
REPLICATION IN SERVICE ORIENTED ARCHITECTURES

Michael Ameling, Marcus Roy
SAP Research CEC Dresden,Chemnitzer Str. 48, Dresden, Germany

Bettina Kemme
School of Computer Science, McGill University, 3480 University Street, Montreal, Canada

Keywords: Application server, replication, Web Service, simulation.

Abstract: Multi-tier architectures have become the main building block in service-oriented architecture solutions with
stringent requirements on performance and reliability. Replicating the reusable software components of the
business logic and the application dependent state of business data is a promising means to provide fast local
access and high availability. However, while replication of databases is a well explored area and the implica-
tions of replica maintenance are well understood, this is not the case for data replication in application servers
where entire business objects are replicated, Web Service interfaces are provided, main memory access is
much more prevalent, and which have a database server as a backend tier. In this paper, we introduce possible
replication architectures for multi-tier architectures, and identify the parameters influencing the performance.
We present a simulation prototype that is suitable to integrate and compare several replication solutions. We
describe in detail one solution that seems to be the most promising in a wide-area setting.

1 INTRODUCTION

Multi-tier architectures are the main building block
of modern business applications. Clients submit re-
quests to application server tier which implements
the application logic (e.g., purchase orders, bookings,
etc.). The persistent data is stored in a backend tier.
As businesses open their applications to a wide range
of clients the infrastructure is put on stringent require-
ments. Firstly, it has to follow a service-oriented ar-
chitecture (SOA) where the business logic is exposed
as services through well defined interfaces. Secondly,
the platform must be able to support an increasingly
heavy and complex load. Thirdly, it has to provide a
certain QoS level not only to local clients but to clients
across the globe. Finally, the platform must be avail-
able around the clock. One of the main techniques
to achieve these objectives is replication. It allows
the system to distribute the load, to provide fast ac-
cess to close-by replicas and to increase availability
as clients can connect to any of the available replicas.
A main challenge of replication in data intensive en-
vironments is replica control, that is, the task to keep
the data copies consistent.

Replication has been widely used in database sys-
tems and the implications of using replication are well

understood (Gray et al., 1996; Pedone et al., 2003; Lin
et al., 2005; Plattner et al., 2008). Similarly, object-
based systems have explored replication as a tool
to either increase fault-tolerance (Narasimhan et al.,
2001; Killijian and Fabre, 2000; Frølund and Guer-
raoui, 2002) or improve performance (Othman et al.,
2001). However, only recently replicating the middle-
tier of a complex multi-tier system has been con-
sidered (Felber and Narasimhan, 2002; Narasimhan
et al., 2001; Barga et al., 2002; Wu and Kemme, 2005;
Salas et al., 2006; Perez-Sorrosal et al., 2007). So far,
the proposed solutions have been developed for very
specific scenarios, and it has become clear that no sin-
gle solution will fit all. The reason is that the impact
of replication on performance depends on many dif-
ferent parameters such as the required degree of con-
sistency, the distribution within LANs or WANs, the
workload, etc. As implementing replica control into
a complex multi-tier architecture is a non-trivial task,
one has to understand the implications of the different
replication alternatives in order to choose the best so-
lution for the given scenario.

In this paper we present a step by step a framework
that allows reasoning about replication alternatives.
We first discuss the many different ways applications

103
Ameling M., Roy M. and Kemme B. (2008).
REPLICATION IN SERVICE ORIENTED ARCHITECTURES.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 103-110
DOI: 10.5220/0001874701030110
Copyright c© SciTePress



System

Application Server

SCM CRM PM

Database

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9

a b

Figure 1: Multi-tier Architecture.

are deployed within a SOA, and how replication can
be deployed in these environments (Section 2). Sec-
ondly, we discuss a range of replication solutions de-
veloped within the database community, and discuss
their suitability for SOA (Section 3). Thirdly, we have
developed a simulation framework that captures the
most significant characteristics of SOA (Section 4).
Thus, it serves as a first analysis platform and pro-
vides a means to compare different replication alter-
natives before any real, and thus complex and cum-
bersome implementation is done. We show an initial
evaluation using our simulator (Section5).

