
LOCALIZING BUGS IN PROGRAMS
Or How to Use a Program’s Constraint Representation for Software Debugging?∗

Franz Wotawa
Institute for Software Technology, Graz University of Technology, Inffeldgasse 16b/2, 8010 Graz, Austria

Keywords: Fault localization, constraint-based reasoning.

Abstract: The use of a program’s constraint representation for various purposes like testing and verification is not new.
In this paper, we focus on the applicability of constraint representations to fault localization and discuss the
underlying ideas. Given the source code of a program and a test case, which specifies the input parameters and
the expected output, we are interested in localizing the root cause of the revealed misbehavior. We first show
how programs can be compiled into their corresponding constraint representations. Based on the constraint
representation we show how to compute root causes using constraint solver. Moreover, we discuss how the
approach can be integrated with program assertions and unit tests.

1 INTRODUCTION

Localizing faults in software is generally considered
a difficult and time consuming task. This holds espe-
cially in the case of software maintenance where the
basic structure of the program and the underlying as-
sumptions are not well understood or even not known.
Although, there is a growing interest in fault localiza-
tion within the research community, the overall prob-
lem is far away from being solved. One promising
approach is Zeller’s delta debugging (Zeller, 1999)
applied to the isolation of cause-effect chains in pro-
grams (Zeller and Hildebrandt, 2002). But (Gupta
et al., 2005) pointed out that from the cause-effect
chain it is not always easy to really identify a fault
and thus its applicability seems to be limited. Other
approaches use slicing techniques like (DeMillo et al.,
1996), (Kamkar, 1998), (Zhang et al., 2005) and oth-
ers. Unfortunately, these approaches do no guarantee
to remove all unnecessary parts of a program during a
debugging session. For an overview on debugging we
refer the reader to (Ducassé, 1993), (Shahmehri et al.,
1995), and (Stumptner and Wotawa, 1998).

In this paper, we present an approach that is based
on the syntax and semantics of a program. Thus the
approach guarantees to focus on those parts of the

∗The work described in this paper has been supported by
the FIT-IT research projectSelf Properties in Autonomous
Systems (SEPIAS), which is funded by the Austrian Federal
Ministry of Transport, Innovation and Technology and the
FFG.

program relevant in a certain debugging session. The
approach requires that we have given a failure reveal-
ing test case, which specifies the input and the ex-
pected output of the program, and the source code
of the program. For the sake of simplicity we as-
sume that programs are written in a Java-like sequen-
tial programming language ignoring object-oriented
features, multi-threading, and exceptions. The pre-
sented approach is based on model-based diagnosis
(Reiter, 1987) and is most closely to (Ceballos et al.,
2003; Ceballos et al., 2006).

The basic idea behind our approach is to compile
the source code into a behavior equivalent constraint
representation and to use this constraint representa-
tion directly to identify possible bug locations. An-
other underlying assumption is that the corrected pro-
gram is a close variant of the given program. Hence,
the approach is more suited for experienced program-
mers and less for programmers learning a program-
ming language where a specialized tutoring system
seems to be more suitable. Finally, we assume that
the used test case is as small as possible and, there-
fore, does not require too many loop iterations or re-
cursive procedure calls. This assumption is called the
small scope hypothesis, which is used in other appli-
cations like verification (see (Jackson, 2006)).

So, why does a constraint representation of a pro-
gram help to identify possible bug locations? Let us
start with an analysis of the following statementi:
i. x = a + 10;

In i the value of variablex becomes the sum of the

88
Wotawa F. (2008).
LOCALIZING BUGS IN PROGRAMS - Or How to Use a Program’s Constraint Representation for Software Debugging?.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 88-95
DOI: 10.5220/0001890900880095
Copyright c© SciTePress

value ofa and 10 during execution. The direction of
computation is always from the inputs to the outputs.
Hence, from a known value ofx after the the execu-
tion of i we cannot derive a value fora using the pro-
gramming language’s semantics alone; although there
is a relation between those variables. The constraint
representation considers this relationship and straight-
forward linei is considered as relation betweenx and
a. In our case this relation is a mathematical equa-
tion. Wheneverx is known, a value for variablea can
be derived and vice versa. But how does this help to
focus on relevant parts of the program during debug-
ging? To answer this question, we have a look at the
following program:
1. v = !in2;
2. out1 = in1 && v;
3. out2 = in3 || v;

Now consider the following test case:in1 = true,
in2 = f alse, in3 = f alse for the inputs, andou1 =
true, out2 = f alsefor the expected output. The pro-
gram behaves incorrect with respect to the given test
case. Instead off alsethe valuetrue is computed for
variableout2. When considering the data dependen-
cies for variableout2 statements 1 and 3 might cause
the misbehavior. Such a result would be returned
when using slicing-based debugging approaches.

