Theet metaclass is composed by

INCORPORATING SEMANTIC ALGEBRA IN THE MDA FRAMEWORK

MetaDomain HamedElement Expression TypedElement
(semanticAlgehbra.metalomains) _name ; String)

(semanticAlaebra lambdaCalculus)

11\ 1
[|
Operation Domain
K] — K
o1 TR 1
‘ 0.1 1
PrimitiveDomain CompoundDomain RecursiveDomain
Fay
{incomplete} T {incomplete}
[]
| Product | | DIS]DIIl‘lUnIDn | |Funcl|onSpace||L|ftedDoma|n|
[/| | | i |
[]

|l:harac1erstrings | | TruthValues | |HaturalNumhers | | Un:t | | mermrers |
| [| [

Figure 3: The semanticDomains package.

HamedElement Expression
(semanticAlgebra abstractions) 1 -hody
-name : String 1 -operand
d[" T 1 |-operator
]
| | | | 0.1 0. | | o
Constant Variable Application LambdaAbstraction
1 T 0.1 T

Figure 4: The lambdaCalculus package.

1

4 Expression 1

-operand 1 ‘1

1

-operator 4 ‘r -body
014004 [oado] [IREE [0.1 |
| FatBar | |Appl|cat|on Pattern |Lamhdanhstracﬁon|| Let | | Case |
[| d 0.1, | | [|
T Yo'j 011 0.4
HamedElement T
-name : String | | .
[variable |

|,. -
|

| | | PatternMatching
1 0.1

Figure 5: The enrichedLambdaCalculus package.

aPatterninstance that is currently instantiated and an Calculus is inserted in the semantic algebra format,
Expressiorin which this instance will be employed. we followed the same definition. The basic idea in-
The case expression consists of a variable in which volves substituting expressions for free variables in a
the test will happens and seveRatternMatchingn- similar way that parameters are passed as arguments

stances.

in a function call.

In the MDA framework, we employ these reduc-
tions as refinement rules of the semantic models (in-

4 LAMBDA REDUCTIONS stances of the semantic algebra metamodel) associ-

ated with each input and output model. These rules

Evaluating a\-expression is called reduction. Reduc- are applied until a normal-form is reached for each
tions are useful for the processing of models towards model, on which semantic properties will be veri-
a normal-form in order to compare semantics. s fied. Therefore, these reductions will promote verify-

333

ICSOFT 2008 - International Conference on Software and Data Technologies

ing if the MDA transformations are in fact semantic- cuting model transformations based on metamodels
preserving. We have chosen to introduce reductionsand applied to valid models. These transformations
in MDA by using model transformationsin partic- are already being applied to several complex seman-
ular, for each reduction, we have specified an ATL tic models. By adopting a framework that fully sup-
module containing minor reductions specified as ATL ports most of the OMG standards, we promote the in-
rules. In essence, they are rewrite rules that matchtegration of our work with other existing tools, such
input models patterns, expressed as semantic algebras model or code editors.
elements on the input metamodel, and produce output
as semantic algebra patterns.

Our set of ATL transformation rules generates in-
termediate and final representations of semantic alge—5 AN INSTANTIATION EXAMPLE
bra specifications. We have implemented the main _
reductions described in (Schmidt, 1986):B andn. In order to validate the proposed metamodel, we
The reductions were implementedAEL rules using reused several classmgl specifications frqm (_Schmldt,
ATL helpersfor auxiliary functions or attributes. Due ~ 1986). In Fig. 6 we illustrate the specification for
to the lack of space, we illustrate tBereduction. Itis ~ imperative languages given in Section 2. The intro-

useful for simplifying an expression, defining the idea duced labeled boxes represent instantiations_ of the_
of evaluation of a function applicatiofi X). metaclasses and the dotted arrows represent instanti-

In the module BetaReduction, the formula in @tions outgoing from the box and ingoing the meta-
which the p-transformation will be carried out is classes. First of all, one instance of the metaclass