2 REPLICATION IN SOA

2.1 Basic Architecture

A business application maintains a set of business
objects, and defines a set of services as its inter-
face. Clients can call these services to create, delete,
access and manipulate the business objects. In or-
der to provide interoperability and support heteroge-
neous environments, the interfaces usually follow the
web-service standard. Examples of applications are
“customer relationship management (CRM)”, “sup-
ply chain management (SCM)” or “project manage-
ment (PM)”. A typical example of a service within
a CRM is “customer data management” providing a
set of methods that allow the customer to change cus-
tomer related information such as the address. A busi-
ness object in this context would assemble all infor-
mation related to the customer.

Figure 1 shows the architecture in which these ap-
plications are embedded. An application server (AS)
is a software engine hosting one or more applications.
It provides the computing environment to control and
schedule service executions on the applications. The
applications hosted on an AS can belong to the same
or different companies (e.g., in the case of data cen-
ters). In any case, the usage of AS allows for an ef-
ficient sharing of resources. In standard computing
environments, an AS can host up to 20 different ap-
plications each serving up to 100 clients concurrently.

AS and backend tier, typically a database system

(DBS) are usually located close to each other, often
even on the same machine. AS and DBS share the
responsibility of maintaining the state of the business
objects. The DBS provides the persistence of business
objects. However, during service execution, the AS
loads the objects from the DBS into its main mem-
ory cache. While the database maintains the data in
form of records of tables, the AS provides an object-
oriented view. Often, a business object is assem-
bled from many different database records providing a
more appropriate abstraction for application program-
ming. Changes on business objects are written back
to the database when service execution completes.

Most commonly, each application has its own dis-
tinct business objects, and maintains its own database
(or at least its own tables) within the DBS. This allows
for a clear separation of components and is neces-
sary to guarantee reusability. In order to exchange in-
formation between the applications, they have to call
each others’ services through the standard interfaces
making one application the client of the other.

2.2 Replication

Replication can boost performance in two ways. In
cluster replication, server replicas are used for scala-
bility. A load-balancer component distributes incom-
ing service requests to the replicas. As more repli-
cas are added, the system is able to handle more load.
Alternatively, replicas can be located at distant geo-
graphic locations. Thus, clients can connect to the
closest replica, avoiding high-latency WAN commu-
nication between client and server. Also, the system
remains available even if remote servers (e.g., head
quarters) are currently not accessible.

As SOA environments maintain a considerable
amount of data, we cannot simply replicate server
instances – we also have to replicate data. As data
can change, this requires some form of replica con-
trol whose task it is to keep the data copies consistent.
Since the maintenance of data is distributed across AS
and DBS the question arises who is responsible for
replica control. There exists a large body of database
replication solutions, making it attractive to rely on
replica control at the DBS level. However, this does
not seem practical in SOA because it either affects
efficiency or consistency. The business objects main-
tained by the AS layer can be viewed as a cache of
the data stored at the DBS. If only the DBS layer is
responsible for keeping data copies consistent, each
access to a business object has to be redirected to the
DBS in order to guarantee to read the latest version of
the data or to make sure that all copies are updated.
With this, the efficiency advantages of the AS object

ICSOFT 2008 - International Conference on Software and Data Technologies

104



System 1

Application Server 1

SCM 2 CRM 1 SCM 1

Database 1

a

i

System 2

Application Server 2

PM 1 SCM 1 CRM 1

Database 2

d e
c f

g
h

h

j

k

Figure 2: Replication in SOA.

cache are lost. Alternatively, one could choose to use
the cache anyways instead of accessing the database.
However, then, no guarantees could be given in regard
to the freshness or the consistency of the data.

Therefore, we envision an architecture, where the
AS layer is responsible for replica control (Figure 2).
There are several AS instances, and each is connected
to its own DBS which can be off-the-shelve software
without replication semantics. Each application can
run on several AS instances. The objects associated
with an application are replicated across the AS in-
stances. The AS layer performs replica control.

In principle, there does not seem to be a differ-
ence in architecture if the connection between the AS
instances is a LAN or a WAN. However, the funda-
mental latency difference between LANs and WANs
and the different purposes for which cluster replica-
tion and WAN replication are applied, require very
different replica control solutions and we will discuss
them shortly. In practice, large SOA are likely to in-
tegrate both cluster and WAN replication. At each
location, a cluster solution distributes the load locally
submitted. The different locations are then connected
via a WAN replication solution.