Consider now the relation-based representation of
lines 1 to 3. We first, assume that Line 1 is incorrect.
Therefore, we are not able to compute a value for tar-
get variablev. Because of Line 2 and the test case,
we know thatout1 has to betrue. This can only be
the case when bothin1 andv are true. Hence, we
are able to determine the value ofv. From this value
we obtainout2 to betrue, which contradicts the test
case. The same happens when assuming Line 2 to be
faulty. The only remaining candidate is Line 3, which
improves the result. One reason for the improvement
is that relations allow for reasoning in all possible di-
rections and not only from the inputs to the outputs.

In the rest of the paper we introduce the com-
pilation of programs into their constraint representa-
tion. For this purpose we first convert programs into
programs where all loops and recursive procedure or
method calls are unrolled. From this representation
we extract its static single assignment (SSA) form.
The SSA form can be easily mapped to a set of con-
straints. We further present an algorithm, which al-
lows for computing all statements that might cause
the misbehavior, and show how the approach can be
easily combined with program assertions and testing.

2 CONVERSION – PART 1

Within the paper, we assume that programs are writ-
ten in a Java like programming language ignoring
object-oriented features, multi-threading, and excep-
tions. Moreover, we ignore all type specific infor-
mation and assume that the use of functions, vari-
ables, and other language constructs, which require
type conformity, is done in a type-safe fashion. The
first part of the conversion comprises two steps. In
the first step, we convert all not necessarily recursive
procedures and while statements of the program us-
ing unrolling of sub-blocks and procedure bodies. In
the second step, we convert the resulting program into
its SSA form. In the SSA form every variable is only
used once as a target. Finally, the second part of con-
version uses the SSA form to obtain a constraint rep-
resentation.

We do not formally specify the conversion pro-
cess but explain the necessary steps and discuss im-
portant issues. The overall idea of using constraints
in software engineering is not new. However, most
of the research activities focus on verification except
(Ceballos et al., 2003; Ceballos et al., 2006), where
the constraint representation is used for fault localiza-
tion. (Gotlieb et al., 1998) used constraints for test
case generation. More recently, (Collavizza and Rue-
her, 2006) introduced the conversion of programs into
constraints and used them for verification purposes.

2.1 Recursion and Iteration

Under some restrictions every program comprising
recursion and/or loop statement can be converted into
a loop free but behavior equivalent form. The restric-
tion applies to the program’s input requiring that the
input is chosen in a way where the maximum number
of recursive calls or iterations is known in advance.
This is of course not possible in the general case and
seems to be somehow awkward or very restrictive.
However, when considering a program that runs in its
environment similar restrictions apply. For example,
because of memory constraints the number of recur-
sions is limited. Moreover, like in (Jackson, 2006) we
argue that the test cases used to validate a program
are usually small and require not too many loop iter-
ations or recursive functions. Since, unrolling loops
and recursive calls increases the overall program size
of the resulting program, a restriction on the maxi-
mum number of iterations or recursions is necessary.
The unrolling step is necessary for debugging in order
to make all iterations explicit, which allows for a di-
rect integration of loop and recursion invariants. The
invariants only need to be copied in every unrolled

LOCALIZING BUGS IN PROGRAMS - Or How to Use a Program’s Constraint Representation for Software Debugging?

89

block. Moreover, in principle the number of iterations
and recursive calls can be determined from the failure
revealing test case directly.

We use the following rules in order to compute the
recursion free and loop free variants of a given pro-
gram. We handle recursive procedure as well as loops
by unrolling the involved statements. This unrolling
of statements is done up to a pre-specified bound. To
allow for detecting that a test case reaches this bound-
ary, we use a new variablefail. fail is initialized
with the valuef alse. If the number of required itera-
tions exceed the given parameter, the variablefail is
set totrue.