(\v.E) e The input expression needs to be an applica- SémanticAlgebrés shown in the box 1 and four in-
tion with the operator as an abstraction, as indicated Stances of the associated metac@smainin the box

at lines 4-5 by the input match. This is necessary to 2 corresponding to the four existing domains.
satisfy theB equation: kv. E) E1=p E[v — E1]. In Fig. 7 we give a general view of the mstglntlated
The rule Abs2AbsFrepat lines 8-10 deals with the elements. We deal with three existing primitive do-
input as aLambdaAbstractionit invokes an auxiliary _malns:_TruthyaIues NaturalNumbersand Identifiers
function (line 10) to discover the free occurrences of instantiated in box 3. We also have one compound
the formal parameter in the body bfvhich are to be ~ domain: Store in box 4. lts operations are shown in
replaced for. The auxiliary function is implemented the top of box 5, except fddentifierswhich have no
with the ATL helperisFreeat lines 11-15, which de- ~ OPeration. It was also necessary to add to the hierar-
clares that the parameter variable is free, consideringChy of theCompoundDomaia new subclass to rep-
the body of the function as an expression, if: (i) itis 'esentStore It was instantiated as a map frdoen-

a variable with the same name of the parameter vari- tifier to aNaturalNumber(the two domains that to-
able; or (ii) it is an application and recursively the gether compose the store), implementirfgmction-
variable is free for the operator or the operand, or (iiiy SPace A domain is also composed byzescription

it is an abstraction with the same parameter and has a@s shown in box 6. It applies the set of Natural num-

free body. bers from mathematics into thidaturalNumbersio-

L rodule BetaReducti on: main, the commonly u;ed Boolean values from pro-
2. create QUT : LCtromIN: LG gramming languages intdruthValuesand a set of

3 rule Expressi on2Expression { identifiers composed by any character string into the
4: from ifi i

5: in:LC Expression(in.isApp() and in.operator.isAbs()) Identlflersdome_un. i)

= oo M The remaining expressions proposed in the Store
. . r Ion
b g domain operations are instantiated as shown in Fig. 8.
5 i dpaibskrecy In box 7 we have two nestadexpressions delimited

10: in:LC LanbdaAbstraction(not (self.isFree(self.v,in))) by theA SymbOl until the end. The first lambda ab-
11 helper def: isFree (v:LCVariable, e:LC Expression):Boolean = straction receives the Val’lak_]'GﬂS paramete_r and has
12 (e.isvar() and (v.name = e name)) or the second lambda abstraction as expression. The sec-
13: (e.isApp() and self.isFree(v,e.operator) or . . .

14: self.isFree(v,e.operand)) or (e.isAbs() and ond lambda abstraction receives the variade pa-

15: (not(v.nane = e.paraneter.nane) and self.isFree(v,e.body)));

rameter and makes the function applicatios ofitoi

In order to build and validate our approach, we as its expression. The expression in box 8 follows the
have adopted the ATL-DT (AIO, 2004) framework. same idea, but the expression of a lambda abstraction
It is an Eclipse plugin that allows in an integrated is a constangzeroin this case. Box 9 presents the cre-
way: (i) specifying and validating metamodels; (ii) ation of an anonymous lambda abstraction, with the
creating and validating models in conformance with variablei as parameter, the variabteas expression
their provided metamodels; (iii) specifying and exe- and the anonymous function is applied to the variable

334

INCORPORATING SEMANTIC ALGEBRA IN THE MDA FRAMEWORK

. Truth Values
II. Identifiers
III."l;laturaI Numbers

1 instance:
Imperative Languages

IV.”étore

Figure 6: Instantiating the semantic algebra for impeedinguages.

5
L .
true, false:Tr
not: Tr=Tr
MetaDomain HamedElement Expression TypedElement ..
(semanticAlgebra metaDomains) LIS i lﬁ——‘ ...
- -name : String e T b Ay zero, one, ...: Nat
(semanticAlgebra lambdaCalculus) plus: Nat x Nat_- Nat
A, T equals: Nat x Nat— Tr
‘ Tkspec‘ W ses
x: ,—‘; - - newstore: Store
»| Description Operation Domain access: Id— Store=Nat
0.1 1 update: Id= Nat— Store- Store
1 A H
6 i 0.1 T & 1.4 !
H H

Domainte Tr=B
I ... 0.1 1
"IDomain i € Id = Identifier PrimitiveDomain CompoundDomain RecursiveDomain

Domain n € Nat=N ‘

Ve s
Domain s € Store = Id — Nat T ‘ -
77i ntific: 2 <
3 : : . 4
3 instances: 1 instance: .
Natural, Boolean, Identifier Identifier — NaturalNumber
Figure 7: Instantiated elements in the semantic domains.
HNamedElement 1 E ‘ Expression ‘ pdate_ AixAn.As '.[l ~ n]s. i
emanticAlgebra abstractions) | § | | -bod T i
Fa PN Y _.
z 3 |
[T 3 v i
<
|
N 4 A A
Figure 8: Three specifications built on thecalculus formalism.
sconcluding the specification. semantics. In this case, the denotational approach is

realized by redefining: (i) the semantic metamodel for

the language of models (classes, roles, models); (ii)
6 RELATED WORKS the semantic metamodel for the language of instances