3 REPLICATION STRATEGIES

Replica control has been well explored in the database
community and a wide range of replica control solu-
tions exist that have fundamental influence on non-
functional properties such as availability, data consis-
tency, reliability as well as system performance. Al-
though the replica control algorithms themselves are
not directly applicable to AS replication, the design
space is similar at both layers.

3.1 Categorization

Wiesman et al. (Wiesmann et al., 2000) categorizes
replica control algorithms by four parameters, par-
tially taken from (Gray et al., 1996), developing a
replication hierarchy.

Architecture. In a primary copy approach, each
data item has a primary copy. Updates are always

first executed on the primary copy which is respon-
sible of propagating any changes to the secondary
copies. Different data items might have their primary
copies at different sites. However, often a single DBS
replica has the primary copy of all data items. This
makes concurrency control easier: this primary site
determines the serialization order and all others ap-
ply changes according to this order. However, the site
can become a bottleneck. In an update everywhere
approach, each site accepts update transactions and
propagates updates to other sites. This makes the ap-
proach more flexible since clients can submit their re-
quests anywhere. However concurrency control re-
quires now complex coordination among the replicas.
In the context of AS replication, an additional chal-
lenge is that the different AS instances might cache
different data (the most recently used) while the re-
maining data only resides in the database. This makes
coordination more difficult.

Synchronization. Eager replication synchronizes all
replicas within the context of the transactions. There
are no stale replicas. However, communication and
traffic complexity is high. In contrast, in lazy repli-
cation, a transaction with all its updates is first exe-
cuted at one site, and then the changes are propagated
to other replicas in a separate transaction. Transac-
tion response time is shorter but the data copies are
not always consistent. While eager replication is, in
principle, more desirable than lazy replication, the po-
tential response time increase might not be acceptable
in WAN environments. Also, eager replication, if not
designed carefully, might more easily lead to unavail-
abilities. However, eager replication is likely to be
feasible in cluster replication.

Interaction. The third parameter interaction decides
how often synchronization is done. In a linear inter-
action approach, typically each write operation within
a transaction leads to a communication step. In con-
trast, in constant interaction the number of messages
exchanged does not depend on the number of opera-
tions in a transaction. While constant interaction is es-
sential in WAN environments where communication
is likely to be the main bottleneck, it is less crucial in
LAN environments.

Termination. The final parameter decides on whether
a transaction is terminated via voting or non-voting.
Voting requires an additional exchange of messages
in order to guarantee that all replicas either commit or
abort the transaction.

AS replication solutions can be categorized by
similar means, and we can use the categorization to be
aware of the solution spectrum that is possible. How-
ever, two things have to be considered. First, one has

REPLICATION IN SERVICE ORIENTED ARCHITECTURES

105



WAN

AppServ 1 [A, B’, C’]

System 1

AppServ 2 [B, A’, C’]

System 2

AppServ 3 [C, A’, B’]

System 3

AppServ 4 [D]

System 4

DB

DB DB

DB

Figure 3: Primary Copy Replication on Object Level.

to be aware that the protocols have to be adjusted to
work at the middle-tier layer. Secondly, we cannot
simply assume that the general performance of the
different algorithms will be the same as if they were
implemented at the database level, given the particu-
larities of AS replication.

3.2 Example Algorithm

We now describe one AS replication protocol in de-
tail. We later use this algorithm to explain how an
algorithm can be integrated into the simulator frame-
work. Our algorithm is designed for a WAN environ-
ment where communication latencies are high.

3.2.1 Lazy Primary Copy

The algorithm we describe is lazy. This seems the
most attractive in a WAN to avoid long client response
times. We choose a primary copy approach since
it simplifies concurrency control. Concurrency con-
trol at the AS layer is not yet well explored, doing it
in a distributed and replicated setting would be even
more challenging. Furthermore, the inconsistencies
that can occur in a lazy environment if two differ-
ent AS instances update the same item concurrently
can quickly become a nightmare. A lazy approach
makes constant interaction a natural choice because
all updates are known at commit time, and thus, be-
fore propagation is initiated. Furthermore, voting can
be avoided if the serialization order for each transac-
tion can be determined by a single site. This is pos-
sible if all data items updated by this transaction have
their primary copies at the same site.

Lazy replication provides only then fast response
times for updates if the submitting client is close to
the primary site. In order to keep the number of re-
mote accesses low, the primary copy of a data item
should be located at a site that is close to most of the
clients that want to update this data item. For instance,
if the data item refers to a specific client, then the pri-
mary copy should reside on the AS that is close to the
client’s home location.

