
SOFTWARE SEMANTIC PROVISIONING
Actually Reusing Software

Savino Sguera a, Philippe Ombredanne b, Armando Stellato a and Maria Teresa Pazienza a
aDISP, University of Rome Tor Vergata, Italy

bEclipse Software Foundation

Keywords: Component provisioning, software reuse, semantic web services, component-oriented architectures.

Abstract: Delivering component-oriented architectures is a well-established trend in software engineering and
development. Assessing software reuse scenarios goes much beyond the usual “build vs buy” dilemma that
so often occurs in early stages of a software process: scouting, comparing, choosing and integrating the right
set of components meeting project’s requirements is still an ad-hoc and error-prone task, performed by
developers with little or no frameworks and tools to support them. This paper describes the SSP (Software
Semantic Provisioning) project, funded in its early stages by GoogleTM Inc., developed during the Google
Summer of CodeTM 2007 program, and incubated by the Eclipse Software Foundation; the project aims to
provide an ontological description of the software domain to underlie a semantic web framework to support
developers in scouting and provisioning software components. A prototypical RESTful semantic repository,
and an Eclipse plug-in consuming the repository services have been implemented and will be discussed.

1 INTRODUCTION

Software development nowadays largely consists of
adapting existing functionalities or components to
perform in a new environment, and is biased towards
delivering component-oriented architectures.

 Component provisioning, choosing the right
software libraries set, and integrating it as a whole,
are tasks carried out by software developers and
libraries providers alone, often with little or no help
at all, and this usually lead to rewrite existing code,
or more generally to cost and time overrun which
might be avoided with the right techniques and
methodologies to support analysis, design and
implementation disciplines.

The very general concept which lies behind
software collection and reuse can be observed (in
terms of needs) and applied (through successful
methodologies and technical solutions) at very
different level of specializations. While very general
frameworks for software delivery and provisioning
may offer services for accessing and contributing to
large library repositories, relying on dedicated
metadata for organizing and retrieving the archived
objects, there could be specific fields of interest
where a more complex and organized description of
the repository, tailored upon explicit needs and

requirements which characterize the given domain,
would improve the shareability of data, information
and tools inside really active and participating
communities.

Following previous research on provisioning and
integration of software components and libraries by
the ART group at University of Rome Tor Vergata,
this paper describes the SSP (Software Semantic
Provisioning) project, funded in its early stage by
GoogleTM Inc., developed during the Google
Summer of CodeTM 2007 program (Sguera, 2007),
and incubated by the Eclipse Software Foundation.

2 MAIN USE CASES AND
BENEFITS

Despite the proliferation of provisioning systems
and frameworks, the component search and choice
activities are still carried out by developers with
little or no help at all. Programmers are left to
themselves scouting the web to find libraries and
components, and no systematic approach nor
thorough frameworks exists.

In the next paragraphs we will discuss some of
the most representative use cases and the benefit that

185
Sguera S., Ombredanne P., Stellato A. and Teresa Pazienza M. (2008).
SOFTWARE SEMANTIC PROVISIONING - Actually Reusing Software.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 185-188
DOI: 10.5220/0001763501850188
Copyright c© SciTePress

Figure 1: Full stack client-server architecture.

our approach delivers to developers and components
providers, stressing how our system tackles various
aspects which currently undermine software reuse
and often lead to write ex-novo already existing
code.

Assert and Spot Functional Equivalence between
Components. The number of components and
libraries, along with their versions, makes practically
impossible for a developer to know them all. On the
other hand, there may exist more than a piece of
software accomplishing the same task, fulfilling the
same requirements set, or even implementing the
same specification. To some extent, such
components could be considered functionally
equivalent (at least, with respect to some facets).

This is the case, for instance, of Hibernate,
Apache Cayenne and all of the other frameworks
implementing the Java Persistence API, or any
implementation of the Java Servlet API, any JDBC
driver, or any HTTP server (or client as well). The
list would go a long way…

Furthermore, the equivalence is symmetrical,
reflexive and transitive; the inference mechanism
helps building relations upon social-generated
contents: relations and functional equivalence
among software components are both explicitly
declared and inferred by the system, thus building a
dense semantic network with a little effort. Machine-
readable metadata allow much more granularity and
raise the formal level and the intelligence of search-
related features.

Find Components Providing a Set of Tasks.
Describing a software component or library in terms
of the tasks it fulfills is the very first way to tell
whether a piece of software fits our needs or it does
not. During the analysis and design phase developers
must choose the right set of enabling technologies
and components which will drive further
development phases, and will construct the base for
building our application’s architecture.

Let’s suppose – just as an example – we are
planning to develop two components, one carrying
out the “dom-parsing” task and the other fulfilling
the “sax-parsing” task, and we would like to know
if there is already a unique component providing
both the tasks. It would be useful to browse the
repository and discover at design time that xerces-j
actually carries out both sax and dom xml parsing.
We might then decide to use it if it fits our project’s
requirements.

Assessing Reputation of Components. Whenever a
developing team picks up third-party code to
underlie its application, it is implicitly taking
responsibility someone else’s code, which could
affect their product’s security and credibility. To this
purpose, we could want to know which – and how
many – components actually use one: this may give
us valuable information about its reputation. On the
other hand, if we developed a new component – and
added it to the repository – it could be interesting to
know which and how many components rely on our
work.

3 APPROACH AND DESIGN
GOALS

Our key goal is to provide developers with a
complete environment to exploit semantic metadata
in order to effectively find and provision software
components.

We tried to overcome the main limitations in
current mainstream provisioning systems and
frameworks, which are in turn tied to a particular
technology or show a formalization level which
grants no access to technology-independent, high
level and enough granular information for a
component.

