
AUTOMATING WORKFLOWS IN MEDIA PRODUCTION
Building an Infrastructure for a Service Oriented Architecture with a Business

Process Management System

Steven Van Assche, Dietrich Van der Weken, Bjorn Muylaert
VRT MediaLab, Gaston Crommenlaan 10 (bus 101), B-9050 Ghent, Belgium

Stein Desmet, Bruno Volckaert
IBCN-INTEC, Ghent University, Gaston Crommenlaan 8 (bus 201), B-9050 Ghent, Belgium

Keywords: Service oriented architecture, media production, open source, business process management system, user-
generated content.

Abstract: This paper describes our experiences with building an infrastructure for automating workflows in media
production based on service oriented architecture (SOA). An SOA deals with distributed software services
that interact with each other. By adopting an SOA in cooperation with a Business Process Management
System (BPMS) we aimed at increased efficiency and control, shorter setup times, and increased flexibility.
We used open source or free products where possible, and the end result is a professional architecture
suitable for small-scale to medium-scale media enterprises. Key concepts are the use of JMS as messaging
layer for asynchronous, long-running service interactions (which are typical in a media production
environment), the orchestration of services leading to processes with more business meaning, the graphical
description of these business processes followed by the automatic generation of executable code (BPEL),
support for human interactions in the processes and compliance with the WS-I Basic Profile 1.1. Our
architecture is illustrated with a use case in which we automated a process that deals with the intake, review,
transcoding and publishing of user-generated content.

1 INTRODUCTION

In every mid-scale to large-scale media production
environment, production processes run across
multiple heterogeneous systems that were originally
not designed to work together. Therefore, system
integration is needed in order to automate the
required system interactions. The traditional system
integration approach consists of putting in place a
central monolithic "integration system" that accepts
messages from the production systems, and that
subsequently transforms and routes these message
towards other production systems. These integration
systems are internally very complex, difficult to
scale horizontally, and based on proprietary
technologies. Under the influence of Internet
technologies and architectures, current integration
systems and integration architectures are

increasingly based on open standards and on
distributed software components.

Service Oriented Architecture (SOA) is rapidly
becoming the recommended system integration
architecture as SOA-enabled software platforms are
coming into maturity and more and more tooling is
becoming available that supports SOA design and
implementation methodologies. The vision of SOA
can be considered threefold: 1) enable the reuse of
functionality and data sources, 2) allow the
orchestration of services based on a declarative
description instead of programming, and 3) promote
a horizontal market of service providers. In the
scope of this paper, the envisioned goals of SOA are
predominantly reuse of functionality on the one hand
and services orchestration on the other. This will
allow for higher degrees of automation in media
production and will result in both setup and
operational cost savings.

31Van Assche S., Van der Weken D., Muylaert B., Desmet S. and Volckaert B. (2008).
AUTOMATING WORKFLOWS IN MEDIA PRODUCTION - Building an Infrastructure for a Service Oriented Architecture with a Business Process
Management System.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 31-38
DOI: 10.5220/0001761400310038
Copyright c© SciTePress

Historically, the market for professional
broadcast equipment has been rather vertical, with
large vendors providing complete “silo” solutions.
As in other markets, it is anticipated that the
professional broadcast market will become more
horizontal over time, and thus be more compatible
with the SOA vision.

In order to assess the value of SOA for media
production, some workflows in a selected use case
were automated using a Business Process
Management System (BPMS) that orchestrates
distributed services and allows people to get
involved in the automated processes through human
tasks. The architecture was designed, technical and
technological choices were considered, services
were designed and implemented, the infrastructure
was built, and the processes were designed and
implemented. The primary goal of this work was to
evaluate whether automating workflows in an SOA
yields increased efficiency and control, shorter setup
times and increased flexibility. Another goal was
designing and building an SOA reference
architecture and reference infrastructure for media
enterprises. A third goal was the identification,
design and implementation of required services for
media. Because of the limited scope of the
implemented use case, only very basic
functionalities have been realised. More complex
use cases are needed to drive the development of
services with more added value.

