
DYNAMISM IN REFACTORING CONSTRUCTION AND
EVOLUTION

A Solution based on XML and Reflection

Raúl Marticorena
University of Burgos, EPS C/Francisco Vitoria, Burgos, Spain

Yania Crespo
Department of Computing Science, University of Valladolid, Campus Miguel Delibes, Valladolid, Spain

Keywords: Refactoring, evolution, frameworks, refactoring tools, XML, reflection, refactoring dynamic building.

Abstract: Current available refactoring tools, even stand-alone or integrated in development environments, offer a static
set of refactoring operations. Users (developers) can run these refactorings on their source codes, but they can
not adjust, enhance, evolve them or even increase the refactoring set in a smooth way. Refactoring operations
are hand coded using some support libraries. The problem of maintaining or enriching the refactoring tools
and their libraries are the same of any kind of software, introducing complexity dealing with refactoring,
managing and transforming software elements, etc. On the other hand, available refactoring tools are mainly
language dependent, thus the effort to reusing refactoring implementations is enormous, when we change
the source code programming language. This paper describes our work on aided refactoring construction
and evolution based on declarative definition of refactoring operations. The solution is based on frameworks,
XML and reflective programming. Certain language independence is also achieved, easing migration from one
programming language to another, and bringing rational support for multilanguage development environments.

1 INTRODUCTION

Refactoring is becoming a natural step in current soft-
ware development as“a change made to the internal
structure of software to make it easier to understand
and cheaper to modify without changing its observ-
able behavior”(Fowler, 2000). Refactoring features
are included as options in IDEs or assembled as plug-
ins. Agile development processes include refactoring
as a good practice, and nowadays, it is common to
teach these concepts in software engineering courses.

Nevertheless, different implementations and so-
lutions are provided for each environment, language
and platform. Our work takes a different approach to
refactoring development, focusing on a reuse based
solution. Refactorings are defined as compound el-
ements that can be assembled and reused to obtain
new refactorings from already implemented elements.
Some elements are common to different languages
and others are particular of each concrete program-
ming language.

In the remainder of this paper, in Section 2 and
3 we give a brief overview about the code manag-

ing support using a solution based on metamodels and
framewoks, Section 4 describes the refactoring engine
that allows refactorings to run and defines refactoring
items: queries and transformations. Section 5 pro-
poses a solution using XML and reflection allowing a
declarative refactoring definition and dynamic build-
ing. Some related works are detailed in Section 6 and
conclusions and future work are shown in Section 7.

2 LANGUAGE
REPRESENTATION

Refactoring tools need to manage source code infor-
mation. The main problem is to choose the most
suitable representation. Currently, most solutions are
based on abstract syntax trees (AST) and well known
design patterns asVisitor (Gamma et al., 1995). The
main problem is that an AST is bound to one language
(more concretely to its grammar). This is a big obsta-
cle that hinders reuse in refactoring implementations.

Other trends outline to manage source code in-

214
Marticorena R. and Crespo Y. (2008).
DYNAMISM IN REFACTORING CONSTRUCTION AND EVOLUTION - A Solution based on XML and Reflection.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 214-219
DOI: 10.5220/0001890002140219
Copyright c© SciTePress



formation through relational databases but additional
problems appear recovering original or modified
code. Queries are defined with structured query lan-
guages (SQL). Although simple, this allows defect
detection but does not support refactoring. Similar
problems arise when logical predicates are used to
manage the information.

Our proposal uses metamodels as language sup-
port. On one hand, metamodels provide with the in-
formation as well as previous proposals do. On the
other hand, it is also possible to change the current
model instance, and obtain the refactored code. Fi-
nally, reuse possibilities are enabled from the benefits
of a framework based solution, managing commonal-
ities and variations from different languages.

3 USING MOON AS
METAMODEL

A minimal object-oriented notation (MOON) (Cre-
spo, 2000) is used as starting point to develop lan-
guage support and refactoring execution. Source in-
formation is stored as instances of graph nodes. The
graph can be traversed to check current state (con-
ditions) and run transformations. Once the graph is
transformed, can be traversed and refactored code
is regenerated. Refactoring process gains in lan-
guage independence. MOON represents the neces-
sary abstract constructions in refactorings definition
and analysis. They are common to a family of pro-
gramming languages: object-oriented programming
languages (OOPL), statically typed with or without
genericity. This model language deals with classes,
relationships, type system variants, a set of correct-
ness rules to govern inheritance, etc.

