
SUPPORTING SOFTWARE PROCESS MEASUREMENT BY
USING METAMODELS

A DSL and a Framework

Beatriz Mora, Felix Garcia, Francisco Ruiz and Mario Piattini
Alarcos Research Group, Department of Computer Science, University of Castilla-La Mancha

Paseo de la Universidad 4, Ciudad Real, Spain

Keywords: Measurement, MDA, SMML.

Abstract: At present the objective of obtaining quality software products has led to the necessity of carrying out good
software processes management in which measurement is a fundamental factor. Due to the great diversity of
entities involved in software measurement, a consistent framework is necessary to integrate the different
entities in the measurement process. In this work a Software Measurement Framework (SMF) is presented
to measure any type of software entity. In this framework, any software entity in any domain could be
measured with a common Software Measurement metamodel and QVT transformations. Besides, we
present a Software Measurement Modelling Language (SMML) in order to define the measurement models
with take part in the measurement process. Furthermore an example which illustrates the framework’s
application to a concrete domain is furthermore shown.

1 INTRODUCTION

The current necessity of the software industry to
improve its competitiveness forces continuous
process improvement. This must be obtained
through successful process management (Florac,
Carleton et al., 2000). Measurement is an important
factor in the process life cycle due to the fact that it
controls issues and lacks during software
maintenance and development. In fact, measurement
has become a fundamental aspect of Software
Engineering (Fenton and Pfleeger, 1997). Software
Processes constitute the work base in a software
organization. Companies therefore wish to carry out
an effective and consistent software measurement
process to facilitate and promote continuous process
improvement. To do this, a discipline for data
analysis and measurement (Brown and Dennis,
2004), and measure definition, compilation and
analysis in the process, projects and software
products, is needed.

The great diversity in the kinds of entities which
are candidates for measurement in the context of the
software processes points to the importance of
providing the means through which to define
measurement models in companies in an integrated

and consistent way. This involves providing
companies with a suitable and consistent reference
for the definition of their software measurement
models along with the necessary technological
support to integrate the measurement of the different
kinds of entities. With the objective of satisfying the
exposed necessities, it is highly interesting to
consider the MDE (Model-Driven Engineering)
paradigm (Bézivin, Jouault et al., 2005) in which
software measurement models (SMM) are the
principal elements of the measurement process. Its
main goal is to ensure that the core artifacts in
software engineering processes will be models rather
than code. MDA (Model-Driven Architecture) is the
OMG proposal by which to carry out the MDE
Paradigm. The core of MDA is a set of standards
(MOF, QVT, OCL and XMI). According to the
QVT standard, the software development process is
a set of model transformations, from an abstract to a
specific level. The requirements are in the more
abstract level and the code is in the more specific
level.

Software measurement can benefit from the
MDE paradigm, providing integration and support to
carry out an automatic software measurement of any
software type. This implies that: a) the definition of

305
Mora B., Garcia F., Ruiz F. and Piattini M. (2008).
SUPPORTING SOFTWARE PROCESS MEASUREMENT BY USING METAMODELS - A DSL and a Framework.
In Proceedings of the Third International Conference on Software and Data Technologies, pages 305-312
DOI: 10.5220/0001897003050312
Copyright c© SciTePress

measurement models conform to a Software
Measurement metamodel; b) the definition of
generic measurement methods are applicable to any
model-based software artifact; and c) support for
computing measures, for storing results and for
enhancing decision making.

The availability of a language which allows us to
represent those elements which must be taken into
account in the measurement processes might,
therefore, be important in decision making and in
process improvement. It is thus of interest to
consider the use of Domain Specific Languages
(DSLs) such as the Software Modelling
Measurement Language (SMML)(Mora, Ruiz et al.,
2008).