Although the prime target audience for this work
are professional media production enterprises such
as broadcasters and production houses, the work is
relevant to non-media enterprises also because of the
generic architectural challenges and the use of
generic technologies.

2 USE CASE DESCRIPTION

The use case deals with the intake, review,
transcoding and publishing of user-generated
content, and was defined together with the Vlaamse
Radio- en Televisieomroep (VRT, the public
broadcaster of the Flemish part of Belgium). The
term "User-generated Content" refers to different
kinds of contributions of non-professional end users
to an online medium. Popular examples of websites
based on user-generated content include YouTube,
MySpace and Flickr. User-generated content is used
at VRT in multiple contexts, f.e.
http://www.16plus.be and http://www.toyinima.be.
VRT’s current automation framework is an ad-hoc
solution and is very brittle. As user-generated

content becomes increasingly popular, and multiple
VRT websites need similar functionality, it is
expected that a more professional automation
infrastructure will be required.

VRT was specifically interested in shorter setup
times, increased operational efficiency, a higher
level of control, and increased flexibility. Extra
constraints put forward at the beginning of the work
in this use case were the use of open source or free
products, and the targeted developer role of so called
“empowered developers” who have both good
technical and business knowledge.

The automation infrastructure we have built
allows end users to upload their own video material
intended for publication on a user-generated content
website. An uploaded video item will be prepared
automatically for publication, except that in some
cases human intervention will be necessary to
successfully finalize the publication. With respect to
these human interactions, we can identify two roles
participating in our process. The first role is the
process administrator who is responsible for
approving the format of the uploaded item in case
the format was not accepted or refused automatically
by the system. The process administrator thus deals
with exceptions on a technical level. The second
role, the reviewer, is responsible for checking
whether the uploaded item is suitable for publication
w.r.t. the item’s content. This can be useful in those
cases where the targeted website is aimed at a
specific audience (e.g. children), and content
moderation is required.

Figure 1 shows a functional overview of the
demonstrator that has been built. The end user
uploads video content through the Upload Servlet
that stores the uploaded file on a local drive and
triggers the business process. The business process
subsequently calls the FileInfo and FileHandling
services in order to retrieve technical information for
the video file and to move the file between the
different storage locations in the setup, respectively.
It calls an e-mail notification service at the end of
the publishing process. The business process also
coordinates human interaction for exception
handling and content approval. The specific business
rules for transcoding are isolated in a sub-process
TranscodeHandling. A second sub-process deals
with the technical particularities of the invocation of
the Vodtec transcoder. A façade component is
required to translate the SOAP/HTTP call into
XML-RPC/HTTP to the transcoder. The
FileHandling and FileInfo services both call the
RemoteFile component that can access local and
remote files and that can copy and move those files.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

32

3 ARCHITECTURAL AND
TECHNOLOGICAL DECISIONS

3.1 Message Format

The preferred technical interface for the services is
SOAP because it is supported by most, if not all
infrastructure components in a typical SOA
environment, such as application servers and BPMS.
An alternative to SOAP is XML-RPC, but XML-
RPC is not really standardized and therefore support
is rather limited in typical (back-office) application
servers and in BPM systems. It also suffers from
some serious functional and technical drawbacks
which makes it ill-suited for an enterprise
environment. Because of our choice of SOAP, the
XML-RPC interface of the transcoder in the setup
needs to be wrapped by a façade component that
translates SOAP to XML-RPC for the request and
XML-RPC to SOAP for the reply. Interoperability
tests in our heterogeneous environment quickly
revealed that the level of web services technology
support in general and SOAP support in particular is
limited to what WS-I Basic Profile 1.1 specifies:
SOAP 1.1, WSDL 1.1, UDDI 2.0, XML 1.0, XML
Schema and HTTP 1.1. The selected encoding of the
SOAP messages is set to document/literal/wrapped
encoding as it is the industry standard.

