
A COMPLETENESS-AWARE DATA QUALITY PROCESSING
APPROACH FOR WEB QUERIES

Sandra de F. Mendes Sampaio
School of Computer Science, University of Manchester, Oxford Road, Manchester, U.K.

Pedro R. Falcone Sampaio
Manchester Business School, University of Manchester, Manchester, U.K.

Keywords: Data Quality, Internet Query Systems, Completeness, Query Processing.

Abstract: Internet Query Systems (IQS) are information systems used to query the World Wide Web by finding data
sources relevant to a given query and retrieving data from the identified data sources. They differ from
traditional database management systems in that data to be processed need to be found by a search engine,
fetched from remote data sources and processed taking into account issues such as the unpredictability of
access and transfer rates, infinite streams of data, and the ability to produce partial results. Despite the
powerful query functionality provided by internet query systems when compared to traditional search
engines, their uptake has been slow partly due to the difficulty of assessing and filtering low quality data
resulting from internet queries. In this paper we investigate how an internet query system can be extended to
support data quality aware query processing. In particular, we illustrate the metadata support, XML-based
data quality measurement method, algebraic query processing operators, and query plan structures of a
query processing framework aimed at helping users to identify, assess, and filter out data regarded as of low
completeness data quality for the intended use.

1 INTRODUCTION

There has been an exponential growth in the
availability of data on the web and in the usage of
systems and tools for querying and retrieving web
data. Despite the considerable advances in search
engines and other internet technologies for
dynamically combining, integrating and collating
web data, supporting a DBMS-like data management
approach across multiple web data sources is still an
elusive goal. To buck this trend, internet query
systems − IQS (Naughton, J., DeWitt, D., Maier, D.,
et al, 2001) are being developed to enable DBMS-
like query processing and data management over
multiple web data sources, shielding the user from
complexities such as information heterogeneity,
unpredictability of data source response rates, and
distributed query execution.

The comprehensive query processing approach
supported by IQS allows users to query a global
information system without being aware of the sites
structure, query languages, and semantics of the data

repositories that store the relevant data for a given
query (Naughton, J., DeWitt, D., Maier, D., et al,
2001). Despite the significant amount of work in the
development of the data integration and distributed
query processing capabilities, internet query systems
still suffer from inadequate data quality control
mechanisms to address the management of quality of
the data retrieved and processed by the IQS. Typical
examples of data quality issues (Olson, J., 2003) that
need to be addressed when supporting quality aware
query processing over multiple web data sources are:

• Accuracy of data: Data can have errors or
inconsistencies in its representation. For example,
the data values “St. Louis” and “Saint Louis” may
not be matched in a join operation between data
sources despite referring to the same address
instance, due to the different representation formats.

• Completeness of data: a data source is regarded
as complete if all information requirements are
modelled and stored in the database. For instance,
data sources fed by online forms with poor data
quality checks and optional fields often give rise to

234
de F. Mendes Sampaio S. and R. Falcone Sampaio P. (2008).
A COMPLETENESS-AWARE DATA QUALITY PROCESSING APPROACH FOR WEB QUERIES.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 234-239
DOI: 10.5220/0001894802340239
Copyright c© SciTePress

data with low completeness due to several attributes
with null values.

• Timeliness of data: Data can be of poor quality
when it is not timely for the intended use.

Internet query systems support the mediator-
based approach to quality management (Wiederhold,
G., 1992). The mediator-based approach is
applicable in situations where users need to
formulate complex queries encompassing multiple
web data sources for which there is no control over
the data available in a data source and the
infrastructure supporting data source site query
processing (e.g., querying e-Science data sources
[http://www.rcuk.ac.uk/escience]). In the mediator-
based approach, the speed of the internet limits
transmission of relevant data, and users cannot
reconcile and cleanse all necessary data items prior
to query formulation as in data warehouse-based
quality-based integration approaches (Helfert, M.,
and E. von, Maur, 2001), therefore needing dynamic
strategies for managing accuracy, completeness, and
timeliness data quality issues.

In this paper we investigate how an internet
query system can be extended to support a dynamic
data quality aware query processing framework. In
particular, we illustrate the completeness assessment
method, metadata support, algebraic query
processing operators, and query plan structures of a
query processing framework aimed at helping users
to identify, assess, and filter out data regarded as of
low completeness quality for the intended use. The
remainder of the paper is structured as follows.
Section 2 discusses key contributions of the
proposed approach. Section 3 presents how
completeness measures can be associated with XML
data. Section 4 presents the method used to annotate
XML data with completeness information. Section 5
describes the quality aware algebraic query
processing framework. Section 6 provides an
example illustrating how completeness is assessed
during query processing. Section 7 describes related
work. Section 8 summarizes the work.

