
Efficient Grid Service Design to Integrate Parallel 
Applications 

Al. Archip, M. Craus and S. Aruştei 

“Gh. Asachi” Technical University of Iasi 
Department of Computer Science and Engineering, Romania 

Abstract. Although grid systems and grid computing have greatly evolved 
during the past few years, parallel application support remains somewhat 
limited. A new method for integrating parallel applications as grid services is 
presented. This method assumes that underlying parallel applications are 
resources for grid services; also, it implies that service resources may be clients 
for some predefined helper grid services. The design of the grid service is based 
on a Factory Service / Instance Service architecture, aiming to offer support for 
managing multiple resources. The tests were performed on the GRAI Grid 
(Academic Grid for Complex Applications), using Globus Toolkit 4 – versions 
4.0.3 and 4.0.5 – as the base middleware. 

1 Introduction 

The grid computing naturally incorporates parallel applications in order to solve 
complex problems. This support also includes MPI (Message Passing Interface) based 
parallel applications. Specialists [1] agree that MPI libraries provide a useful, widely 
used standard. As presented in [2], Globus Toolkit – including version 4 of the 
middleware – offers support for parallel application design and implementation 
through the use of MPICH-G2 package. As depicted in [2] and [3], MPICH-G2 offers 
full support for MPI v1.1 standard, but also includes some of the more advanced 
features of MPI v2.0, such as parallel file I/O. While being a platform dependent, 
MPICH-G2 compensates through speed and through a good integration with Globus 
middleware.  

The highly complex applications, such as data mining or data analysis applications, 
often require features like the dynamic adding of processing nodes to a local 
communicator or message exchange between communicators themselves. These 
features are presented in the MPI-2 standard and are not currently supported by 
MPICH-G2. 

The present paper presents a grid service that wraps around a general MPI 
application. Through the use of this service, GRAI Grid exposes Data Analysis grid 
services. Parallelization of the Data Mining application modules has been achieved 
using LAM 7.1.4. 

Archip A., Craus M. and Aruştei S. (2008).
Efficient Grid Service Design to Integrate Parallel Applications.
In Proceedings of the 2nd International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 7-16
DOI: 10.5220/0001898500070016
Copyright c© SciTePress



2 Parallel Grid Applications 

As presented in the first section, a first possibility of running MPI based applications 
is to use MPICH-G2. The applications are usually written in C/C++. The code must 
be compiled with the mpicc (C based applications) or mpic++ (C++ based 
applications), tools that are integrated in every distribution of MPICH-G2. The 
general start-up of MPI based applications implemented using MPICH-G2 is given in 
Fig. 1. 

 

Fig. 1. General start-up of MPI-based applications using Globus middleware and MPICH-G2. 
After a successful grid-proxy-init command, the parallel application may be run either directly, 
by using the mpirun command, or through the globusrun tool. 

An authorized user must perform the following steps in order to run the desired 
parallel application: 
1. The user must check and/or initialize its credentials on the given grid system. 

Credential checking can be achieved through the grid-proxy-info tool, while 
credential initialization can be attained through the use of grid-proxy-init tool. 

2. After the credentials have been checked/initialized, the user may run the 
application directly  

     (mpirun –np number_of_processors path_to_binary), or  
3. The user may generate a GRAM RSL script and call the globusrun tool. 

If the desired application makes use of standard input or standard output, the above 
mentioned step 3 is preferred. A sample RSL file (Resource Specification Language) 

8



for GRAM jobs (Globus Resource Allocation Manager) is presented in the following 
code listing: 
+( &(resourceManagerContact="frontend.tuiasi.ro")  
   (count=4) 
   (label="subjob 0") 
   (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0) 
                (LD_LIBRARY_PATH /opt/globus/lib/)) 
   (arguments="arg 1" "arg 2" "arg 3") 
   (directory="/export/home/alex/testing/mpich_test1") 
(executable="/export/home/alex/testing/mpich_test1/a.ou
t") 
   (stdout="/tmp/a.out.stdout") 
   (stderr="/tmp/a.out.stderr")) 

This approach has a few major drawbacks. First of all, as stated in section 1, the 
application does not make use of the full MPI-2 features. Aside from inter/intra-
communicator message exchange, C++ applications are not fully supported: MPICH-
G2 does not offer support for C++ object serialization/de-serialization. Also, we 
determined that improper linking of the compiled application may result in GRAM 
running 4 independent applications instead of one application with 4 processes.  