3.2 Message Transport

Traditionally, web services are invoked using HTTP
as transport layer. HTTP restricts service
interactions to synchronous short-lived interactions,
and is not suited for the asynchronous long-lived
service interactions as encountered in media
production. Therefore, a JMS messaging layer is put
in place for asynchronous message transport for the
long-lived service interactions.

Besides providing reliable messaging, Message
Oriented Middleware (MOM) like JMS brings other
interesting capabilities such as message queuing.
This allows a service listening to a message queue to
have messages delivered in-order (f.e. important
when updating metadata of a media item) and to
control the number of concurrent service instances
that are being executed (f.e. for scheduling resource-
intensive operations like transcoding). MOM is a
very mature concept and high performing solutions
are available on the market able to cope with very
high message throughputs.

The message content of the JMS messages is still
SOAP. Currently, state-of-the-art web services
development tooling and infrastructure systems like
Enterprise Service Buses (ESB) and BPMS support
the combination of SOAP with JMS, at least in the
Java world.

Figure 1: Functional overview of the demonstrator setup.

Business Process Management System

<<process>>
TranscodeHandling

<<process>>
TranscodeRequest

<<component>>
Content Review

<<process>>
UploadUserGen

<<component>>
Media Format

Exception

ITranscode

Front-end

<<component>>
Upload Servlet

<<component>>
Data Storage

Services

<<component>>
E-mail notification

<<service>>
FileHandling

<<component>>
FileInfo

<<component>>
RemoteFile

<<component>>
FileURI

Transcoder

<<component>>
Vodtec

Transcoder Storage

<<component>>
Data Storage

Central Storage

<<component>>
Data Storage

Façades

<<utility>>
SOAP2XML-RPC
XML-RPC2SOAP

ITranscodeFaçade

ContentReviewer

IEmailNotification

IUploadUserGen

ProcessAdmin

IFileHandling

EndUser

IFileInfo

IFileURI

SOAP/HTTP

SOAP/JMS

SOAP/HTTP

SOAP/JMS

SOAP/HTTP

SOAP/HTTP

XML-RPC/HTTP

AUTOMATING WORKFLOWS IN MEDIA PRODUCTION - Building an Infrastructure for a Service Oriented
Architecture with a Business Process Management System

33

3.3 Service Definitions

In practical development of web services, two
divergent practices have emerged (Akram, 2006):
the "code-first" approach (also known as "bottom
up") and the "contract-first" approach (also know as
"top down" or "WSDL first"). The code-first
approach involves auto-generation of the WSDL file
from service implementation classes using tools that
leverage reflection and introspection. Alternatively,
the contract-first approach involves writing the
original WSDL and XML Schema, and generating
service implementation classes from the WSDL file.

The code-first approach is often appealing to the
developers because of its simplicity, but the
contract-first approach is preferred in an enterprise
environment. Platform and language interoperability
problems are prevented, because both the client and
server are working from a common set of
interoperable XML Schema types. Defining a
common platform-independent type system also
facilitates separation of roles, whereby client side
developers can work in isolation from server side
developers. The contract-first approach is the most
suitable for developing robust, interoperable
services. However, in practice not all development
environments support the contract-first approach in a
sufficient manner.

The WSDL specification and the WS-I Basic
Profile recommend the separation of WSDL files
into distinct modular components in order to
improve re-usability and manageability. These
modular components include: 1) XML Schema files,
ideally one per XML type; 2) an "abstract" WSDL
file for the message and portType definitions; 3) a
"concrete" WSDL file with bindings and endpoint
addresses. It is also recommended to have separate
namespaces for each of the three (types of) files. The
namespaces are versioned using version numbers or
using the revision date.

3.4 Enterprise Service Bus

An Enterprise Service Bus (ESB) is an SOA
infrastructure system that provides an integration
backbone. It acts as a shared messaging layer for
connecting applications and other services
throughout an enterprise computing infrastructure
(Desmet, 2007). An ESB provides enhanced services
such as message routing, message transformation,
use of technology adapters, and service
orchestration.