These aspects constitute the main interest of this
paper: in which the application of MDA principles,
standards and tools are used in software
measurement. We present the Software
Measurement Framework (SMF), a generic
framework to define measurement models which
conform to a common measurement metamodel, and
to measure any software entity with regard to a
domain metamodel. MOMENT environment has
been used, which supports the automatic model
management MDA compliant. These measurement
models involved in the framework can be defined by
using SMML. SMML is integrated in SMF and
permits software measurement models to be created
in a simple and intuitive manner. This language has
been done by using the Software Measurement
Metamodel (SMM)(García, Serrano et al., 2007),
(Mora, Ruiz et al., 2008) as the Domain Definition
Metamodel (DDMM). The task of the SMML is to
facilitate the definition of software measurement
models, which is the starting point in the generic
software measurement process.

The remainder of the paper is organized as
follows. Section 2 provides an overview of related
works. Section 4 presents the SMML and Section 3
describes the Software Measurement Framework
(SMF), including conceptual architecture,
technological aspects, and method. In Section 5 the
use of the framework and SMML is illustrated with
an example. Finally, conclusions and future works
are outlined in Section 6.

2 RELATED WORKS

We have found numerous publications which deal
with tools that have important success factors in
software measurement efforts (Komi-Sirviö,
Parviainen et al., 2001), which supply work

environments and general approximations
(Kempkens, Rösch et al., 2000), or which give
architectures more specific solutions (Jokikyyny and
Lassenius, 1999), (Brown and Dennis, 2004)
includes a list of tools which support the creation,
control and analysis of software measurements.
(Auer, Graser et al., 2003) furthermore examines
various software measurement tools, such as
MetricFlame, MetricCenter, Estimate Professional,
CostXPert and ProjectConsole, in heterogenic
environments.

It is also possible to find certain proposals
through which to tackle software measurement
which are more integrated and less specific than in
the aforementioned cases. (Palza, Fuhrman et al.,
2003) proposes the MMR tool which is based on the
CMMI model for the evolution of software
processes, and it is possible to consult similar tools
in (Harrison 2004), (Scotto, Sillitti et al., 2004),
(Lavazza and Agostini, 2005). These proposals are,
however, restricted to concrete domains or to
evaluation models of specific quality.

(Vépa, Bézivin et al., 2006) presents a metamodel
which allows the storage of measurement data, and a
set of transformations through which to carry out the
measurement of models based on a metamodel is
presented. This paper focuses upon the technological
aspects needed to implement the software
measurement with ATL technology, by offering the
user a variety of graphic representations of the
measurement results obtained.

This final proposal and that which is presented
here are complementary as they both focus upon two
key support elements of generic measurement: the
conceptual base, which is the main contribution of
FMESP, and technological implementation. Some
differences from technological point of view exist.

The measurements which are applied in the work
of (Vépa, Bézivin et al., 2006) are previously
defined in the ATL transformation archives. The
measurable entities are typical of the metamodels
presented in this work (KM3 (Jouault and Bézivin,
2006) and UML2). For example, the measurable
entities for a model which is expressed in km3 might
be package, class, attribute, reference etc.
The measurements in the proposal presented here are
defined by the user, i.e. the model transformation
needed to carry out the measurement it is not a
model previously defined, but this model is defined
according to the users needs. The measurement
definition is possible thanks to the software
measurement model, which contains all that is
relative to the measurement to be carried out in each
case. Moreover, the measurable entities are those

ICSOFT 2008 - International Conference on Software and Data Technologies

306

Table 1: A selection of the SMML elements and icons.

Information need Entity Base Measure Scale

____________ ??

Quality Model Attribute Derived Measure Unit

Description Measurable Concept Indicator Analysis model

Analisys
model

which are defined in their corresponding domain and
measurement metamodel (expressed in ecore). A
further difference is that SMF uses QVT.

Finally, it is important to mention a method for
specifying models of software data sets in order to
capture the definitions and relationships among
software measures presented in (Kitchenham,
Hughes et al., 2001).

3 SOFTWARE MEASUREMENT
MODELLING LANGUAGE
(SMML)

SMML (Mora, Ruiz et al., 2008) is a language
which permits software measurement models to be
built in a simple and intuitive manner. The Software
Measurement Metamodel (SMM) which is derived
from the Software Measurement Ontology
(SMO)(García, Bertoa et al., 2006) defines the
abstract syntax of SMML. The Software
Measurement Metamodel supports the graphical
language to represent in an intuitive way software
measurement models.