3.2.2 Replication on Object Level

The natural granularity for replication in an AS envi-
ronment is a business object (BO) because it builds
a logical unit within the business semantics. Note
that this might be quite different to the logical unit
in the database, i.e., a database record. Therefore we
refer to our approach as primary copy on the object
level. Figure 3 shows an example setup. There are
four AS instances with their local DBS connected via
a WAN. There are four business objects with primary
copies A,B,C,D, and the respective secondary copies
A′,B′,C′ (D does not have a secondary copy). Each
of the four AS instances is the primary for one of the
BOs. The assignment of BO can be based on vari-
ous conditions e.g., semantical or geographical. We
assume that each transaction only updates BOs for
which a single site has the primary copies.

3.2.3 Protocol Description

We assume that each client request triggers a trans-
action within the AS. The transaction can consist of
several read and write operations accessing local BO
copies. The protocol proceeds as follows. When a
client submits a read-only transaction to an AS in-
stance, the local instance executes the request locally
and returns to the client. No communication with
other AS instances is needed. If the client submits
an update transaction, e.g., updating A in the figure,
if the AS instance has the primary copies of the BOs
updated by the transaction (i.e., if it is system 1), the
transaction executes and commits locally. The AS
instance returns the result to the client and then for-
wards the update on the BOs to the secondary copies.
If an update transaction is forwarded to a secondary
copy (e.g., system 3), the secondary could either re-
ject the transaction or transparently redirect it to the
primary. The primary executes it and then forwards
the changes and the response to the secondary (who
sends them to the client) and all other secondaries.

The details of what exactly is forwarded (e.g., en-
tire object, only changes, or the operation which then
needs to be reexecuted at the secondaries), and how
this forwarding takes place (via special communi-
cation mechanism or via web-services itself), might
have a big impact on the performance. The simula-
tion framework that we present in the next section is
flexible enough to model such differences.

ICSOFT 2008 - International Conference on Software and Data Technologies

106



Routing 
Table

Data 
Service

Neighbor
Service

UPL

CSL

Node 2

Node 3
Node 4

Transport

Synchronization Manager

Replication Manager

Transaction Manager Database

Monitor

ApplicationCache

Node 1

Client 1

Client 3

Client 2

Figure 4: Node Architecture.

4 SIMULATION

A simulation, compared to a real implementation, has
several advantages. Firstly, implementation is fast
and does not require a real distributed environment
as testbed. In contrast, implementing even a proto-
type replication tool into a real SOA is very com-
plex, making it hard to implement several algorithms
within a reasonable time frame. Secondly, prototype
implementations are often not optimized, leading to
bottlenecks and overheads that would not occur in
any well-engineered implementation. A simulation
can abstract from such artifacts. Finally, a simula-
tion framework allows for a greater variety of param-
eters, and thus, a more versatile evaluation compar-
ison. Therefore, we have designed a simulation ar-
chitecture that captures the most important aspects of
SOA, in particular in regard to performance implica-
tions. We show along one example how an algorithm
can be implemented into our simulation framework,
and how performance results can be derived showing
the influence of various parameters.

4.1 Simulation Architecture

Our framework is based on J-Sim (Sobeih et al.,
2006), a component-based simulation environment.
J-Sim offers the concept of a core service layer (CSL)
which implements already the basic services of a net-
work layer. On top of this the upper protocol layer
(UPL) provides the infrastructure for the replica con-
trol algorithms and emulates the standard AS compo-
nents. Our solution maintains the component-based,
loosely coupled architecture of J-Sim, and thus, is
easily customizable and extensible. Figure 4 illus-
trates the architecture of one individual node (AS in-
stance plus database).

4.1.1 Components of UPL

The Transaction Manager component is responsi-
ble for transaction management. The Application
component simulates the business logic and main-
tains the BOs. It has its own Cache. BOs can
be created, read, updated and deleted. The AS is
also connected to the Database for the persistence
of BOs. These three components are also found in
a non-replicated multi-tier architecture. The other
components implement the replication functionality.
They basically intercept requests from clients and re-
sponses sent to clients in order to control the repli-
cation process. The Transport component, imple-
ments the transport protocol, e.g., TCP. It is connected
to the Data Service provided by the CSL of J-
Sim. The next higher layer is the Synchronization
Manager which is responsible to handle the propa-
gation of replication messages. The Replication
Manager component implements the main tasks and
execution flow of the replica control algorithm, e.g.,
the lazy, primary copy scheme.The Monitor watches
all components for monitoring reasons. It also con-
tains concepts that are needed by all other replication
components, e.g., routing tables. The architecture re-
sembles the interceptor-based approach used to plug-
in functionality into web- and application servers.