Recursion. Given a procedure call y =
p(a1,. . .,an) at line i of the program, and the
declaration of the procedure, which comprises the
formal parametersx1, . . ., xn and the set of state-
mentsS. For simplicity, we assume that the body of
p comprises only one return statement at the end of
the program. We construct a new bodyS′, which is
equivalent toS but where the return statement of the
form return e; is replaced withreturn p = e;.
The conversion is done by replacing the procedure
call with the following statements in the case where
the maximum number of considered recursive calls is
not reached.
x1 = a1; ...xn = an; S′ y = return p;

Note that if there is no return value, the last state-
ment can be ignored andS′ is equivalent toS. If
the pre-defined maximum number of recursive call is
reached, the call is replaced by a signal assignment
fail = true; where the variablefail is used only
for stating that something unexpected happened, and
shall not be used in the original program. Note that
the maximum number of recursive calls limits the re-
cursion depth. For example, if there are two calls of
the same recursive procedure in a block, then the max-
imum number of recursions for both is the same.

While/Loops. A while statement of the formwhile
C { S } can be easily converted into a nested if-
structure. Every time the conditionC evaluates totrue
the statements inSare executed and testingC is done
again, untilC evaluates tof alse. Hence, in general
we can replace a while statement by the following in-
finite structure of nested if-statements.

if C { S if C { S ...} } }

In practice we have to set the nesting depth sim-
ilar to the maximum number of recursion when con-
verting recursive procedures. If the maximum nesting
depth is reached, we add the statementif C { fail
= true; }.

With these two conversions rules we replace all
recursive and non-recursive functions and while state-

ments with their equivalent structures. The obtained
program comprises more statements than the original
program but does not contain loops anymore.

The unrolling of recursive functions and loops is
different from the original conversion of programs
into their equivalent SSA form, which does not re-
quire an unrolling. However, in our case the unrolling
allows for explicitly considering every single iteration
step during debugging. The SSA form, which we use
for debugging, is a SSA form of the converted pro-
gram without loops and recursions and not a SSA
form of the original program. Since, the unrolling
does not change the semantics of the program if the
variablefail is not set totrue during program ex-
ectution using the failure revealing test case, the SSA
form of the converted program is also semantically
equivalent to the original program under the same
conditions. This ensures the correct computation of
diagnoses.

2.2 Static Single Assignment Form

The SSA form of a program (Cytron et al., 1991) is a
representation with the property that no two left-side
variables share the same name. Hence, every vari-
able that is defined in a statement has a unique name.
The SSA form of a program is of importance in our
case because it can be directly mapped to constraints.
We discuss this issue later and briefly introduce the
conversion into an SSA form. For more information
regarding the SSA form and its computation we refer
to (Cytron et al., 1991; Aycock and Horspool, 2000;
Mayer, 2003) where also the conversion of arrays and
other data structures is explained.

The conversion of programs into their SSA form
can be done by adding an index to every variable. A
variable that is used obtains the index from the last
definition of the same variable. Every time a variable
is defined a new index is generated. If a program com-
prises only assignment statement, the conversion is
straightforward. In case of conditional statements or
loops the conversion becomes more complicated. In
our case, we only have to consider conditional state-
ments because the loop statements and the recursive
procedure calls are eliminated in the previous conver-
sion step.

The idea behind the conversion of conditional
statement is as follows: The value of the condition is
stored in a new unique variable. The if- and the else-
branches are converted separately. In both cases the
conversion starts using the indices of the variables al-
ready computed. Both conversions deliver back new
indices of variables. In order to get a value for a vari-
able we have to select the last definition of a variable

ICSOFT 2008 - International Conference on Software and Data Technologies

90

1. if (state == 1) {
2. if (on) {
3. state = 2;
4. }
5. else if (state == 2) {
6. if (off) {
7. state = 1;
8. }
9. }
10. if (state == 1) {
11. v = !in2;
12. out1 = in1 && v;
13. out2 = in3 || v;
14. }
15. if (state == 2) {
16. out1 = false;
17. out2 = false;
18. }

Figure 1: A small example programfsm.

from the if- and else-branch depending on how the
if condition evaluates. This selection is done using a
functionΦ, which is defined as follows:

Φ(x,y,C) =

{

x if C = true
y otherwise

Hence, for every variable which is defined in the
if- or the else-branch we have to introduce a selecting
assignment statement, which calls theΦ function.