With regard to expected requirements (Kolovos,
Paige et al., 2006), we shall now show the
requirements which are valid in our Language: a)

Conform: the language constructs correspond to
important domain concepts; b) Orthogonal: Each
language construct is used to represent exactly one
distinct concept (Attribute, Base Measure, etc.) in
the domain; c) Supportable: The SMML language is
supported by tools such as MS/DSL Tools or GMF
(Eclipse, 2007); d) Simple: the DSL is simple in
order to express the domain concepts and to support
its users; e) Usable: DSL constructs are expressive
and easy to understand. Table 1shows some of the
most representative graphical elements of the
SMML (for a greater detail see (Mora, Ruiz et al.,
2008)).

4 SOFTWARE MEASUREMENT
FRAMEWORK

The Software Measurement Framework (SMF) (for
greater detail see (Mora, García et al., 2008))
permits us to measure any type of software entity. In
this framework, any kind of software entity
represented by its corresponding metamodel in any
domain can be measured with a common Software
Measurement metamodel and QVT transformations.
SMF has three fundamental elements: conceptual
architecture, technological aspects and method.

SUPPORTING SOFTWARE PROCESS MEASUREMENT BY USING METAMODELS - A DSL and a Framework

307

These elements have all been adapted to the MDE
paradigm and to MDA technology, taking advantage
of their benefits within the field of software
measurement. The Software Measurement
Framework (SMF) is the evolution of the FMESP
(García, Piattini et al., 2006), but is adapted to the
MDE paradigm and uses MDA technology.

The following subsections explain briefly the
conceptual, technological and methodological
elements which are part of SMF.

4.1 Conceptual Architecture

Due to the necessity of having a generic and
homogeneous environment for software
measurement (García, Bertoa et al., 2006; García,
Piattini et al., 2006; García, Serrano et al., 2007), a
conceptual architecture and a tool with which to
integrate the software measurement are proposed. In
the following section, the main characteristics of this
proposal are described. In (García, Serrano et al.
2007) a more detailed description can be found.

MOF

Software
Measurement

Metamodel

Measurement
Models

Domain
Models

Data Data DataData

M3

M0

M1

M2

Integrated Measurement: Conceptual Framework

Model
Level

Meta-Model
Level

Meta-Meta-Model
Level

Domain
MetamodelsDomain

Metamodels

Data
Level

Figure 1: Conceptual framework with which to manage
software measurement.

SMF is part of the FMESP framework (García,
Piattini et al.,2006). The FMESP framework permits
representing and managing software processes from
the perspectives of modelling and measurement. We
focus on the measurement support of the framework
whose elements are detailed according to the three
layers of abstraction of metadata that they belong to,
according to the MOF standard. As can be observed
Figure 1, the architecture has been organized into the
following conceptual levels of metadata: Meta-
Metamodel Level (M3), Metamodel Level (M2) and
Model Level (M1).

In order to establish and clarify the concepts and
relationships that are involved in the software
measurement domain before designing the
metamodel, an ontology for software measurement
was developed (García, Bertoa et al., 2006). The

measurement metamodel was derived by using the
concepts and relationships stated in the ontology as a
base. The Software Measurement metamodel (which
is integrated in SMF) is organized around four main
packages (for greater detail see the work of (García,
Bertoa et al., 2006)): Software Measurement
Characterization and Objectives, Software
Measures, Measurement Approaches and
Measurement Action.

4.2 Technological Aspects

In this section the technological aspects of SMF are
explained.

• Adaptation to MDA. In the Figure 2 necessary
elements for the FMESP adaptation to MDA are
presented according to MOF levels.

Figure 2: Elements of the FMESP adaptation in a MDA
context.