Our approach makes use of WS-GRAM module. For this case, a XML RSL file is 
presented in the following code listing: 
<?xml version="1.0" encoding="UTF-8"?> 
<job> 
<executable>/export/home/alex/testing/mpich_test1/a.out 
    </executable> 
<directory>/export/home/alex/testing/mpich_test1</direc
tory> 
    <argument>”arg 1”</argument> 
    <argument>”arg 2”</argument> 
    <argument>”arg 3”</argument> 
    <stdout>/tmp/a.out.stdout</stdout> 
    <stderr>/tmp/a.out.stderr</stderr> 
    <count>8</count> 
    <jobType>mpi</jobType> 
</job> 

An important note is that, for this second case, the registered user must specify the 
target cluster and, also, the user must check if the LAM (Local Area Multicomputer) 
daemon is active in the desired cluster. In order to submit one such job from the 
command line, the user must issue the following command: 
 globusrun-ws –submit –f rsl.file.name 

As will be depicted in the following sections, the service we implemented will 
perform these actions through the use of Java COG Kit (Java Commodity Grid Kit). 
In order for our service to function properly, the following are required [4]: 
− correct installation and configuration of GridFTP; 
− correct installation and configuration of ReliableFileTransfer; 
− correct installation and configuration of ManagedJobFactoryService; 
− adequate firewall configuration that would allow for TCP ports 2811 and 8443 to 

accept connections from authorized hosts. 

9



3 Grid Service Architecture 

The architecture of our grid service is compliant with the Factory Service / Instance 
Service model submitted in [5] (see Fig. 2). Such a model allows for a good 
management of resources and offers good support for multiple users accessing the 
same service. 

 

Fig. 2. Factory Service / Instance Service model. A client may connect either to Factory Service 
and create a new WS-Resource for a new analysis, or to a previously initialized WS-Resource 
through Instance Service. 

3.1 Grid Service Implementation 

Using the model in Fig. 2, our service is divided into two major components. The first 
one is the Factory component, AAFactoryService. The implementation for this 
component is similar to the one depicted in [5], without any relevant changes.  
AAFactoryService has only a basic functionality implemented: its single purpose is to 
create new resources to be used by the second component, AATestService. Once a 
WS-Resource is properly created, AAFactoryService returns an 
EndpointReferenceType that uniquely identifies the newly created WS-Resource. 

The second major component, AATestService, is responsible for the data analysis 
itself. It has only four methods accessible to the client: 
− methodWriteSettings – this method should be used to write configuration data 

needed for the analysis (being a data mining task, configuration data must include 
parameters like minimum support, minimum confidence, target database and 
means of connecting to the given database); 

− methodWriteLogSettings – this method is specific to our tests (as will be detailed in 
section 4 of this paper). 

− methodClientStartJob – this is the main method of the Instance service. The 
method builds the XML RSL file and then calls the current WS-Resource for job 
submitting; 

− methodReadJobStatus – once a job is submitted to run, the client may check on the 
status of the current job by calling this method. 

10



An interesting aspect of our service is related to the WS-Resource it relies on. 
After a correct initialization – through calling the Factory Service and the through 
setting the appropriate analysis parameters – the resource would act, on behalf of the 
authorized user, as a client for the ManagedJobFactoryService provided by the 
Globus middleware. A succinct listing of our resource implementation code is given: 
package aacore.factory.impl; 
//for job submittion 
import gridUtils.MyGridProxy; 
import gridUtils.WSJobWrapper; 
import org.ietf.jgss.GSSCredential;/*Common imports 
omitted*/ 
public class AATestResource implements Resource, 
ResourceIdentifier, ResourceProperties { 
  private ResourcePropertySet propSet; 
  private Object key; 
  private String jobSettingsRP; 
  private String jobLogPrefixRP; 
  private String clientJobStatusRP; 
  public Object initialize() throws Exception {} 
  public String getJobSettingsRP() {} 
  public void setJobSettingsRP(String value) {} 
  public String getJobLogPrefixRP() {} 
  public void setJobLogPrefixRP(String value) {} 
  public String getClientJobStatusRP() {} 
  public void setClientJobStatusRP(String value) {}     
  public ResourcePropertySet getResourcePropertySet(){} 
  public Object getID() {} 
  public int runJob(String  jobRSL, String proxyPath, 
 String keyFile, String certFile) {} 
} 

The main method of the above listed class is runJob. This method uses two 
personalized classes – MyGridProxy and WSJobWrapper – in order to connect to 
ManagedJobFactoryService. The method updates the private variable 
clientJobStatusRP with the status results received for the current job. Each resource 
identifies a single job and each resource is identified by a corresponding 
EndpointReferenceType – previously returned by our AAFactoryService. Through 
specific security settings (as depicted in [6]), self authorization is achieved and the 
WS-Resource submits the current job with authorized user’s credentials. The client – 
as section 3.2 will describe – is responsible for proxy initialization/re-initialization.  