An ESB is a strongly recommended component
in an SOA with so called legacy systems that do not

have a SOAP interface. In reality, hardly any IT
environment is free of legacy systems (w.r.t. SOAP
support), and thus ESB is positioned as an essential
infrastructure component in an SOA. In our use
case, most services were designed and implemented
from scratch and thus have a SOAP/HTTP or
SOAP/JMS interface. One exception is the
transcoder service that has an XML-RPC interface.
Because adapting SOAP to XML-RPC is not
straightforward at all (even in an ESB), our current
infrastructure does not have an ESB, and the
adaptation is performed in a custom façade
component.

3.5 Business Process Management

The intake and publishing process in the use case is
a long-running business process that involves human
interaction. Automating this process is done through
first modelling it in Business Process Modelling
Notation (BPMN) and then converting it to an
executable business process in Business Process
Execution Language (BPEL) that is run by a
Business Process Management System (BPMS).

The Business Process Modelling Notation
(BPMN) is a standardized graphical notation for
drawing business processes in a workflow. The
primary goal of the BPMN effort was to provide a
notation that is readily understandable by all
business users, from the business analysts that create
the initial drafts of the processes, to the technical
developers responsible for implementing the
technology that will perform those processes, and
finally, to the business people who will manage and
monitor those processes. Thus, BPMN creates a
standardized bridge for the gap between the business
process design and process implementation.

WS-BPEL 2.0, commonly known as BPEL 2.0,
is a business process modelling language that is
executable. WS-BPEL defines a model and a
grammar for describing the behaviour of a business
process based on interactions between the process
and its partners. The interaction with each partner
occurs through Web Service interfaces described
using WSDL 1.1. The WS-BPEL process defines
how multiple service interactions with these partners
are coordinated (orchestrated) to achieve a business
goal, as well as the state and the logic necessary for
this coordination. WS-BPEL also introduces
systematic mechanisms for dealing with business
exceptions and processing faults.

The service endpoints (whether HTTP or JMS
binding) are currently statically configured in the
BPMS. However, binding dynamically to endpoints

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

34

via a Universal Description, Discovery, and
Integration (UDDI) registry is probably a
recommended practice in a large SOA environment.

3.6 Monitoring

A typical SOA results in a highly distributed
environment. It is vitally important to monitor and
log the service interactions in order to verify the
correct behaviour of the services and debug the
business processes. Separate tools are available for
monitoring and logging SOAP/HTTP messages and
SOAP/JMS messages.

Monitoring is also recommended on other levels,
such as machines, software systems, and processes.
Combining all this monitoring information into a
coherent dashboard view relating processes with
messages, systems and machines is the ultimate
goal, but no products are available on the market to
provide such a view.

3.7 Storage Location Abstraction

Media content is stored in multiple storage locations
in the use case: on the intake server, the central
storage server, the transcoder, and the publish
server. The storage locations can be addressed on the
servers via their respective addresses, ports and
protocols and credentials (user/password
combinations). As such, a file residing on the intake
server might have a Uniform Resource Identifier
(URI) like ftp://intake.geisha.vrt.be/video/file1.mpg,
while a transcoded version of that file on the publish
server has http://publish.geisha.vrt.be/cat.mp4 as
URI.

In order to prevent the process designer of
needing to know the concrete addresses of the
storage locations and to allow easy changes to the
system setup without changes to the processes, we
introduced the “geisha” scheme that binds a logical
location to a physical one. The same video residing
on the intake server would then be identified by the
URI geisha://IncomingFiles/file0001.mpg. The
services that deal with the media files are configured
to translate a logical location into a physical one.

4 INFRASTRUCTURE SETUP

The infrastructure for the demonstrator was
predominantly setup with open source or free
software systems. The services and adapters run on
MS .NET or Tomcat/Axis2. We chose Intalio
Community Edition as the business process

management system and ActiveMQ as messaging
middleware. HTTP web services monitoring is done
with Amberpoint Express and generic infrastructure
monitoring with OpenNMS.