2 DISCUSSION

The main contribution of this paper is to
demonstrate how existing ideas in the arena of query
processing and quality of information can be
combined and applied in the context of Internet data
processing, to analyse, evaluate and possibly filter
data of unacceptable Completeness quality. The
ideas being reused are: query engine extension, and
data annotation with quality information. The

approach taken in this work suggests Internet data to
be annotated with quality information prior to query
processing, to allow the quality information to be
taken into consideration during query optimisation
and execution. The data annotation can be done
automatically by the mediator system, or by data
providers, if these are cooperative data sources.

In addition to annotating data with quality
information, the query engine of the mediator
system requires extension to enable quality
information to be taken as input, processed along its
corresponding data, and have an impact on the
produced results, which should reflect what the user
requested in his/her query. The proposed framework
is tested over a simple, extensible, and robust
Internet Query System (Naughton, J., DeWitt, D.,
Maier, D., et al, 2001), which receives, as input,
Internet data in XML format and generates, as
output, XML data representing results from
submitted user queries. The query engine is
implemented in a Database Management System
fashion, i.e., as a set of algebraic operators designed
to work together to process XML data. More
specifically, this work shows how the query engine
algebra can be extended with an operator
encapsulating capabilities to deal with information
about the Completeness quality of the data being
processed. The approach of query engine extension
has a number of shortcomings, such as the ones
described as follows: It may increase the complexity
of design and implementation of the engine.
Therefore, modularity and encapsulation are
important features to be taken into consideration
when designing a quality-aware query engine for
any system, always enforcing the idea that data
quality related functionalities must be all
encapsulated within “data quality” operators; it may
be intrusive in the point of view of traditional query
processing, as the addition of new
operators/functions into a pre-existing engine can
demand the creation of new optimisation rules and
heuristics, as well as modification of pre-existing
operators. We believe that a careful query engine
design and implementation can avoid problems of
intrusiveness, as it has been shown in previous work
describing extension of engines to deal with
parallelism in query execution (Graefe, G., 1996); it
may be inflexible or difficult in allowing the user to
build and incorporate into the system his own
definition of quality based on the task he/she has at
hand. Flexibility in allowing user input can be
achieved by providing user interfaces to take user
input or feedback on quality of data.

A COMPLETENESS-AWARE DATA QUALITY PROCESSING APPROACH FOR WEB QUERIES

235

3 MEASURING COMPLETENESS

Completeness is a context-dependent data quality
dimension that refers to “the extent to which data are
of sufficient breadth, depth and scope for the task at
hand” (Wang, R., and S. E., Madnick, 1989). In the
context of a database model, two types of
completeness dimensions are considered: model
completeness and data completeness. Model
completeness refers to the measure of how
appropriate the schema of the database is for a
particular application. Data completeness refers to
the measurable errors of omission observed between
the database and its schema, checking, for example,
if a database contains all entities/attributes specified
in the schema.

Completeness issues arising in database
applications may have several causes, for example,
discrepancies between the intent for information
querying and the collected data, partial capture of
data semantics during data modelling, and the loss of
data resulting from data exchange. Potential
approaches to address completeness issues include
removing entities with missing values from the
database; replacing missing values with default
values, and completing missing values with data
from other sources. Irrespective of the approach
taken to deal with poor data completeness, it is
crucial that database users formulating queries
across multiple data sources are able to judge if a
particular query result is “fit” for its purpose, by
measuring the level of completeness of the result.

4 ANNOTATING XML DATA
FOR COMPLETENESS

To enable quality aware query processing, data
should be annotated with quality information (Wang,
R. Y., Reddy, M. P., and Kon, H. B., 1995).
Annotations describing simple data completeness
information can be done automatically by the
mediator system, as streams of data from remote
data sources are input. The information should
specify the number of tag elements and element
values missing from an XML document, relative to
the expected numbers for the document to be
considered complete. This information can be
obtained by simply counting the numbers, while
parsing and analysing the structure of the document
against its schema description or DTD.