Let if C {.. x = .. } else { .. x =
.. } be a conditional statement at linen of the
program. The SSA form is given as follows:

var n = C;
... x i = ...
... x j = ...
x k = Φ(x i,x j,var n);

The indicesi, j, andk of x are assumed to be the
indices assigned tox in order to meet the properties
of the SSA form.

We illustrate the conversion using the program
fsm, that implements a small finite state machine.
Such programs often occur in the embedded systems
domain, which is one of the target domains of our
approach. The program comprises 1 state variable
state, 5 input variableson, off, in1, in2, in3,
and 2 output variablesout1, out2. Lines 1-9 imple-
ment the state transitions as a function ofon, off,
and lines 10-18 the output function, which specifies
values forout1, out2 as a function ofin1, in2,
in3 and the internal statestate.

The SSA form offsm is depicted in Figure 2.
It comprises only assignment statements. All con-
ditional statements are replaced by assignment state-
ments where the right-hand side calls theΦ function

1. var 1 = (state 0 == 1);
2. var 2 = (on 0);
3. state 1 = 2;
4. state 2 = Φ(state 1,state 0,var 2);
5. var 5 = (state 0 == 2);
6. var 6 = (off 0);
7. state 3 = 1;
8. state 4 = Φ(state 3,state 0,var 6);
9. state 5 = Φ(state 4,state 0,var 5);
10. state 6 = Φ(state 2,state 5,var 1);
11. var 11 = (state 6 == 1);
12. v 1 = !in2 0;
13. out1 1 = in1 0 && v 1;
14. out2 1 = in3 0 || v 1;
15. out1 2 = Φ(out1 1,out1 0,var 11);
16. out2 2 = Φ(out2 1,out2 0,var 11);
17. var 15 = (state 6 == 2);
18. out1 3 = false;
19. out2 3 = false;
20. out1 4 = Φ(out1 3,out1 2,var 15);
21. out2 4 = Φ(out2 3,out2 2,var 15);

Figure 2: The SSA form of programfsm.

for each variable used as target in either the then-
branch or else-branch.

Before discussing the conversion of programs in
SSA form to constraints, we introduce the basic con-
cepts of constraint systems including constraint solv-
ing.

3 CONSTRAINTS

In order to be self contained, we briefly discuss the
basic definitions of constraint systems including the
computation of solutions. For a more in-depth pre-
sentation of constraint systems and their algorithms
we refer to (Dechter, 1992), (Mackworth, 1987),
and (Dechter, 2003). A constraint systemCSis char-
acterized by a set of variablesV = {V1, . . . ,Vn}, each
of them associated with a (not necessarily finite) do-
main Di , 1 ≤ i ≤ n, and a set of constraintsC =
{C1, . . . ,Ck}. Each of the constraintsCj has a corre-
sponding pair(Xj ,Rj), whereXj ⊆V is a set of vari-
ables, andRj is a relation overXj . Xj is called the
scope of constraintCj . For convenience we assume a
functiondom: V 7→ DOM that maps a variableV = i
to its domainDi , a functionscope: C 7→ 2V that maps
a constraint to its corresponding scope, and a function
rel : C 7→ RELATIONSthat maps constraints to their
relations.

An assignment of values to all variables is called
an instantiation. An instantiation is said to be ful-

LOCALIZING BUGS IN PROGRAMS - Or How to Use a Program’s Constraint Representation for Software Debugging?

91

filled, if it does not contradict any constraint. A con-
straint is said to be in contradiction with an instan-
tiation iff the variable values are not represented in
the constraint relations. Usually someone is inter-
ested in finding non-contradictory, i.e., fulfilling, in-
stantiation, which we also call a solution. An effec-
tive way in practice for computing solutions is to use
backtrack search. For backtracking we assume an or-
dered variable collectionVO. We start with the first
variable and assign a provisional value. We further
assign provisional values to the successive variables
as long as the constraints are fulfilled. For this pur-
pose we only have to consider constraints where all
variables have an assigned value. If one constraint
is violated we backtrack to the variable that has been
assigned a value in the last step and choose another
value. If there is no value, we have again to track
back to the previous variable and so on. If there is
no further value to assign for the first variable, there
is no solution. Otherwise, the procedure stops when
all variables have been assigned values that fulfill all
constraints.