4.1 Services

A basic service in media production environments is
the file movement service. The FileHandling service
has operations for copying a file from its source
location to a destination location (using the File
Exchange Protocol whenever possible), verifying the
existence of a file, and deleting a file. The input
parameters to the operations are Uniform Resource
Identifiers that can refer to a physical location or a
logical location through the geisha:// scheme. The
FileHandling service can translate logical locations
into physical locations while performing the
requested task. Another service, the FileURI service,
provides a mapping service returning the physical
location for a given logical location. This service is
necessary when file locations need to be
externalized. The FileInfo service is a media-specific
service returning technical information about a
media file, such as duration, audio and video codecs,
etc. This information is used by the business
processes to determine what tasks need to be
performed on the media. The services were
implemented as Microsoft ASP.NET 2.0 web
services. As they were developed first, a code-first
approach was taken and WSDLs and XSDs were
derived from the web service code. The choice for
Microsoft ASP.NET 2.0 goes against the
requirement for the use of open source or free
products, but it was dictated by the service
developer’s competencies. Actually, the presence of
Microsoft ASP.NET 2.0 web services in the setup
proved very useful in determining the technological
standards required to achieve interoperability in
heterogeneous environments. The FileInfo and
FileHandling services operate on large files and
some of their operations take up to one minute to
complete, and that is why a JMS binding was
preferred. The open source Enterprise Service Bus
ServiceMix was tried for bridging the HTTP web
services towards the JMS messaging backbone, but
this was too unwieldy and a specific JMS client for
MS .NET (called NMS) was used instead.

Video transcoding is done through a transcoder
service that is able to transcode a media file from
one encoding to another. It was provided to us by a
third party. Its XML-RPC interface needed to be
adapted to a SOAP interface to be compatible with
our infrastructure. We tried to achieve this with

AUTOMATING WORKFLOWS IN MEDIA PRODUCTION - Building an Infrastructure for a Service Oriented
Architecture with a Business Process Management System

35

ServiceMix, but finally a custom façade component
implemented with Apache Axis2 and the Apache
XML-RPC library was a far less complex solution.
Axis2 is an open source web service stack developed
at the Apache Software Foundation, and is available
in both Java and C implementations. It not only
supports SOAP style web services, but it also has
integrated support for REST style web services.

ServiceMix is an open source Enterprise Service
Bus product, also provided by Apache. It is based on
the Java Business Integration (JBI) specification,
developed by Sun under the Java Community
Process. Two different types of JBI components are
distinguished: Service Engines (that provide services
to other components, and may consume other
services as well) and Binding Components (that
provide connectivity to external systems or services
through a particular transport protocol, such as
HTTP, JMS or JDBC).

4.2 Processes

Business process management addresses how
organizations can identify, model, develop, deploy,
and manage their business processes, including
processes that involve IT systems and human
interaction. Intalio offers a range of solutions for
business process management and control. The first
is the Open Source Edition of the BMPN Designer,
BPEL Server and Workflow Engine. The BPEL
Server is part of the Apache Foundation under the
ODE project. The BPMN designer is part of the
Eclipse Foundation under the STP project. The
Workflow Engine is fully open sourced and
available under the Eclipse Public License.

The second platform option and the one we have
chosen is the Community Edition. All three

components are available for download together and
have all the necessary components to run as a
platform. The Community Edition runs on the
Apache Geronimo Application Server and the
MySQL database.

The most important advantages of the Intalio
platform are wide standards support and clear and
well established user interfaces. The modeler is very
usable, and supports BPMN elements well enough to
be used for everyday modelling. Furthermore, the
designer embeds a form editor based on XForms to
be used with the Workflow Engine. Forms can be
created graphically and are integrated with process
models to support user tasks. We believe that
Intalio|Designer has better than average usability.
Besides this, the zero-code principle and one-click
deployment model are very much appreciated.
Finally, the administrative console coming with
Intalio|Server offers sufficient control over active
and running processes, gives a basic overview of all
the process instances details and allows for a
superficial monitoring functionality.