4.1.2 Resource Consumption

In order to measure and estimate the CPU usage, ev-
ery component is additionally equipped with a time
module. Each time the component is triggered to do
something, the time module collects the time of pro-
cessing and relatively computes a percentage that mir-
rors the CPU usage. That is, we do not simulate time
but measure the actual time the execution requires.

4.1.3 Topology

The above node architecture is used by all servers
(both primary and secondaries in the example proto-
col). The nodes are connected through the port con-
nected to the Data Service. Clients use the same
port to send their requests. (e.g., Client 1 to Node
1). A client is always connected to one of the servers.

4.2 Execution

Clients generate requests and send them to the server
to which they are connected. We show here the exe-
cution flow using the implemented lazy, primary copy
approach on object level. Other protocols will follow
a similar flow but perform different actions at differ-

REPLICATION IN SERVICE ORIENTED ARCHITECTURES

107



ent time-ponts. A request is either a read-only or up-
date transaction accessing several BOs.

Let’s first look at a read-only transaction. A client
submits the request in form of a byte stream to its
local server. The request goes through the data ser-
vice and is forwarded to the transport manager which
implements a TCP abstraction. Thus, it models suf-
ficiently well a web service request over a standard
network and transport layer. The transport layer trans-
forms the byte stream back into a request. The re-
quest goes through the synchronization mechanism
(which usually does not have anything to do for client
requests). Then it goes to the replication manager
(nothing has to be done for a read request). When
the request arrives at the transaction manager, a new
transaction is started and the operations are submitted
to the application layer which simulates some execu-
tion. If the requested BOs are not in the cache, they
have to be loaded from the database, otherwise they
can directly be read from the cache. After comple-
tion, the response moves back through the different
layers. The transaction manager commits the transac-
tion, the other layers don’t have to do anything for a
read request, and the client receives the answer.

Let’s now discuss the steps when the client sub-
mits an update transaction directly to the server that
contains the primary copies. As the request moves
up the layers, nothing has to be done by the synchro-
nization and replication managers since the approach
is lazy and replication tasks are triggered after com-
mit (eager replication might already perform some
actions at this time point). The transaction manager
again starts a transaction and the application simu-
lates the processing of the write request. At the latest
at transaction commit time the changes to the BOs
are written to the database. When the result is re-
turned to the replication manager, it detects a change
state. It receives via the monitor all secondaries of
the updated BOs (this meta-information is maintained
by the monitor). It initiates via the synchronization
manager the propagation of the state changes to these
secondaries. At the same time, the result is also re-
turned to the client. Secondaries receive the propa-
gation messages also through the data service. The
synchronization manager at the secondary determines
that this is a propagation message (and no client re-
quest). An appropriate refresh transaction is started at
the secondary to apply the changes on the BO copies.

In case the client submits a write request to a
server that does not have the primary copies, the
replication manager catches this request and it is for-
warded to the primary which executes it as above.
When the secondary receives the refresh transaction
from the primary, the synchronization manager sends

Table 1: Overview of Parameters.

Domain Parameter
System NS: Number of Servers

NC: Number of simultaneous Clients
NO: Total Number of Objects
RF : Replication Factor

Network BW /BL: Bandwidth WAN/LAN
LW /LL: Latency WAN/LAN

Transport P: Packet Size
MTU : Maximum Transmission Unit
MSS: Maximum Segment Size

Transaction CI Interval of Client Transactions
TR/W : Read/Write Ratio
NO: Number of Operations
T/C: Transaction per Client

Database DR: Delay Read, DW : Delay Write
Replication RA: Replication Algorithm

the response to the client and at the same time for-
wards the update upwards so that it is applied on the
BO copies and in the database.