The following algorithms implements back-
tracking and has to be accessed via the call
findSolution(CS,VO,/0). It returns a solution if one
exists. Otherwise, the algorithm returns the empty
set. The algorithm only guarantees to terminate on
constraint systems where all domains are finite. This
is the case in debugging given a failure revealing test
case where the test case can be used to restrict the the
domains.

findSolution(CS,VO,I)
1. If VO is empty, then return the current variable

assignmentI as result.

2. Otherwise, letv be the first element ofVO.

3. For all valuesx∈ dom(v) of the currently selected
variablev do:

(a) Add the assignmentv = x to the set of current
assignmentsI .

(b) Check all constraints where variables have a
value assignment inI . If at least one constraint
is violated, removev= x from I . Otherwise, do
the following:

i. Call findSolution(CS,VO\{x},I) recursively
and store the result inr.

ii. If r = /0, then removev= x from I . Otherwise,
returnr.

4. Return/0.
Beside optimizations regarding the used data

structures, there are three ways for improving the run-
ning time of the backtracking algorithm, i.e., vari-
able ordering (see (Freuder, 1982; Dechter and Pearl,

1989)), restricting domains, and detecting dead ends
during search as fast as possible (see (Dechter and
Pearl, 1988)).

4 CONVERSION – PART 2

Programs in SSA form have a simple structure, com-
prise only assignment statements, and every variable
is defined only once. Hence, the conversion is easy
and requires only a conversion of each statement sep-
arately. All variables are mapped to corresponding
variables of the constraint systems. The data types of
the variables are mapped to the domains of the con-
straint variables. Each statement is mapped to a con-
straint where the corresponding constraint variables
of variables used in the statement form the scope of
the constraint. The constraint’s relation is given by
the statement itself.

For example, Line 14 of the SSA form
of program fsm (Figure 2) out2 1 = in3 0
|| v 1; is converted in a constraintC14 with
scope(C14 = {out2 1, in3 0,v 1} and relation
rel(C14) = {out2 1 = in3 0∨v 1}. The relation of
C14 has to be interpreted as a logical rule where ’=’
is the bi-implication and ’∨ ’ a logical or. For finite
domains the relation can also be represented in a
tabular form.

out2 1 in3 0 v 1
f alse f alse f alse
true true f alse
true f alse true
true true true

Accordingly to our definition of consistency of
constraints, a given instantiation, i.e., an assignment
of values to constraint variables is consistent with a
constraint, if the corresponding tuple is element of the
relation. Otherwise, the instantiation contradicts/does
not fulfill the constraint. ForC14 out2 1 = f alse,
in3 0 = true, v 1 = f alse is an inconsistent instan-
tiation. If changing the value ofin3 0 to f alse, we
obtain a consistent instantiation.

The conversion of statements to the correspond-
ing relation is rather straightforward and has to be de-
fined for the functions and predicates of the data types
used in the program. Because of space limitations we
will not consider all of these conversions. Instead we
discuss the conversion of assignments comprising the
Φ function. Assume a statementx i = Φ(x j,x k,c)
in line n of the program. We map this statement
to a corresponding constraintCn with scope(Cn) =
{x i,x j,x k,c}. The relation ofCn is specified using

ICSOFT 2008 - International Conference on Software and Data Technologies

92

3 rules:c = true→ x i = x j, c = f alse→ x i = x k,
x j = x k→ x i = x j. The latter rule states that if the
value of the variablex is the same for both branches
of a conditional statement, then it can be used after
the execution of the branches.

The second part of the compilation process, i.e.,
the conversion of the SSA form into a set of con-
strains, does obviously not change the behavior. Ev-
ery result of a program run of the SSA form with
respect to the given input values is a (partial) solu-
tion of the corresponding constraint system using the
same input values and vice versa. Note that in cases
where the number of chosen iterations is not enough,
the usedfail variables are set tof alse. In this case,
the SSA form and its corresponding constraint rep-
resentation do not reflect the behavior of the original
program anymore. A solution is to perform the com-
pilation process again with an increased number of
allowed iterations.