3.2 Client Description 

The message exchange between our Grid client and the Grid service is presented in 
fig. 3. 

11



 

Fig. 3. Message exchange between the Grid client, Factory Service and Instance Service. The 
Instance Service receives notifications from the ManajedJobFactoryService and then notifies 
the client on job state changes. 

A client for our service must perform the following tasks: 
− Check the user proxy – if no valid proxy is found or if the previous proxy has 

expired, the client must initialize/re-initialize the proxy. 
− Check for existing resources – this is performed through a set of specialized classes 

(described in section 3.3); if previous resources are found, the client may check the 
job status of the respective resources. 

− Initialize a new resource for a new job submitting or connect to an existent 
resource for job monitoring – the client is responsible for submitting the correct 
credentials to the service. 

− When the current analysis is done and no other tasks have been submitted, the 
client must destroy his/her proxy. 
 
Both the client and the service require a set of specialized classes to work. These 

classes are described in the following section. 

12



3.3 Service/Client Specific Components 

Since both the client and the service rely on user authorization, the following code 
listing describes the MyGridProxy class – a class that is used in user proxy 
management: 
package gridUtils; 
/*Common imports omitted*/ 
import fileHelpers.FilePermHelper; 
public class MyGridProxy { 
     private X509Certificate certificate; 
     private PrivateKey userKey = null; 
     private GlobusCredential proxy = null; 
     private ProxyCertInfo proxyCertInfo = null; 
     private int bits = 512; 
     private int lifetime = 3600 * 12;  
     private int proxyType; 
     private GlobusGSSCredentialImpl credimpl; 
     private String proxyFile; 
     private String keyFile; 
     private String certFile; 
     private String issuer; 
     private String user, password; 
     public MyGridProxy() {} 
     public MyGridProxy(String proxyFile,  
    String keyFile, String certFile) {} 
     public void environmentSetup() {} 
     public void createProxy() throws Exception {} 
     public boolean checkProxy() {} 
     public boolean destroyProxy() {} 
     public GSSCredential buildProxy() {} 
     public GSSCredential buildProxy(byte[]proxyData){} 
} 

The client must use the checkProxy and/or createProxy methods for proxy 
initializations. The service must use the specific buildProxy(byte[] proxyData) 
method in order to check for a valid user proxy and submit or monitor the job. 

Aside from the steps described in [7], we have implemented a second helper class 
that would set the appropriate file permissions for the proxy file. On a Linux platform, 
these permissions must be read/write for the user and no permissions for the user’s 
group and for the others. Since FileWriters in Java create files with supplementary 
permissions (read permissions for both user’s group and for other users), a helper 
class (FilePermHelper) has been developed in order to set the appropriate file rights.  

In order for the Resource to correctly submit a job, we have implemented a WS-
Gram Job wrapper. This class is used only by the service and has the purpose of 
contacting the corresponding ManagedJobFactoryService. A brief code listing 
follows: 
package gridUtils;/*Common imports omitted*/ 
public class WSJobWrapper implements GramJobListener { 
     private String rslFileName; 
     private GramJob crtJob; 

13



     private static final long 
 STATE_CHANGE_BASE_TIMEOUT_MILLIS = 10000; 
     private boolean jobCompleted; 
     private GSSCredential proxy; 
     private int exitCode; 
     public void setRSL(String rslFileName) {} 
     public String getRSL() {} 
     public void setProxy(GSSCredential proxy) {} 
     public GSSCredential getProxyPath() {} 
     public boolean jobDone() {} 
     public WSJobWrapper() {} 
     public WSJobWrapper(String rslFileName,  
    GSSCredential proxy) {} 
     public void stateChanged(GramJob job) {} 
     public void submitRslFile() {} 
     public int processCrtJob(GSSCredential proxy,  
   EndpointReferenceType factoryEPR){} 
     private synchronized void waitJobCompletion() {} 
} 

An important note is that, if the resource does not receive a state change 
notification for a predefined period of time, it will assume job completion and will 
notify the corresponding service of job completion. Although this is not the preferred 
method for job monitoring, it does not lock computational resources indefinitely.  

In order to achieve multiple resource management abilities the client uses two 
more classes named EPRFileHelper and EPRFileLister, respectively. The first class is 
used for saving the endpoint reference returned by AAFactoryService. The client may 
then connect either to a newly created resource in order to submit a new job or to an 
existing resource in order to monitor a specific job. The second class is used to 
monitor a client specified folder for endpoint references.  