Although a model language can represent com-
mon points and general variants, it does not include
all features of the programming language family. It is
necessary to support common abstractions, variability
and extension points for peculiarities and exceptions
for particular features. With this aim, frameworks
(Fayad et al., 1999) emerge as a suitable solution.
Language particular features are extended and hooked
in their concrete framework extensions. For example,
a Java extension framework is developed to store con-
cepts as exceptions, interfaces, try-catch blocks, etc,
not included in MOON. In this sense, a taxonomy of
concepts is established on the model elements:

1. General: are elements contained in most of stat-
ically typed languages. For example,Class,
Method or Attribute are common concepts in-
cluded in languages as Eiffel, C++, Java, C#, etc.

Common features can be represented as MOON
core features and reused on several languages.

2. Extensible: are present in most of the languages in
the family but each one of them gives a different
semantic value. For example, access modifiers,
inheritance rules, etc. MOON concepts with vari-
ations are abstracted in the metamodel core and
redefined for each language.

3. Particular: language concepts that are not in-
cluded in MOON core. Language extension
framework includes these concepts to support the
whole set of language features.

4 RUNNING REFACTORINGS

An overview of refactoring definitions, formal as well
as semi-formal definitions as in (Roberts, 1999) and
(Opdyke, 1992), or textual definitions using “recipes”
(Fowler, 2000), etc. leads to a clear separation of
refactoring elements: queries for checking precondi-
tions or postconditions and transformational actions.

A refactoring tool must include all these elements
and put refactorings in motion on extracted code.
Next we describe the basics of our refactoring engine
and its concrete elements.

4.1 Refactoring Engine

A language independent framework has been defined
and used to allow a simple reuse schema, as can be
seen in Fig. 1. The refactoring engine runs refactor-
ing definitions and obtains a new model state. The
running algorithm is common to all refactorings, with
hook methods to engage concrete elements.Template
Method (Gamma et al., 1995) is taken as basis on
the Refactoring class. Run method plays the role
of template method running the interaction between
elements.

With this schema, a refactoring can be seen as
pieces implemented with classes from repositories:
predicates, functions and actions.Commandrole
(Gamma et al., 1995) is played by action classes. An
action can be undone and logged when any exception
is thrown in the refactoring process. Each refactoring
is implemented as an extension of theRefactoring
class. Predicate, Function and Action abstract
classes must be extended by concrete classes in the
repositories. Refactoring constructors take inputs and
assemble preconditions, actions and postconditions in
the correct order.

DYNAMISM IN REFACTORING CONSTRUCTION AND EVOLUTION - A Solution based on XML and Reflection

215



Figure 1: Refactoring engine framework.

4.2 Queries and Transformations

Refactoring elements, queries and transformations,
are usually implemented as concrete classes collected
in repositories. Although model extensions contain
information of real code, most classes work with the
MOON core metamodel abstractions. Queries are
usually predicates based on functions and other pred-
icates. Actions change the graph state, from previous
state to the refactored state. Both of them are classi-
fied following the taxonomy described in Section 3.

Same queries or actions are reused when im-
plementing refactoring operations for different lan-
guages if they can be seen as language independent.
For example, the preconditionExistParameter-
WithSameName or the actionMoveAttributeAction,
are reusable for several languages.

The main advantage of this approach appears
when same refactorings are implemented for differ-
ent object-oriented programming languages. In an
ideal case, a refactoring operation can be reused as a
whole, but in most cases, the refactoring elements are
reused and properly composed introducing variations
and language dependent parts.

5 REFACTORING
CONSTRUCTION AND
EVOLUTION

Most available refactoring tools implement their
refactoring operations as a fixed composition of parts
which are hand coded in source files with a particular
programming language. Although better design so-
lutions have emerged last years (Frenzel, 2006) (Jet-
Brains, 2006), refactorings are difficult to change,
maintain and reuse. A simplified view of refactor-
ing as the composition of queries and transformations
leads to think about it in a declarative way using or-
dered elements and additional information.