Until now, we are not able to use the constraint
representation together with the backtracking algo-
rithm to compute possible fault candidates, i.e., state-
ments that cause misbehavior. The reason is that we
are not able to distinguish the correct behavior of a
statement from its incorrect one. A solution is to ex-
plicitly state correct and incorrect behavior. To do so,
we extend the constraints by introducing a new status
variableSn for each constraintCn. The domain ofSn
is {ok,ab} whereok represents the correct andab the
incorrect, i.e., abnormal, behavior. The relations ob-
tained from the statements are mapped to the correct
behavior. This can either been done via replacing a
rule r with Sn = ok→ (r) in the constraint’s relation
or by adding a new column to the tabular form and
setting the value ofSn to ok for each row.

In addition, we have to specify the faulty behav-
ior. Since, the real faulty behavior is not known, we
assume the following fault model:A faulty assign-
ment statement does not allow to determine a value
for the target/defined variable. All other variables
are not influenced.In order to implement this fault
model, we introduce a new value ?, which represents
’don’t know’. The ? is assumed to be element of all
domains, which belong to the domains of correspond-
ing program variables. For the rule representation of
a constraintCn with target variablex, we add the rule
Sn = ab→ x =?. In tabular form we add a new col-
umn where ? is assigned to all variables exceptSn,
which has to be equivalent toab. Moreover, a further
improvement would be to add new rules even for the
correct behavior. For example, a logical or would be
true if only one arguments istrue.

For constraintC14 we state the extended behavior
in tabular form as follows:

out2 1 in3 0 v 1 S14

f alse f alse f alse ok
true ? true ok
true true ? ok
? ? ? ab

In addition to these changes, we slightly adapt the
term consistency of constraints with respect to vari-
able instantiations. We say that a constraint is consis-
tent with a given instantiation, iff there exists a tuple
in the constraint relation that can be mapped to the in-
stantiation. A tuple can be mapped to an instantiation
iff there exists a replacement of of each ? value for
a variable with an element of the domain that makes
the tuple equivalent to the instantiation. Note that not
all ? have to be replaced with the same value. Every
variable instantiation can be mapped to the faulty be-
havior. This ensures that at least one explanation can
always be found. From here on, we always assume
that a program to be debugged is compiled into a con-
straint representation that allows for debugging.

5 FAULT LOCALIZATION

Given the constraint representationCSΠ = (V,D,C)
of a programΠ and a test caseTΠ revealing a faulty
behavior, the backtracking algorithmfindSolution
can be used in order to determine the cause of the
misbehavior. The following steps are necessary for
this purpose:

1. Let VO be the variable ordering where the first
elements are the status variablesS1, . . . ,S|C| of
the constraintsCi ∈ C, followed by the variables,
which are specified in the test caseTΠ, and the
remaining variables fromV.

2. For each input of the formx = v in TΠ add a new
constraint with scope{x 0} and relationx 0 = v
to C.

3. For each expected output inTΠ of the formy = v
add a new constraint with scope{y i} and rela-
tion y i = v to C wherei is the greatest index of
variabley.

4. CallfindSolution((V,D,C), VO, /0) and return the
result.

Note that this algorithm returns only one solution.
It can be adapted in order to find all or a pre-defined
number of solutions by adaptingfindSolution accord-
ingly. In a practical setting the algorithm has to be
adapted in order to first search for single fault can-
didates and afterwards for multiple fault candidates.
But it is important to consider that the approach is not
limited to single faults.

LOCALIZING BUGS IN PROGRAMS - Or How to Use a Program’s Constraint Representation for Software Debugging?

93

When applying the approach to the small ex-
ample program given in the introduction of this
paper, we receive as solution that Statement 3
is faulty. The corresponding instantiation is
in1 0 = true, in2 0 = f alse, in3 0 = f alse,v 1 =
true,out1 1 = true,out 2 = true,S1 = ok,S2 =
ok,S3 = ab.

Besides handling multiple faults the proposed ap-
proach allows for an easy integration of assertions and
unit tests. Assertions are basically nothing else than
conditions that are evaluated during runtime. If the
condition evaluates to false the assertion is said to fail.
Otherwise, the assertion is said to be fulfilled. For ex-
ample, an assertion for thefsm program in Figure 1
would specify the state transitions:

...
5. else if (state == 2) {
6. if (off) {
7. state = 1;
8. }
9. }

@ASSERT[on= true⇒ state= 2]
@ASSERT[o f f = true⇒ state= 1]

10. if (state == 1) {
11. v = !in2;

...