As can be observed in Figure 2, two new elements,
namely the QVT Relations model and metamodel,
have been added to adapt the conceptual architecture
illustrated in Figure 1 to MDA. The QVT Relations
Model is obtained automatically through a
transformation from a Measurement model. It
contains all the information necessary to carry out
the QVT transformation of the SMF proposal. Ecore
language has been selected because it is an
implementation of EMOF. EMOF is the part of the
MOF 2.0 specification that is used for defining
simple metamodels using simple concepts.

M2

Software
Measurement
Metamodel

Domain
Metamodel (1)

M3

M1

conforms to conforms to

QVT Relations
Metamodel

conforms to

conforms to

conforms to conforms to

Transformation
(4)

ECORE

Software Measurement
Model (target)

Software
Measurement

Metamodel (2)

QVT
Relations

Model

Domain
Model (3)

ICSOFT 2008 - International Conference on Software and Data Technologies

308

Figure 3: QVT Relations transformation model.

• QVT Relations Transformation. The QVT
Relations model is the transformation needed to
perform the measurement. In this transformation
two source models are involved: a Software
Measurement model and a domain model; the
target model is the Software Measurement Model
with the measurement results (see Fig. 2). Due to
the fact that the proposal is about generic
measurement, it is very important that the QVT
model is obtained in a generic way. The MDE
paradigm and MDA technology are applied for
this reason. This transformation is obtained
automatically from the previous QVT
transformation shown in Fig. 3. The QVT
Relations model, called the extended or final
QVT Relations model, is obtained from a QVT
transformation, where there are two source
models: the basic or initial QVT Relations model
(which conforms to the QVT Relations
metamodel) and the Software Measurement
model (previously defined). (for a greater detail
see (Mora, García et al., 2008)).

• Technological Environment. In this work, the
tool selected has been the model management
environment called MOMENT (MOment
manageMENT)(Boronat and Meseguer, 2007).
This framework is integrated in the Eclipse
platform. It provides a set of generic operators to
deal with models through the Eclipse Modelling
Framework (EMF)(2007). The underlying
formalism of the model management approach is
the algebraic language Maude.

4.3 Method

The necessary steps to carry out the software
measurement by using the SMF are explained below
(see Fig. 2):

1. Incorporation of Domain Metamodel: the
measurement is made in a specific domain. This
domain must be defined according to its
metamodel.

2. Creation of Measurement Model: the
measurement model is created according to the
Software Measurement metamodel which is
integrated in SMF. This first model is the source
model, so the results are therefore still not
defined, i.e. the “Measurement Action” package
from the Software Measurement metamodel is
still not instantiated. In order to facilitate the
measurement model definition, SMML can be
used.

3. Creation of Domain Model: which is defined
according to its corresponding domain metamodel
(created in the first step). The domain models are
the entities whose attributes are measured by
calculating the measurements defined in the
corresponding measurement models. Examples of
domain models are: the UML models (use cases,
class diagrams, etc.), or the E/R models.

4. Measurement Execution: the measurement
execution is carried out through QVT
transformation, in which, the measurement model
is obtained by starting from the two source
models (the measurement model and the domain
model) where the results are defined, i.e. the
“Measurement Action” package is instantiated.
The target measurement model is the extension of
the source measurement model. The measurement
results are calculated by running OCL queries on
the domain model.

5 CASE STUDY

To illustrate the benefits of the proposal, consider
the example of relational database measurement. For
greater simplicity, only the following elements are
shown in Fig. 4: Measurement Method, Entity (to
which the measurement method is applied) and
Measurement result (the result is obtained by
executing the measurement method on the entity).

Furthermore, it is necessary for the domain
metamodel, in this case Relational Databases
domain, to have been previously chosen. Both
metamodels are independent (see fig 4), although
they are logically related. In Fig. 4 the measurement
and domain metamodels have been represented in a
clear and a dark colour, respectively.