If we are able to manage refactoring pieces as iso-
lated parts, they can be assembled at execution time
using advanced programming mechanisms. With this
aim, we migrate our initial proposal, of building and
running refactorings in hand coded modules, towards
a dynamic assembly, as can be seen in Fig. 2. Refac-
torings elements are not directly referenced in the
code, but are declared in XML files. For example,
a refactoring asRename Class, has its counterpart as
RenameClass.xml (see Appendix).

Refactoring engine has been modified to load the
file on demand. Graphical user interfaces can be gen-
erated, asking the user to introduce refactoring input
parameters. In our previous experience, each refactor-
ing needed a customized window (hand coded GUI),
whereas dynamic solution solves the problem in one
step. Preconditions, actions and postconditions are
also parsed from the XML definition. These parts are
extracted and assembled from their repositories. The
refactoring is build at runtime, reusing the engine pre-
sented in Section 4.

5.1 Refactoring Building Process

In order to include a new refactoring in our tool ac-
cording to this new approach, contributors must:

1. Define refactoring parts.

2. Review parts contained in the refactoring reposi-
tories.

3. Build refactoring XML file:

• include general information

• select inputs

• select preconditions (optional)

• select actions

• select postconditions (optional)

• include code examples (optional)

ICSOFT 2008 - International Conference on Software and Data Technologies

216



Figure 2: Dynamic refactoring building.

Next we detail some part of this process, as well
as the process for building and executing the refac-
toring operation, once the refactoring definition data
have been correctly uploaded.

5.2 XML Elements

Refactoring elements, previously described, have
their counterpart in the XML file (see Fig. 2). The
refactoring inputs are identified as elements of the
MOON or extension model, using a type mark. A
qualified name is also given that allows the input item
to reference other elements (pre/postconditions and
actions). Special inputs as root elements are used as a
guide to the graphical interface. When refactorings
need inputs derived from other inputs, an attribute
from is included.

Preconditions and postconditions reference pred-
icates to be evaluated. These items are looked up in
current repositories (MOON and language reposito-
ries). If they do not exist, a definition and implemen-
tation subprocess must be completed before following
the refactoring construction. Parameters are added us-
ing previous input names. It is mandatory that all pa-
rameters come from inputs, or their values can be de-
rived from inputs. Actions use the same strategy, in-
cluding target elements to be transformed. Optionally,
postconditions are included to check the correct exe-
cution. We always consider the model (current graph)
as default input. Finally, the XML file is validated
with a DTD to check its correctness.

5.3 Assistant Tool and Reflection

Since XML manual construction is prone to failures,
a graphical interface is provided to build the XML
file. The assistant or wizard helps the user to build
correct refactorings, through five steps: enter general

refactoring information, select inputs, add pre/post
and actions, include some code examples and confirm
changes.

Referenced elements from repositories are vali-
dated using a reflection mechanism. If the classes
cannot be loaded, they are not shown in the wizard
screens. Thus, final definition exclusively contains
runnable pieces of code. Once the XML refactor-
ing file is completed, it is saved in one specific di-
rectory where dynamic refactoring engine can find it
and parse it (see Fig. 2).

Our tool dynamically detects available refactor-
ings, reading suitable XML files stored in the direc-
tory, and shows the applicable set of refactorings de-
pending on current selected elements in the model
(i.e. packages, classes, methods, etc). When the user
wants to use these refactorings, he/she must select
the refactoring and a dynamic window is created on
the fly. Inputs, types and names, are obtained defin-
ing the screen layout. The user must enter new val-
ues for each one of these fields. From these entry
points, preconditions, actions and postconditions are
extracted from XML files, recovered from reposito-
ries, parameterized with previous inputs, and used to
feed the refactoring engine framework (see Fig. 1 and
2). Lately, refactored code is regenerated from the
new model state.

5.4 Current Development

We have developed a prototype as concept proof of
our proposal with a set of eight refactorings. The
refactoring set was previously implemented using li-
braries, where each refactoring is codified and imple-
mented on the basis of them. Changes to these refac-
torings implied a new development process, editing
source codes and rebuilding refactoring libraries.