Next, we give a brief description of the different
processes designed with Intalio|Designer. We have
designed one main process, the UploadUserGen
process, that utilizes two sub-processes, the
TranscodeHandling sub-process and the
TranscodeRequest sub-process. The former sub-
process deals with the technical aspects of transcode
requests (transcode or not, generate thumbnails or
not) and the latter is responsible for sending
transcode requests to the Vodtec façade and
receiving notifications from it.

When a video file is uploaded through the
Upload Servlet, a SOAP request is sent to the
endpoint corresponding to the UploadUserGen
process such that a new instance of this process
starts. The UploadUserGen process is rather

Figure 2: Intake and publishing business process.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

36

business-oriented, which means that we tried to hide
the more technical aspects from this process. A high-
level overview of the main process is displayed in
Figure 2. The horizontal bars, called pools, represent
the different roles in the process.

 In the first step of the UploadUserGen process
the validity of the uploaded item is checked by
invoking the FileInfo service. It can happen that the
format of an uploaded media item is not recognized
by the FileInfo service, although it is a valid media
item. In those cases we assign a task to a process
administrator who is responsible for handling such
exceptions. The task will be listed in the process
administrator’s task list which becomes available
after logging into the workflow platform of Intalio.
When the process administrator rejects the format of
the uploaded item, the item is deleted from the
central file storage and a notification email sent to
the end user finalizes the process. In case the process
administrator approves the format of the item, the
process continues.

The next decision in the process is related to the
publishing destination. In case the item was
uploaded for publication to the “stubru”-website, the
item will be processed immediately by the
TranscodeHandling sub-process. In this sub-process
the necessary steps are covered to bring the
uploaded item in the correct format for publishing.

The other possibility is that the item is targeted at
the “ketnet”-website. In that case an additional
content approval step is needed. The
TranscodeHandling sub-process is invoked to
generate 10 thumbnails for the reviewer as preview
to the complete item. When the reviewer rejects the
uploaded item, a notification email with the
comment of the reviewer is sent to the end user. In
case the reviewer accepts the uploaded item, the
process continues and the item will be transcoded, if
necessary. Therefore, again the TranscodeHandling
sub-process is invoked in which the required steps
are taken to bring the uploaded item in the correct
publish format. To conclude, also in this case a
notification email with the publish location and
comment from the reviewer is sent to the end user.

4.3 Asynchronous Transport

ActiveMQ is an open source message broker from
Apache, which implements the Java Message
Service 1.1 specification. It is perhaps the most
prominent open source JMS implementation
available. Messaging functionality is not limited to
JMS only, but is also extended to other protocols
such as XMPP or REST.

Using ActiveMQ from any Java environment is
fairly easy, and clients are available in other
languages, such as Ruby, C++ or C#/.NET.
Especially the C#/.NET clients are of importance to
the demonstrator, as several of the services
implemented in .NET needed JMS support.
However, it turned out that support for C#/.NET is
only very basic and is not yet fully stable.

Message persistence can be configured in various
ways, depending on the level of performance and
security needed. ActiveMQ 4.2 does not support
message priorities, despite the fact that these are part
of the JMS specification. Message priorities are
expected to be introduced in future versions.

ActiveMQ has a Web console and a Java
Management Extensions (JMX) interface allowing
remote monitoring.

4.4 Monitoring

In the current infrastructure two types of monitoring
are used: Amberpoint Express for the web services
and OpenNMS for machines and software systems.

Amberpoint Express is a free HTTP web services
monitoring tool for Tomcat/Axis, MS ASP.NET and
IBM WebSphere Application Server. When installed
on the server, it automatically configures the
management system for each deployed web service
without requiring code changes. In practice,
Amberpoint Express intercepts the SOAP messages
on the HTTP level and logs the service requests and
corresponding replies. Through its browser-based
interface, performance can be monitored, errors can
be diagnosed, and web services can be tested.
Unfortunately, Amberpoint Express only supports
HTTP transport and not JMS; however the full
Amberpoint SOA Management System does.