Basic QVT-Relations
Model (.qvt)

Extended QVT-Relations
Model (.qvt)

QVT Transformation

Software Measurement
Model (target)

Measurement Execution
Transformation

Software Measurement
Model (source)

SUPPORTING SOFTWARE PROCESS MEASUREMENT BY USING METAMODELS - A DSL and a Framework

309

PrimaryKey

Foreign Key
Table

Attribute Key
<<abstract>>

Model Element
<<abstract>>

RelationalSchema

Measuremet Method
(from Measurement Approaches)

Measurement Result
(from Measurement Action)

Measurement

Entity Class
(from Characterization and Objectives)

Entity
(from Characterization and Objectives)

Figure 4: Relationship between Relational Database (domain) Metamodel and SMM.

____________ ??

Figure 5: Measurement Model with SMML.

In this example, the chosen measurement method
has been “COUNT elements of type TABLE”,
which is an instantiation of the abstract method
“COUNT elements of type X”.
In order to carry out the measurement, the following
steps (four steps) must take place:
1. Incorporation of Relational Databases metamodel

(represented in a dark colour in Fig. 4).
2. Creation of measurement model conforms to

Software Measurement metamodel. For the
measurement method “COUNT elements of type
TABLE”, the values of Entity and Measurement
Method are Table and Count, respectively. The
Measurement Result is not still defined. In this
case SMML can be used to define the
measurement model (see Fig. 5).

3. Creation of model conforms to the Relation
Database metamodel. In this case, the model
(relational schema) is a university domain
composed of five tables with their corresponding
primary keys, foreign keys, and attributes.
The extended QVT Relations model was needed
to carry out the fourth step. This transformation is
obtained automatically (see Fig. 6).

4. The source models used to carry out the
measurement are: the measurement model (2nd
step), the domain model (3rd step) and the
extended QVT Relations model. The target model
obtained is the measurement model with defined
Measurement Result (Fig. 7). In this example the

value of Measurement Result is 5 (number of
tables).

In the same way as is illustrated with Relational
Databases, the method can be applied to any other
domains, such as for example, UML models, Project
Management or Business Processes, etc.

Figure 6: “Function” elements from extended QVT
Relations model.

Figure 7: Measurement result.

ICSOFT 2008 - International Conference on Software and Data Technologies

310

6 CONCLUSIONS AND FUTURE
WORK

In this paper, a generic framework for the definition
of measurement models based on a common
metamodel has been outline, and we have explained
how to work with it. The framework allows the
integrated management and measurement of a great
diversity of entities.

Following the MDA approach and starting from a
(universal) measurement metamodel, it is possible to
carry out the measurement of any domain by means
of QVT transformation, and this process (QVT
transformation) is completely transparent to the user.

With SMF, it is possible to measure any software
entity. The user task consists in selecting the
domain metamodel (the domain to be measured) and
defining the source models. The software metamodel
is integrated in the framework.

In order to facilitate the measurement models
definition, a Software Measurement Modelling
Language (SMML) is used to supply measurement
engineers with the definition of software
measurement models according to the proposed
metamodel.

Among related future works, one important work
is the realization of a plug-in based on Eclipse which
will supply the user with the data introduction and
the measurement process. This plug-in will enable
users to instantiate measurement models in an easy
and intuitive way. Other future work will be to align
our metamodel with the Software Metrics Meta-
Model (SMM) OMG proposal (OMG, 2007).
Finally, we shall apply SMF to real environments to
obtain further refinements and validation.

ACKNOWLEDGEMENTS

This work has been partially financed by the
following projects: INGENIO (Universidad
Pólitecnica de Valencia, PAC08-0154-9262) and
ESFINGE (Ministerio de Educación y Ciencia,
TIN2006-15175-C05-05).

REFERENCES

(2007). "Eclipse Modelling Framework (EMF) Main
Page." from http://www.eclipse.org/emf.

Auer, M., B. Graser, et al. (2003). A Survey on the Fitness
of Commercial Software Metric Tools for Service in
Heterogeneous Environments: Common Pitfalls Ninth

International Software Metrics Symposium.(Metrics
'03).

Bézivin, J., F. Jouault, et al. (2005). Principles, standards
and tools for model engineering. 10th IEEE
International Conference on Engineering of Complex
Computer Systems (ICECCS’2005).