Our current development migrate from closed

DYNAMISM IN REFACTORING CONSTRUCTION AND EVOLUTION - A Solution based on XML and Reflection

217



support definition to new XML file definition. Refac-
torings are not hand coded, but they are assembled
from elements of the refactoring repository. It is al-
ways necessary a complete set of queries and trans-
formations, but if this requirement is fulfilled, refac-
toring definition is completed.

The tool guides the construction process, showing
current elements in the refactoring repository and al-
lowing their selection and coupling, using a wizard. A
second phase appears when the user needs to run the
refactoring on real code. Now, previous pieces work
together to put the refactoring in motion. Although
there are not different results between the solutions
(hand coded or generated), maintenance problem is
solved in a smooth way. Future changes are applied
using the assistant again, in few seconds.

Some features are difficult to remove. The person
who assembles refactorings needs to know language
particular features and the repositories. Nevertheless
this problem was also present in previous solutions.
On the other hand, both of them, static vs. dynamic
methods, can be simultaneously included in the same
tool without problems.

6 RELATED WORKS

Some approaches to the language independence prob-
lem in refactoring are based on metamodel solutions
as FAMIX (Tichelaar, 2001) and its refactoring en-
vironment named Moose (Nierstrasz et al., 2005).
This tool includes a refactoring framework that al-
lows some kind of source analysis. Nevertheless,
code changes remain language specific using Refac-
toring Browser (Roberts, 1999) for Smalltalk and a
text-based approach for Java.

In the same line, (Van Gorp et al., 2003) develop a
new solution based on metamodels. Authors propose
eight additive and language-independent extensions
to the UML 1.4 metamodel, which form the founda-
tion of a new metamodel named GrammyUML, very
similar to the Fujaba metamodel (Burmester et al.,
2003), since they use the visual language named
SDM (Story Driven Modelling) to describe refactor-
ing preconditions. Some problems about representa-
tion completeness which force to add new features to
the SDM language appear. Refactoring operations are
run as graph rewriting in Fujaba. Neither reuse of
refactoring elements, nor declarative refactoring were
faced in this work.

In (Kniesel, 2006), author works in refactoring
composition with the aim to simplify a sequence of
refactorings. The main goal is to ensure atomic ex-
ecution of a refactoring chain by creating a single

equivalent conditional transformation. The proposal,
named ConTraCT, was applied to the Java language,
since language independence was not faced. There is
no XML support, although conclusions of that work
could be considered valid for our proposal.

The aim of independence of source core model,
target programming language and code manipulation
language, using XML as unique tool is described in
(Mendoça et al., 2004). Although XML use gives a
great independence, queries and updates are rewritten
for each new schema (language programming), and
refactoring construction requires to work with XML
and other derived technologies, without aided sup-
port.

Refactoring tools available today as Refactoring
Browser (Roberts, 1999), Refactor-Pro (Inc., 2007),
Eclipse (Frenzel, 2006), etc, also include a refactor-
ing engine, but it is not available a smooth way to
define, reuse, construct and evolve refactorings. Lan-
guage independent support is weak or completely ab-
sent, some steps are given by Eclipse offering a lan-
guage independent part mainly at refactoring scheme
and GUIs construction.

7 CONCLUSIONS

The framework and solution described in this paper
reduce the need to build refactorings from scratch,
and evolve previous refactorings with a relative low
effort, as long as repository items are available. Our
proposal allows developers to enrich the refactoring
offer as long as to tune, enhance, or upgrade the al-
ready offered refactoring operations. The approach
provides certain kind of dynamism in refactoring con-
struction and evolution. Furthermore, if refactorings
can be seen as compound actions, our solution sup-
ports the use of refactorings as high level actions lead-
ing to more complex refactoring operations.

We developed the framework with the refactor-
ing engine and the language independent treatment,
based on the metamodel core with extensions points
as hooks and the particular extensions for each lan-
guage (Java delivered, C# and Eiffel in process). The
proposal presented in this paper on dynamic construc-
tion and evolution based in XML and reflection is
available as a prototype.

Starting from our previous experiences develop-
ing this prototype, we are currently developing a plug-
in for Eclipse with Java, with the same functionalities.
In the same line, .NET platform is being included in
the tool. Models and frameworks should be extended
through hook methods, to include .NET features.