<carDealerInformation>
 <dealer id="id001">
 <name>Audi Dealers</name>
 <car><model>A6 Avant</model>
 <price>26000</price></car>
 </dealer>
 <dealer id="id002">
 <name>Fiat Dealers</name>
 <car><model>Cinquecento</model>
 <price>8000</price></car>
 <car><model>Idea</model></car>
 <car><model>Multipla</model>
 <price></price></car>
 </dealer>
 <dealer id="id003">
 <name>Renauld Dealers</name>
 </dealer>
 <dataQuality><completeness>
 <numberElements>22</numberElements>
 <missingElements>
 <numberMissingElem>1</numberMissingElem>
 <elem><name>price</name>
 <number>1</number></elem>
 </missingElements>
 <numberValues>14</numberValues>
 <missingValues>
 <numberMissingVal>2</numberMissingVal>
 <elem><name>price</name>
 <number>2</number></elem>
 </missingValues>
 </completeness></dataQuality>
</carDealerInformation>

Figure 4.1: Example of XML document with annotations.

The annotated numbers for missing tag elements and
element values, as well as expected numbers,
represent quality factors that will be taken into
account during query execution. These quality
factors are added into an XML document as (sub)
elements and (sub) element values associated with
other elements specified in the schema or DTD of
the original XML document. An example is
illustrated in Figure 4.1, showing an XML document
describing information about car dealers. Note that
information to be used during query processing to
calculate the completeness of carDealerInformation
is attached to the original document, following an
initial parsing of the document and its schema. In
this example, both the price element and its value for
car Idea are missing. It is also missing the price
value for car Multipla.

5 QUALITY AWARE QUERY
PROCESSING

Figure 5.1 illustrates the quality aware query
processing framework proposed in this work, which
can be implemented as an extension to Internet
Query Systems.

ICSOFT 2008 - International Conference on Software and Data Technologies

236

QUERY

QUERY PROCESS ING
QUERY

OPT IM ISATIO N QUERY
EXECUTION Q uery E ngine

Q uery

Search Eng ine
Q uery DATA SOURCE

SELECTION DATA
FETCH IN G AND ANN OT ATION

Q uery
Resu lts

D ata

Figure 5.1: Query Processing and Data Search in an IQS.

In the case of Niagara, an input XML-based query
expression is initially transformed into two sub-
queries, a search engine query, and a query engine
query. The first is used within the search engine to
select data sources that are relevant to the query.
Once data sources are selected, the process of
fetching data takes place, and streams of data start
flowing from the data sources to the site of the
Internet Query System for data annotation and query
execution. The second sub-query is optimised and
ultimately mapped into a quality aware query
execution plan that contains a special-purpose
operator addressing the annotated completeness
information.

A description of the query engine algebra used to
execute the query plan is detailed in Table 5.1. The
Completeness Algebra is an XML algebra extended
with an operator that encapsulates the capability of
measuring completeness quality of XML data based
on completeness factors annotated on the data. This
operator is called Completeness and it encapsulates
functions for measuring, inserting, and propagating
completeness information in XML data, provided
the data has completeness factors associated with it.

Table 5.1: Completeness algebra.

Logical Operators Description

Scan(inputData) Builds a data structure for each data unit

and passes each structure to the next

operator.

Select(input,pred) Applies a predicate (pred) over the input

and either discards or retains the input

depending on whether pred evaluates to

false or true.

Project(input,listElem) Discards from the input all the elements

that are not specified in listElem.

Join(inputLeft,

inputRight,pred)

Concatenates both inputs, retaining all

their elements, applies a predicate over

the result.

Completeness(input) Updates completeness info at every step

of execution, measures the final

completeness score, attaches the

measure to query results, and displays

the results to the user.