The first assertions specifies that wheneveron is
set to true, thestate variable should be 2. The sec-
ond assertions specifies thatoff changesstate to 1.
A implicit assumption behind this assertions is that
eitheron or off are true. The integration of the as-
sertions is easy. They only have to be converted into
constraints using the variable indices at the given lo-
cation. Note that assertions are not allowed to change
variables. Hence, we do not need to take care of new
variable indices. For our example program, we would
add the following constraints to thefsm’s constraint
representation:

on 0 state6
true 2

o f f 0 state6
true 1

For both constraints no status variables are added,
because we assume that assertions cannot fail.

The integration of unit tests can be done in a simi-
lar way. Unit test usually have the following structure.
At the beginning the variables are set to their initial
values. Then the program is called. Finally, asser-
tions are used to specify the expected values. In case
one assertion is contradicted, an exception is raised
and the unit test is assumed to fail. We illustrate the
integration of unit tests using thefsm program again.

@INIT[state= 2∧on= f alse∧o f f = true]
@INIT[in1 = true∧ in2 = f alse∧ in3 = f alse]

1. if (state == 1) {
2. if (on) {

...
17. out2 = false;
18. }

@ASSERT[out1 = true∧out2= f alse]

For integration purposes we again convert the ini-
tialization and the assertion to constraints, which are
assumed to be correct.

state0 on 0 o f f 0
2 f alse true

in1 0 in2 0 in3 0
true f alse f alse

out1 4 out2 4
true f alse

The integration of assertions and unit tests as
shown is smooth when using a constraint represen-
tation. Moreover, the approach puts the computation
of fault candidates down to the computation of solu-
tions for the corresponding constraint representation.
For the latter there are efficient algorithms available.
Hence, for smaller programs up to 500 statements lo-
cating bugs should be possible. We implemented the
compilation of programs into constraints and tested
the approach on very small programs using a self-
implemented constraint solver. The results in terms
of the number of diagnosis candidates are promising
but require an improvement on side of the constraint
solver as well as some optimizations during the con-
version. In particular, time for computing fault candi-
dates has to be improved substantially in order to be
of use in practical applications. At the moment diag-
nosis time is between a fraction of a second and about
1 minute for small programs comprising 10 to 20 lines
of code.

6 CONCLUSIONS

There are many different approaches for fault local-
ization but most of them are based on data flow and
control flow. In this paper, we presented an approach
that is based on the constraint representation of a pro-
gram and a failure revealing test case for comput-
ing fault candidates. The advantage of constraints is
the availability of constraint solver, which can be di-
rectly used. The research described in the paper is
most closely to the application of model-based diag-
nosis (see (Reiter, 1987)) to software debugging as
described in (Köb and Wotawa, 2006) and (Ceballos
et al., 2003; Ceballos et al., 2006).

ICSOFT 2008 - International Conference on Software and Data Technologies

94

In contrast to previous research the presented ap-
proach offers: (1) An almost standardized way of rep-
resenting programs as constraints; (2) Debugging is
put down to constraint solving where a lot of research
is devoted to constraint solving algorithms; (3) The
integration of assertions and unit tests can be easily
done in our case. There is no need for a special treat-
ment. Assertions can be added to the compiled pro-
gram on the fly during a debugging session; And (4)
The debugging results depends on the syntax and the
semantics of a programming language.

Of course the complexity of debugging is still high
and improvements of both the solving algorithms and
the conversion process are necessary. The handling
of object-oriented features, multi-threaded programs,
and exception are still open issues. However, in spe-
cialized areas like the embedded systems domain, the
application of the presented approach is in reach.

REFERENCES

Aycock, J. and Horspool, N. (2000). Simple generation of
static-single assignment form. InProceedings of the
9th International Conference on Compiler Construc-
tion (CC), pages 110–124.

Ceballos, R., Casca, R. M., Valle, C. D., and Borrego, D.
(2006). Diagnosing errors in dbc programs using con-
straint programming. InSelected Papers from the 11th
Conference of the Spanish Association for Artificial
Intelligence (CAEPIA 2005), volume 4177 ofLecture
Notes in Computer Science.