(objects, links); and (iii) the mapping between these
two languages as semantic equations. However this

There exists some proposed semantic metamodels inwork differs from ours because it suffers of the lack
the context of formal semantics. However, no one fo-

cuses on the semantic algebra of the denotational for—gr);%rr;nglr']zﬁﬁ; n:;themla?gﬁg?:ﬁo'n tniod;:nsilrr:a ir;?]_
malism. Kentetal. (Kentetal,, 1999) redefines meta- formance between ?\fodgels and makegs hard to consider
models for UML/OCL in order to incorporate formal

335

ICSOFT 2008 - International Conference on Software and Data Technologies

extensions for dynamic aspects of behavior. on the MDA four-layer architecture in order to in-
Concerning model transformations, Dominguez clude the semantic algebra metamodel as required ele-

et al. (Dominguez et al.,) investigate the explicit mentfor guaranteeing semantic preservation in model

correspondence between metamodels and ontologiesransformations. The reductions will be inferred and

of different languages. They consider refinement of performed automatically by the use of rewriting logic

metamodels instead of models, as we do here. Byin rewrite systems.

constructing a chain of metamodels, according to

some refinement laws, they analyze refinements in

both sides until that some convergence can be fo“ndREFERENCES

to compare meanings. The proposed idea can help to

delimit the difficulties in assuring that semantics are (004). ADT: Eclipse development tools for ATL

preser_/ed in some translation but has_ the Ilm!tatlon Bohm, C., editor (1975)Lambda-Calculus and Computer

of dealing with the_language level, which requires a Science Theoryolume 37 of_ecture Notes in Com-

hlgh-level of eXpertlse. puter ScienceSpringer_

Czarnecki, K. and Helsen, S. (2003). Classification of
model transformation approaches. MRroceedings

7 CONCLUSIONSAND FUTURE o_f the 2_nd OOPSLA Workshop On Ge_nerative '_I'ech-
nigues in the Context of the Model Driven Architec-
WORK ture.

Dominguez, E., Rubio, A., and Zapata, M. Mapping models
We proposed a MOF metamodel for semantic alge- between different modeling languages. Workshop
bra and implementation of its corresponding reduc- on Integration and. Transformation of UML Models,
tions. The former formally introduces domains and 2002 pages 18-22.
operations of programming languages, and the laterKent, S., Gaito, S., and Ross, N. (1999). A meta-model se-
S|mp||fy models towards a normal-form. They p|ay mantics for structural constraints in UML. In Kilov,

an important role in the MDA framework because H., Rumpe, B., and Simmonds, 1., editoBhavioral
specifications for businesses and systechspter 9,

the_y: () put_ forward_ _Sem_amic algebra in _the MDA pages 123-141. Kluwer Academic Publishers, Nor-
vision, allowing specifications from or to this formal- well, MA.

ism; (ii) put forward semantic algebra as a DSL al- Kleppe, A. and Warmer, J. (2003). Do mda transformations

lowing formal semantic applications; (iii) enables rea- preserve meaning? an investigation into preserving
soning about meaning and behavior in order to get a semantics. Irinternational Workshop on Metamod-
formal conformance between models by using reduc- elling for MDA

tions after transformations; and (iv) have potential to omG (2007). Model driven architecture.
emerge as crucial elements in the MDA framework in http://www.omg.org/mda/.

order to allow semantic preservation in model trans- schmidt, D. A. (1986) Denotational semantics: a method-
formations. ology for language developmenWilliam C. Brown

The proposed metamodel and reductions are part Publishers, Dubuque, IA, USA.
of an ongoing project whose main goal is to guarantee Scott, D. and Strachey, C. (1971). Towards a mathemat-
semantic preservation in model transformations in the ical semantics for computer languages. Proceed-
MDA infrastructure. To that effect, the widely rec- ings of the Symposium on Computers and Automata
ognized potential of semantic algebra as a semantic ~ Volume 21 oiMicrowave Research Institute Symposia
notation for syntactic constructs of programming lan- Series
guages put its metamodel as a crucial element in the
puzzle of MDA artifacts.
Although QVT is the current OMG’s proposal for
specifying transformations in the MDA vision, we
have adopted ATL. The main reason for this choice
is that QVT tools still have low robustness and its use
is not widely disseminated. On the other hand, ATL is
employed by an increasing and enthusiast community,
with full support to model operations, where, in an
integrated way, one can specify and instantiate meta-
models as well as specifying and executing transfor-
mations on them.
As future work, we intend to propose an extension

336