6 QUERY EXAMPLE

Consider the XML document described in Figure
4.1, and the example XML-QL query described in
Figure 6.1, which retrieves the model and price of
each car offered by Fiat Dealers. Following the input
to the Niagara System, the Query Optimiser
generates the query plan from the query expression
in Figure 6.1, illustrated in Figure 6.2. Note that,
following each operator, there is a Completeness
operator updating the completeness information at
each step of query execution. The query results are
shown in Figure 6.3. Note that only the model and
price for each Fiat Dealers’ cars appear in the
results, as specified in the query. Therefore, the
measures for model completeness and data
completeness, performed by the Completeness
operator at the root of the plan, are calculated
considering only these two elements. The formulas
used to calculate MC and DC are illustrated in
Figure 6.4. They were derived from the ideas
discussed in (Pipino, L.L., Lee, Y.W. and Wang,
R.Y., 2002), which suggest that a metric to calculate
the completeness score for a relational database can
be formulated using simple ratio. In the simple ratio
method, if the number of relations and attributes that
are missing from the database is divided by the total
number of relations and attributes defined in the
database schema, and the result of that is subtracted
by 1, then what is obtained is a number in a
continuous scale between 0 and 1, that represents the
model completeness score for the database relative
to its schema. To measure data completeness of a
relational database the same method applies, but the
ration in this case should be between the number of
missing attribute instances and the expected number
of attribute instances. Within the continuous scale, 1
represents the highest completeness measure and is
appropriate for data complying with the most strict
completeness threshold, and 0 represents the lowest
model completeness measure, appropriate for data
that are unacceptable from the model completeness
perspective.In Figure 6.2, there is a sequence of 2
pairs (Scan ,Completeness) operators, omitted for
space limitations. Each of the Scan operators in the
sequence unnests a level of nested elements, by
attaching a copy of each unnested element (and its
sub-elements) to the input tuple. For example, the
first Scan unnests the <dealer> elements, which are
sub-elements to <carDealerInformation>. The
second Scan unnests the <name> and <car> elements,
which are sub-elements to <dealer>. The Construct
operator is the physical counterpart to the Project

A COMPLETENESS-AWARE DATA QUALITY PROCESSING APPROACH FOR WEB QUERIES

237

operator described in Table 5.1. It projects elements
and builds a structure to hold query results.

Table 6.1 illustrates the functionality of the
Completeness operator at each execution step of the
example query. The first Completeness operator (the
one following the first Scan operator) receives the
original Completeness information from the data
sources. Then it creates a copy of the information,
attaches it to the extended layer of elements
unnested by Scan, and updates the information. The
updated information relates to the unnested
elements.
WHERE <carDealerInformation>
 <dealer>
 <name>$v14</>
 <car><model>$v16</>
 <price>$v17</>
 </></></>
IN "*" conform_to "file: completeness.dtd",$v14 =
"Fiat Dealers"
CONSTRUCT
<result>
 <model>$v16</>
 <price>$v17</> </>

Figure 6.1: Example query.

The second and third Completeness operators
behave in a similar way, copying and updating the
input Completeness information according to the
changes made by the previous operator. The last
Completeness operator follows Construct. It updates
the number of elements and values projected by
Construct, and, also, calculates the measures of MC
and DC for the input document relative to the
example query.

 Completeness
|

Construct
|

Completeness
|

Select
|
…
|

Completeness
|

Scan

Figure 6.2: Query plan for example query.

<result>
 <model>Cinquecento</>
 <price>8000</>
</>
<result>
 <model>Multipla</>
 <price></>
</>
<modelCompleteness>0.66</>
<dataCompleteness>0.50</>

Figure 6.3: Example query results.

MC = 1–[(num of missing elements) / (num of

elements)]

DC = 1–[(num of missing values) / (num of values)]

Figure 6.4: Formulas used within the Completeness
operator, to calculate model completeness (MC) and data
completeness (DC).

Table 6.1: Behaviour of Completeness Operators.

Information updated by
1st Completeness Operator

numberElements 21
numberMissingElements 1

nameMissingElem <price>
numberTimes 1
numberValues 14

numberMissingValues 2
nameElemMissingValue <price>

numberTimes 2
Information updated by

Last Completeness Operator
numberElements 6

numberMissingElem 2
nameMissingElem <price>

numberTimes 1
nameMissingElem <model>

numberTimes 1
numberValues 6

numberMissingValues 3
nameElemMissingValue <price>

numberTimes 2
nameElemMissingValue <model>

numberTimes 1
MC 0.66
DC 0.50

7 RELATED WORK

In (Mecella, M., Scannapieco, M., Virgillito, A.,
Baldoni, R., Catarci, T., and Batini, C., 2003) an
approach for data quality management in
Cooperative Information Systems is described. The
architecture has as its main component a Data
Quality Broker, which performs data requests on all
cooperating systems on behalf of a requesting
system. The system, however, does not adopt an
algebraic query processing framework and is not
built on top of a mainstream IQS. In (Naumann, F.,
Lesser, U., and Freytag, J., 1999), data quality is
incorporated into schema integration by answering a
global query using only queries that are classified as
high quality and executable by a subset of the data
sources. This is done by assigning quality scores to

ICSOFT 2008 - International Conference on Software and Data Technologies

238

queries based on previous knowledge about the data
to be queried, considering quality dimensions such
as completeness, timeliness and accuracy. The
described approach, however, does not use XML as
the canonical data model and does not address
physical algebraic query plan implementation issues.