4.3 Parameters

The behavior of an algorithm is influenced by many
parameters. Our simulation framework should help
evaluating the system under varying conditions and
understand the implications of each parameter. So far,
we focus on the impact on performance based on the
parameters depicted in Table 1.1 NS is the number of
servers in the system. Each server can have a different
number of clients, thus, NC is actually a list of size NS,
indicating the number of clients for each server. The
total number of BOs in the system is NO while RF de-
picts the replication factor, i.e., the number of copies
per object. If RF = NS than all objects are replicated
at all servers (full replication), otherwise the copies
are equally distributed across the servers.

We distinguish the bandwidth and latency of WAN
(BW , LW ) and LAN (BL, BW ) messages. The system
takes as input a topology graph that indicates whether
links are WAN or LAN. For instance, all client/server
links could be LAN while all server/server links are
WAN. The transport layer has the typical TCP re-
lated parameters. For transactions, the overall load in
the system is determined by the time CI between two
consecutive transactions submitted by an individual
client. Furthermore, each transaction has a number
of operations NO and a ratio TR/W of read operations

1Semantics is also influenced by the parameters. For
instance, using a lazy, update everywhere scheme in a WAN
with high message is likely to lead to higher inconsistencies
than in a LAN where updates are propagated faster.

ICSOFT 2008 - International Conference on Software and Data Technologies

108



Packet Size: 1000 Byte
Average ≈ 110 pps

195 
pps

Packet Size: 100 Byte
Average ≈ 195 pps

B)

A)

110 
pps

Figure 5: Packet Throughput.

among all its operations. Each operation accesses one
of the BOs randomly. When executing an operation
in the application, each read and write causes a delay
for the database access (DR and DW ).

If behavior over time should be measured, one can
indicate T/C as the number of transactions per client
until the simulation terminates. If averages should be
calculated (e.g., average response time), the simula-
tion runs until a confidence interval is achieved. Fi-
nally, the chosen replication algorithm is an important
parameter influencing the performance.

5 SELECTED RESULTS

In this section, we shortly show how our simulator
can be used to analyze the performance using the lazy,
primary copy implementation. Figure 5 shows the im-
pact of packet size assembled for transmission over
the network. The experiment shows how a rather low
level parameter can have a tremendous effect on per-
formance. There is one primary and one secondary
server. Each server has a single client submitting a
transaction every two seconds. Each transaction has
three write operations and two read operations. Each
write operation triggers a change on a BO resulting
in 5000 Bytes that have to be transferred to the sec-

ondary. We distinguish packet sizes of 100 Bytes
(Workload A) and packet sizes of 1000 Bytes (Work-
load B). This means, the application message (15000
Bytes) has to be split into several network messages.

The figure shows the packet throughput for 100
and 1000 Bytes packet sizes over a time period of
30 seconds. A packet size of 100 Bytes leads to a
rather steady amount of 195 pps (packets per second)
with a variance of roughly±10 pps. In contrast, 1000
Bytes leads to only 110 pps with a much higher vari-
ance. Having a small packet size where the applica-
tion content is split in many network messages leads
to a steady stream of small messages. In contrast,
large package sizes lead to a much more bursty be-
havior since message exchange is concentrated to the
time periods the application wants to send a message.
Also, considerably less messages are sent in total.

Summarized, a small packet size produces an
even, continuous and high packet stream which keeps
network and server busy. However, peaks are not as
high as with large message sizes. If the system is not
able to manage the peaks created by large message
sizes, small message sizes are preferable. The Byte
throughput (bytes sent per time unit) behave similarly.

REPLICATION IN SERVICE ORIENTED ARCHITECTURES

109



6 RELATED WORK

In the last decade, many different database replication
strategies have been proposed (Pacitti et al., 1999; Pe-
done et al., 2003; Lin et al., 2005; Plattner et al.,
2008). Some of them integrate replica control di-
rectly into the database kernel while others use a
middleware-based approach.

In J2EE components like session and entity beans
keep the application state. The invocation of objects is
intercepted by the server and transactions are handled
by the transaction manager. Basically all application
events are exposed to the application server, making
a non-intrusive integration of an replication algorithm
feasible. ADAPT (Babaoglu et al., 2004) is a frame-
work for application server replication providing an
abstract view of the J2EE components in the server. It
is based on the JBoss AS. Nevertheless, implementing
a single algorithm using the framework is still likely
to take months of developments.