Moreover, even if current provisioning
technologies follow different approaches and stress
different aspects proper of the software domain,
there is a substantial overlap among the components’
description they provide and rely upon.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

186

Thus an ontology, meant to be a shared, higher
level domain vocabulary among developers,
allowing to semantically describe software and
eventually mapping a subset of available metadata to
one of the technologies available, would enable a
thorough description of a component, aimed to stress
what the component does in an unambiguous
fashion; this supports interoperability among
developers and among technologies, provides some
ground concepts to establish, declare or infer
relationships among software components, and eases
the reuse of existing software, giving developers a
significant help in the early discovery phases.

4 KNOWLEDGE MODEL

The Knowledge Model of the SSP environment
offers, at the current state of development, those
concepts and relations which are necessary for
providing a sufficiently detailed description of
software entities and for modeling the functionalities
which have been presented in the use-cases section.

Reference to past research work (Oberle et al.,
2006) on modeling ontologies for describing
software systems has been made by reusing concepts
from these ontologies for describing common
software entities like: component, library and
software license.

Our framework is centered about the description
of software objects, providing several semantic
anchors through which they can be identified,
classified according to different perspectives and
needs, and thus easily retrieved on these same
aspects.

SoftwareObject(s) can be mainly
distinguished according to two different categories:
Components, which are “Program modules that
are designed to interoperate with each other at
runtime”, that is software objects for which there is a
well-defined runtime behavior, and Library(ies)
which define “collections of subprograms used to
develop software”.

Other classes offer further perspectives over
which software objects registered in the SSP
repository may be clustered and accessed: License
has been introduced to describe the diverse software
licenses adopted by software developers and
vendors. This way users may filter their choice if, as
an example, they need only software licensed under
a specific contract. This filtering can even less
explicit, by automatic reasoning over class of
licenses and the relationships between them. A
property licenseIncompatibleWith allows to
establish incompatibilities between use of

components licensed under different contracts, while
the class LicenseStyle describes categories of
licenses which share common aspects. A reification
technique – see (Gangemi & Mika, 2003) for a
wider discussion on this topic – has been adopted to
describe license styles both as objects of the domain
as well as classes of licenses (so, as
rdfs:subClassOf License), still remaining inside a
first order description of the domain. This way we
can “talk about” software licenses as ground objects
(which may exhibit specific contractual expressions,
have a reference web site etc…) and, at the same
time, consider them as set of licenses, offering class
level restrictions on the values that their belonging
instances should expose on their properties.

The explicit link between the objects (instances
of LicenseStyle) and the set of Licenses
(subclasses of License) is outside of the ontology
vocabulary and is handled by the semantic
repository, which automatically generates subclasses
of License for each new introduced license style.

Specific Tasks can be defined in the repository,
to help clustering components according to their
purposes.

The same reification technique described above
is used to automatically generate subcategories of
SWObject which cluster sets of components and
libraries according to their purposes.

5 ARCHITECTURE

The semantic repository publishes a set of REST
API, in compliance to the well known architectural
style described in (Fielding, 2000) allowing clients
to easily consume its services, and enabling any kind
of Web 2.0 buzzword-compliant mashup. The
RESTlet framework was embedded into a servlet
container to deploy the repository as a web
application.

We also developed a REST Eclipse-based client
consuming the repository’s web services, decoupling
the client-server interaction from the UI
contributions.

The repository location can be both local (i.e.
this can be achieved simply deploying the repository
web application inside Eclipse itself, exploiting the
embedded Jetty server used by the help plugin), or
remote, and it can be chosen using the provided
preference page, accessed in the usual Eclipse way.

Two views were implemented: the Repository
Explorer, on the left, allows the developer to browse
components by name, version, license, tags, tasks or
navigate the semantic relations among the

SOFTWARE SEMANTIC PROVISIONING - Actually Reusing Software

187

Figure 2: SSP Eclipse plug-in - UI Contribution.

components; the Submit a new component view
makes use of the Eclipse SWT Forms widgets to
provide developers with an elegant and fast way to
submit a new component to the repository.

6 CONCLUSIONS AND FUTURE
WORKS

In this paper we introduced a novel approach to
software components and libraries discovery and
provisioning. Indeed we believe current mainstream
provisioning systems lack a shared vocabulary and
technology-independent formalization of the
software domain, supporting richer semantic
description to support reasoning and the generation
of a consensus based upon the specific domain the
considered software belongs to.

Future iterations will involve a deeper
axiomatization of License and License-style
concepts, since they represent the contract between
the product provider and the consumers, which often
is a strict non-functional requirement to be satisfied
when a third-party software is chosen. A strong
investigation on “software specifications” could
contribute to further discriminative arguments for
facilitating classification (and thus more precise

retrieval) of software objects in the repository.
Integration with – and metadata reuse from – OSGi
(http://www.osgi.org/) and Maven (http://
maven.apache.org/), and user interface
improvements are top priorities for the project.

REFERENCES

Fielding, R. (2000). Architectural Styles and the Design of
Network-based Software Architectures. University of
California Irvine, PhD Dissertation.

Gangemi, A., & Mika, P. (2003). Understanding the
Semantic Web through Descriptions and Situations.
DOA/CoopIS/ODBASE.

Oberle, D., Lamparter, S., Grimm, S., Vrandecic, D.,
Staab, S., & Gangemi, A. (2006). Towards Ontologies
for Formalizing Modularization and Communication
in Large Software Systems. Journal of Applied
Ontology , 1 (2), 163-202.

Sguera, S. (2007). Retrieved from http://code.google.com/
soc/2007/eclipse/appinfo.html?csaid=1221666D7EBA
3415.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

188