Boronat, A. and J. Meseguer (2007). Algebraic Semantics
of EMOF/OCL Metamodels, CS Dept., University of
Illinois at Urbana-Champaign.

Brown, M. and G. Dennis (2004). "Measurement and
Analysis: What Can and Does Go Wrong?" 10th IEEE
International Symposium on Software Metrics
(METRICS'04): 131-138.

Eclipse. (2007). "Eclipse Graphical Modeling Framework
(GMF) Main Page." from http://www.eclipse.org/gmf/

Fenton, N. and S. L. Pfleeger (1997). Software Metrics: A
Rigorous & Practical Approach, Second Edition, PWS
Publishing Company.

Florac, W. A., A. D. Carleton, et al. (2000). "Statistical
Process Control: Analyzing a Space Shuttle Onboard
Software Process." IEEE Software 17 (4)(4).

García, F., M. F. Bertoa, et al. (2006). "Towards a
consistent terminology for software measurement."
Information and Software Technology 48(8): 631-644

García, F., M. Piattini, et al. (2006). "FMESP: Framework
for the modeling and evaluation of software
processes." Journal of Systems Architecture - Agile
Methodologies for Software Production 52(11):627-639

García, F., M. Serrano, et al. (2007). "Managing Software
Process Measurement: A Metamodel-Based
Approach." Information Sciences.

Harrison, W. (2004). "A flexible method for maintaining
software metrics data: a universal metrics repository."
Journal of Systems and Software 72(2): 225-234

Jokikyyny, T. and C. Lassenius (1999). Using the internet
to comunicate software metrics in a large organization.
Proceedings of GlobeCom'99.

Jouault, F. and J. Bézivin (2006). "KM3: a DSL for
Metamodel Specification."

Kempkens, R., P. Rösch, et al. (2000). Instrumenting
Measurement Programs with Tools. PROFES 2000,
Oulu, Finland.

Kitchenham, B., R. T. Hughes, et al. (2001). "Modeling
Software Measurement Data." IEEE Transactions on
Software Engineering 27(9): 788-804.

Kolovos, D. S., R. F. Paige, et al. (2006). Requirements
for Domain-Specific Languages. First ECOOP
Workshop on Domain-Specific Program Development
(ECOOP'06), Nantes, France.

Komi-Sirviö, S., P. Parviainen, et al. (2001). Measurement
Automation: Methodological Background and
Practical Solutions-A Multiple Case Study. Seventh
International Software Metrics Symposium
(METRICS'01), London.

Lavazza, L. and A. Agostini (2005). "Automated
Measurement of UML Models: an open toolset
approach." Object Technology 4(4): 115-134.

Mora, B., F. García, et al. (2008). Software Measurement
by using QVT Transformation in an MDA context.
ICEIS 2008 (In Press), Barcelona (Spain).

SUPPORTING SOFTWARE PROCESS MEASUREMENT BY USING METAMODELS - A DSL and a Framework

311

Mora, B., F. Ruiz, et al. (2008). SMML: Software
Measurement Modeling Language, Department of
Computer Science. University of Castilla - La
Mancha.

OMG (2007). Architecture-Driven Modernization (ADM):
Software Metrics Meta-Model (SMM). OMG
Document: dmtf/2007-03-02, Object Management
Group.

Palza, E., C. Fuhrman, et al. (2003). Establishing a
Generic and Multidimensional Measurement
Repository in CMMI context 28th Annual NASA
Goddard Software Engineering Workshop (SEW'03),
Greenbelt (Maryland, USA).

Scotto, M., A. Sillitti, et al. (2004). A relational approach
to software metrics. Proceedings of the 2004 ACM
symposium on Applied computing (SAC'2004),
Nicosia, Cyprus.

Vépa, É., J. Bézivin, et al. (2006). Measuring Model
Repositories. Model Size Metrics Workshop at the
MoDELS/UML 2006 conference, Genoava, Italy.

ICSOFT 2008 - International Conference on Software and Data Technologies

312