Most industrial (such as WebSphere, Weblogic
or JBoss) and many research solutions for applica-
tion server replication (Felber and Narasimhan, 2002;
Narasimhan et al., 2001; Barga et al., 2002; Wu and
Kemme, 2005) use the primary copy approach. In
many cases, however, the AS replicas share a sin-
gle database and/or the business objects are not repli-
cated. The database cache is often inactivated. The
approaches are mainly designed for fault-tolerance.
(Salas et al., 2006; Perez-Sorrosal et al., 2007) pro-
vide replication of business objects and represent very
specific algorithms.

7 CONCLUSIONS

This paper discusses replication alternatives for busi-
ness objects at the application server layer. We
present a simulation framework that allows for a fast
initial comparison of replication solutions before in-
tegrating them into an industrial system. In our future
work we are planning to perform a thorough compar-
ison of algorithm alternatives and the impact of net-
work configurations and workloads. We aim at devel-
oping an online advising system, making suggestions
for reconfiguration, in order, e.g., to handle a change
in workload.

REFERENCES

Babaoglu, Ö., Bartoli, A., Maverick, V., Patarin, S., Vuck-
ovic, J., and Wu, H. (2004). A framework for proto-

typing J2EE replication algorithms. In Int. Symp. on
Distributed Objects and Applications (DOA).

Barga, R., Lomet, D., and Weikum, G. (2002). Recovery
guarantees for general multi-tier applications. In IEEE
Int. Conf. on Data Engineering (ICDE).

Felber, P. and Narasimhan, P. (2002). Reconciling repli-
cation and transactions for the end-to-end reliability
of CORBA applications. In Int. Symp. on Distributed
Objects and Applications (DOA).

Frølund, S. and Guerraoui, R. (2002). e-transactions: End-
to-end reliability for three-tier architectures. IEEE
Trans. Software Eng., 28(4):378–395.

Gray, J., Helland, P., O’Neil, P., and Shasha, D. (1996). The
dangers of replication and a solution. In SIGMOD
Conf.

Killijian, M.-O. and Fabre, J. C. (2000). Implementing a
reflective fault-tolerant CORBA system. In Int. Symp.
on Reliable Distributed Systems (SRDS).

Lin, Y., Kemme, B., Patiño-Martı́nez, M., and Jiménez-
Peris, R. (2005). Middleware based data replication
providing snapshot isolation. In SIGMOD Conf.

Narasimhan, P., Moser, L. E., and Melliar-Smith, P. M.
(2001). State synchronization and recovery for
strongly consistent replicated CORBA objects. In Int.
Conf. on Dependable Systems and Networks (DSN).

Othman, O., O’Ryan, C., and Schmidt, D. C. (2001). Strate-
gies for CORBA middleware-based load balancing. In
IEEE(DS) Online.

Pacitti, E., Minet, P., and Simon, E. (1999). Fast algo-
rithm for maintaining replica consistency in lazy mas-
ter replicated databases. In Int. Conf. on Very Large
Data Bases (VLDB).

Pedone, F., Guerraoui, R., and Schiper, A. (2003). The
database state machine approach. Distributed and
Parallel Databases, 14(1):71–98.

Perez-Sorrosal, F., Patiño-Martı́nez, M., Jiménez-Peris, R.,
and Kemme, B. (2007). Consistent and scalable cache
replication for multi-tier J2EE applications. In Int.
Middleware Conf.

Plattner, C., Alonso, G., and T.-Özsu, M. (2008). Extending
DBMSs with satellite databases. The VLDB Journal.

Salas, J., Perez-Sorrosal, F., Patiño-Martı́nez, M., and
Jiménez-Peris, R. (2006). WS-replication: a frame-
work for highly available web services. Int. WWW
Conf.

Sobeih, A., Hou, J. C., Kung, L.-C., Li, N., Zhang, H.,
Chen, W.-P., Tyan, H.-Y., , and Lim, H. (2006). J-sim:
A simulation and emulation environment for wireless
sensor networks. IEEE Wireless Communications,
13(4).

Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., and
Alonso, G. (2000). Database replication techniques:
A three parameter classification. In Int. Symp. on Re-
liable Distributed Systems (SRDS).

Wu, H. and Kemme, B. (2005). Fault-tolerance for stateful
application servers in the presence of advanced trans-
actions patterns. In Int. Symp. on Reliable Distributed
Systems (SRDS).

ICSOFT 2008 - International Conference on Software and Data Technologies

110