4 Case Study 

The above described grid service is currently being tested on GRAI Grid as a wrapper 
service for various data mining algorithms. One such study involves the 
implementation of Hash Partitioned Apriori (HPA). We have implemented the 
algorithm using C++ STL. Parallelization has been implemented using: 
1. MPICH-G2 – the standard version embedded in the Rocks version 4.2.1 Linux 

distribution. 
2. MPI 2.0 compliant libraries implemented in LAM 7.1.1 (using the same Linux 

distribution as support operating system). 
In order to properly monitor the submitted jobs, the test application used a custom 

log module. Each processing node writes detailed information about the current step 
of the analysis in a specific log file. This method is preferred due to an increased 
control over processes and thorough debug in case of failure. Test job has been 
submitted using first time four and then eight processes. 

For case 1) we used both GRAM and WS-GRAM approaches. The grid service 
submitted the job without any errors and received correct notifications only when 
using GRAM scripts. However, the GRAM approach failed to initialize properly, 

14



submitting four/eight independent applications instead of a single application with 
four/eight concurrent threads. Since Globus Toolkit specifications maintain GRAM 
job submitting only for backward compatibility issues, this first case is not preferred 
for further use. 

For case 2), we used only the WS-GRAM approach and we have manually started 
the LAM daemon prior to running the service. The job submitting worked as 
expected. The grid service performed accurate monitoring only after appropriate 
security settings have been employed: the methodClientStartJob method of the grid 
service must be configured to run with user credentials instead of the default container 
credentials. 

This run proves one of the main advantages of our service. We do not limit the 
development of parallel applications only to MPICH-G2.  

The MPI application that we have used for tests required some specific 
configuration files. A usual scenario for running MPI-based Grid applications that 
require file upload and/or file download. Since MPI-based applications have poor or 
no support for interacting with Grid services, the user had to manually upload various 
configuration and input files. In our case the Instance service connects directly to the 
ReliableFileTransfer service and transfers any needed files between the client and the 
MPI application. This shows a second advantage of our service: the service, acting as 
a job wrapper, may interact with various other Grid services before or after submitting 
the MPI job.  

5 Conclusions and Further Research 

The present paper describes a new way of combining Java Grid applications with MPI 
based parallel applications into a Factory/Instance grid service. The need for such a 
grid service is derived from the fact that current grid middleware support for MPI 
based parallel applications do not fully use MPI 2.0 standard. Also, MPICH-G2 or 
other MPI standard implementations do not allow for a direct connection between 
parallel applications and middleware grid services (such as OGSA-DAI or 
ReliableFileTransfer service).  

The tests we performed using a specific console client have demonstrated the 
usefulness of the presented model in managing multiple resources, as well as a good 
interaction with several grid services delivered with Globus Toolkit 4 middleware 
(services such as ReliableFileTransfer or ManagedJobFactoryService). The tests have 
shown that correct use of WS-GRAM RSL scripts combined with appropriate security 
settings for the corresponding grid service prove useful in embedding MPI based 
parallel applications within grid services. 

Aside from the two major advantages pointed out in section 4, we would also like 
to point out another plus for our model. The service’s Resource specifies the MPI 
modules it uses in a static manner. While this is not the preferred method for a general 
wrapper application, it has the advantage of not submitting foreign, unchecked code 
on our Grid system. 

We are currently investigating means of pipe-lining specific application logs with 
Java applications in order to increase the level of detail for grid job status. A positive 
result would achieve better job management through the grid services. 

15



Acknowledgements 

The Excellence Research Program, through grant 74 CEEX-II03 – "Academic Grid 
for Complex Applications", has supported the research for this paper. 

References 

1. Shantenu Jha, Grid Experts Address Barriers to Distributed Applications, 
http://www.gridtoday.com/grid/1735208.html, August 20, 2007 

2. MPICH-G2, http://www.globus.org/grid_software/computation/mpich-g2.php 
3. Nicholas T. Karonis, Brian Toonen, Ian Foster, MPICH-G2: A Grid-Enabled 

Implementation of the Message Passing Interface, November 2002  
4. J. Bart, M. Brown, K. Fukui, N. Trivedi, Introduction to Grid Computing, IBM RedBooks, 

published: 27 December 2005, http://www.redbooks.ibm.com/abstracts/sg246895.html? 
Open 

5. Sotomayor B., The Globus Toolkit 4 Programmer’s Tutorial, http://gdp.globus.org/gt4-
tutorial/multiplehtml/ch05s01.html, 2005 

6. Globus Toolkit Alliance, Security Descriptors, http://www.globus.org/toolkit/docs/4.0/ 
security/authzframe/security_descriptor.html 

7. Globus Toolkit Alliance, Submitting a job in Java using WS GRAM, 
http://www.globus.org/toolkit/docs/development/4.1.0/execution/wsgram/wsgram-scenario 
s-java.html 

16