Ceballos, R., Gasca, R., Valle, C. D., and Rosa, F. D. L.
(2003). A constraint programming approach for soft-
ware diagnosis. In Ronsse, M. and Bosschere, K. D.,
editors,Proceedings of the Fifth International Work-
shop on Automated Debugging, Ghent, Belgium.

Collavizza, H. and Rueher, M. (2006). Exploration of
the capabilities of constraint programming for soft-
ware verification. InProceedings of Tools and Algo-
rithms for the Construction and Analysis of Systems
(TACAS), pages 182–196. Springer, Vienna, Austria.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and
Zadeck, F. K. (1991). Efficiently computing static
single assignment form and the control dependence
graph.ACM TOPLAS, 13(4):451–490.

Dechter, R. (1992). Constraint networks. InEncyclopedia
of Artificial Intelligence, pages 276–285. Wiley and
Sons.

Dechter, R. (2003).Constraint Processing. Morgan Kauf-
mann.

Dechter, R. and Pearl, J. (1988). Network-based heuristics
for constraint-satisfaction problems.Artificial Intelli-
gence, 34:1–38.

Dechter, R. and Pearl, J. (1989). Tree clustering for con-
straint networks.Artificial Intelligence, 38:353–366.

DeMillo, R. A., Pan, H., and Spafford, E. H. (1996). Critical
slicing for software fault localization. InInternational
Symposium on Software Testing and Analysis (ISSTA),
pages 121–134.

Ducassé, M. (1993). A pragmatic survey of automatic
debugging. InProceedings of the 1st International
Workshop on Automated and Algorithmic Debugging,
AADEBUG ’93, Springer LNCS 749, pages 1–15.

Freuder, E. C. (1982). A sufficient condition for backtrack-
free search.Journal of the ACM, 29(1):24–32.

Gotlieb, A., Botella, B., and Rueher, M. (1998). Au-
tomatic test data generation using constraint solving
techniques. InProc. ACM ISSTA, pages 53–62.

Gupta, N., He, H., Zhang, X., and Gupta, R. (2005). Locat-
ing faulty code using failure-inducing chops. InAuto-
mated Software Engineering (ASE), pages 263–272.

Jackson, D. (2006).Software abstractions: logic, language,
and analysis. MIT Press.

Kamkar, M. (1998). Application of program slicing in al-
gorithmic debugging.Information and Software Tech-
nology, 40:637–645.

Köb, D. and Wotawa, F. (2006). Fundamentals of debug-
ging using a resolution calculus. In Baresi, L. and
Heckel, R., editors,Fundamental Approaches to Soft-
ware Engineering (FASE’06), volume 3922 ofLecture
Notes in Computer Science, pages 278–292, Vienna,
Austria. Springer.

Mackworth, A. (1987). Constraint satisfaction. In Shapiro,
S. C., editor,Encyclopedia of Artificial Intelligence,
pages 205–211. John Wiley & Sons.

Mayer, S. (2003). Static single-assignment form
and two algorithms for its generation. Semi-
nar Work, Winter Term 2002/03, University of
Konstanz, http://www.inf.uni-konstanz.de/dbis/
teaching/ws0203/pathfinder/download/ mayers-
ausarbeitung.pdf.

Reiter, R. (1987). A theory of diagnosis from first princi-
ples.Artificial Intelligence, 32(1):57–95.

Shahmehri, N., Kamkar, M., and Fritzson, P. (1995). Us-
ability criteria for automated debugging systems.J.
Systems Software, 31:55–70.

Stumptner, M. and Wotawa, F. (1998). A Survey of Intelli-
gent Debugging.AI Communications, 11(1).

Zeller, A. (1999). Yesterday, my program worked. today,
it doesn’t. why? InProceedings of the Seventh Euro-
pean Software Engineering Conference/Seventh ACM
SIGSOFT Symposium on Foundations of Software En-
gineering (ESEC/FSE), pages 253–267.

Zeller, A. and Hildebrandt, R. (2002). Simplifying and iso-
lating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2).

Zhang, X., He, H., Gupta, N., and Gupta, R. (2005). Exper-
imental evaluation of using dynamic slices for fault
localization. InSixth International Symposium on Au-
tomated & Analysis-Driven Debugging (AADEBUG),
pages 33–42.

LOCALIZING BUGS IN PROGRAMS - Or How to Use a Program’s Constraint Representation for Software Debugging?

95