8 CONCLUSIONS AND FUTURE
WORK

With the ubiquitous growth, availability, and usage
of data on the web, addressing data quality
requirements in connection with web queries is
emerging as a key priority for database research
(Gertz, M., Ozsu, T., Saake, G., and Sattler, K.,
2003). There are two established approaches for
addressing data quality issues relating to web data:
data warehouse-based, where relevant data is
reconciled, cleansed and warehoused prior to
querying; and mediator-based where quality metrics
and thresholds relating to cooperative web data
sources are evaluated “on the fly” at query
processing and execution time. In this paper we
illustrate the query processing extensions being
engineered into the Niagara internet query system to
support mediator-based quality aware query
processing for the completeness data quality
dimension. We are also addressing the timeliness
dimension (Sampaio, S. F. M., Dong, C., and
Sampaio, P. R. F, 2005) and extending SQL with
data quality constructs to express data quality
requirements (Dong, C., Sampaio, S. F. M., and
Sampaio, P. R. F., 2006). The data quality aware
query processing extensions encompass metadata
support, an XML-based data quality measurement
method, algebraic query processing operators, and
query plan structures of a query processing
framework aimed at helping users to identify, assess,
and filter out data regarded as of low completeness
data quality for the intended use. As future plans we
intend to incorporate accuracy data quality support
into the framework and benchmark the quality/cost
query optimiser in connection with a health care
application (Dong, C., Sampaio, S. F. M., and
Sampaio, P. R. F., 2005).

REFERENCES

Naughton, J., DeWitt, D., Maier, D., et al, 2001. The
Niagara Internet Query System. IEEE Data Eng. Bull.
24(2), 27-33.

Olson, J., 2003. Data Quality: the Accuracy Dimension,
Morgan Kauffmann. 1st edition.

http://www.rcuk.ac.uk/escience. The UK e-Science
Programme.

Wiederhold, G., 1992. Mediators in the Architecture of
Future Information Systems. IEEE Computer 25(3).

Helfert, M., and E. von, Maur, 2001. A Strategy for
Managing Data Quality in Data Warehouse Systems.
In Proc. of Information Quality, 62-76.

Wang, R., and S. E., Madnick, 1989. The Inter-Database
Instance Identification Problem in Integrating
Autonomous Systems. Proc. of ICDE, 46-55.

Wang, R. Y., Reddy, M. P., and Kon, H. B., 1995. Toward
Quality Data: An Attribute-Based Approach. Decision
Support Systems, 13(3-4), 349-372.

Sampaio, S. F. M., Dong, C., and Sampaio, P. R. F, 2005.
Incorporating the Timeliness Quality Dimension in
Internet Query Systems. WISE 2005 Workshops,
LNCS 3807, 53-62.

Dong, C., Sampaio, S. F. M., and Sampaio, P. R. F., 2006.
Expressing and Processing Timeliness Quality Aware
Queries: The DQ2L Approach. International
Workshop on Quality of Information Systems, ER
2006 Workshops, LNCS 4231, 382-392.

Naumann, F., Lesser, U., and Freytag, J., 1999. Quality-
driven Integration of Heterogeneous Information
Systems. In Proc. of the 25th VLDB, 447-458.

Mecella, M., Scannapieco, Et. Al.. The DaQuinCIS
Broker: Querying Data and Their Quality in
Cooperative Information Systems. LNCS 2800.

Dong, C., Sampaio, S. F. M., and Sampaio, P. R. F., 2005.
Building a Data Quality Aware Internet Query System
for Health Care Applications. In Proceedings of IRMA
Conference - Databases Track, San Diego, USA.

Graefe, G., 1996. Iterators, Schedulers, and Distributed-
memory Parallelism. In Software, Practice and
Experience, 26(4), 427-452.

Gertz, M., Ozsu, T., Saake, G., and Sattler, K., 2003. Data
Quality on the Web. Germany, Dagstuhl Seminar.

Pipino, L.L., Lee, Y.W. and Wang, R.Y., 2002. Data
Quality Assessment. CACM(45),4 (virtual extension).

A COMPLETENESS-AWARE DATA QUALITY PROCESSING APPROACH FOR WEB QUERIES

239