Furthermore, new possibilities emerge. Develop-

ICSOFT 2008 - International Conference on Software and Data Technologies

218



ers can build complex transformations required for
evolution process, not including “preconditions” and
building their own non preserving program behavior
transformations. This can aid in evolution process,
automating complex transformations.

REFERENCES

Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack,
J. P., Wagner, R., Wendehals, L., and Zündorf, A.
(2003). Tool Integration at the Meta-Model Level
within the FUJABA Tool Suite. InProc. of the
Workshop on Tool-Integration in System Development
(TIS), Helsinki, Finland, Satellite Event of the joint
Conferences ESEC/FSE 2003, pages 51–56.

Crespo, Y. (2000). Incremento del potencial de re-
utilización del software mediante refactorizaciones.
PhD thesis, Universidad de Valladolid. Available at
http://giro.infor.uva.es/docpub/crespo-phd.ps.

Fayad, M., Schmidt, G., and Johnson, R. (1999).Build-
ing Applications Frameworks: Object-oriented Foun-
dations of Framework Design. Wiley Computer Pub-
lishing.

Fowler, M. (2000). Refactoring. Improving the Design of
Existing Code. Addison-Wesley.

Frenzel, L. (2006). The Language Toolkit: An API for Au-
tomated Refactorings in Eclipse-based IDEs. Eclipse
Magazine.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Inc., D. E. (2007). Refactor Pro for Visual Studio .NET.

JetBrains (2006). IntelliJ IDEA :: The Most Intelligent Java
IDE. http://www.jetbrains.com/idea/. Java IDE.

Kniesel, G. (2006). A Logic Foundation for Conditional
Program Transformations. Technical Report IAI-TR-
2006-1, Computer Science Department III, University
of Bonn.

Mendoça, N. C., Maia, P. H. M., Fonseca, L. A., and
Andrade, R. M. C. (2004). RefaX: A Refactor-
ing Framework Based on XML. In20th IEEE
International Conference on Software Maintenance
(ICSM’04), pages 147 – 156.

Nierstrasz, O., Ducasse, S., and Gı̂rba, T. (2005). The
Story of Moose: An Agile Reengineering Environ-
ment. In Wermelinger, M. and Gall, H., editors,
ESEC/SIGSOFT FSE, pages 1–10. ACM.

Opdyke, W. F. (1992).Refactoring Object-Oriented Frame-
works. PhD thesis, University of Illinois at Urbana-
Champaign, IL, USA.

Roberts, D. B. (1999). Practical Analysis for Refactor-
ing. PhD thesis, University of Illinois at Urbana-
Champaign, IL, USA.

Tichelaar, S. (2001).Modeling Object-Oriented Software
for Reverse Engineering and Refactoring. PhD thesis,
University of Bern.

Van Gorp, P., Van Eetvelde, N., and Janssens, D. (2003).
Implementing Refactorings as Graph Rewrite Rules
on a Platform Independent Meta model. InProceed-
ings of 1st Fujaba Days.

APPENDIX

Refactoring example with its suitable XML defini-
tion: Rename class, included in (Opdyke, 1992).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE refactoring
SYSTEM "refactoringDTD.dtd">
<refactoring name="Rename Class" version="1.1">
<information>
<description>Change name class.
</description>

<motivation>...</motivation>
</information>
<inputs>

<input type="moon.core.ClassDef"
name="Class" root="true"/>

<input type="moon.core.Name"
name="OldName" from="Class"/>

<input type="moon.core.Name"
name="NewName" />

</inputs>
<mechanism>
<preconditions>

<precondition
name="NotExistsClassWithSameName">

<param name="Class"/>
<param name="NewName"/>

</precondition>
</preconditions>
<actions>

<action name="RenameClassAction">
<param name="Class"/>
<param name="NewNombre"/>

</action>
<action name="RenameConstructorAction">

<param name="Class"/>
<param name="NewName"/>

</action>
<action name="RenameJavaFileAction">

<param name="Class"/>
<param name="NewName"/>

</action>
</actions>
<postconditions>

<postcondition
name="NotExistsClassWithSameName">

<param name="Class"/>
<param name="OldName"/>

</postcondition>
</postconditions>
</mechanism>

</refactoring>

DYNAMISM IN REFACTORING CONSTRUCTION AND EVOLUTION - A Solution based on XML and Reflection

219