OpenNMS is an open source Java based Network
Management System. It provides three different
capabilities that are used in conjunction to offer
network management. The first capability is that it is
able to determine the availability of the various low-
level services (HTTP, FTP, etc.) in the network,
through the use of a polling mechanism. A second
capability is the gathering and reporting of
performance data on both the network and its
services. OpenNMS does so by using the Simple
Network Management Protocol (SNMP) and Java
Management Extensions (JMX). Finally, its third
capability is Event Management, which allows
receiving and responding to events, such as a
network outage.

AUTOMATING WORKFLOWS IN MEDIA PRODUCTION - Building an Infrastructure for a Service Oriented
Architecture with a Business Process Management System

37

5 CONCLUSIONS

The goal of the work described in this paper was the
automation of several relevant workflows with a
focus on achieving shorter setup times, and
increased efficiency, control and flexibility. This had
to be realized with open source or free products in a
service oriented architecture, focusing on
“empowered developers” with good technical and
business knowledge.

First the architecture was designed and the
infrastructure was built using several software
systems: BPMS, messaging middleware, application
servers, and monitoring tools. Table 1 shows the
estimated effort that has gone into realizing the
whole of the use case. A lot of time was put in
product evaluation and selection, more specifically
concerning open source products. Quite some time
went into designing and implementing the services,
and more or less the same time went into designing
and implementing the processes. This was mainly
due to the middle-out approach that was taken
during development: the services and processes were
developed together in an iterative way. As shown in
the table, the reuse of existing services (the Vodtec
transcoder) should not be underestimated, in
particular when extensive configuration or technical
wrapping is required. But in the end, automating
workflows in media production with an SOA-
approach proved to be perfectly feasible.

Table 1: Estimated effort for realizing the use case.

Topic Effort
(man-months)

Architecture 1
Product evaluation & selection 3

Demonstrator basic infrastructure 1
Service design & implementation 2

Transcoder setup & wrapping 1
Process design & implementation 2

The total time needed to implement the

demonstrator was significantly longer than the initial
setup time for VRT’s current user-generated content
automation framework, which is mainly due to the
long product evaluation phase. The benefits with
respect to setup times for new processes are really
only achieved once the services provide at least
some basic business-relevant functionality. Until
that moment, a specific non-SOA based
implementation is mostly faster to setup than an
SOA-based implementation. But once all the
services are available, implementing and deploying a
new process takes only a very short time.

Concerning the request for increased efficiency
and control, with the right monitoring and logging
tools in place, it is possible to have a good insight
into the behaviour of the technical infrastructure in
general and the automated processes in particular.
This comprehensive set of information allows
developers to thoroughly debug and optimize the
system interactions, and allows support people to
track down the causes of problems very fast.

ACKNOWLEDGEMENTS

The research described in this paper was carried out
in the framework of the IBBT-project GEISHA,
which stands for Grid Enabled Infrastructure for
Service Oriented High Definition Media
Applications (https://projects.ibbt.be/geisha/). We
would like to thank Vodtec (www.vodtec.com) for
providing their transcoder free of charge.

REFERENCES

Web Service Description Language (WSDL) 1.1:
http://www.w3.org/TR/wsdl

Simple Object Access Protocol (SOAP) 1.1:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Universal Description, Discovery and Integration (UDDI):
http://www.uddi.org/

XML Remote Procedure Call (XML-RPC):
http://www.xmlrpc.com/

Java Message Service (JMS):
http://java.sun.com/products/jms/

Web Services Interoperability (WS-I) Basic Profile 1.1:
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

Web Services Business Process Execution Language (WS-
BPEL) 2.0: http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

Business Process Modeling Notation specification
(BPMN): http://www.bpmn.org/Documents/

ActiveMQ: http://activemq.apache.org/
Intalio, BMPS Community Edition:

http://bpms.intalio.com
Amberpoint Express: http://www.amberpoint.com/

solutions/express.shtml
OpenNMS: http://www.opennms.org/
Akram, A., Meredith, D., Allan, R., 2006. Best Practices

in Web Service Style, Data Binding and Validation for
use in Data-Centric Scientific Applications. In Proc.
UK e-Science All Hands Conference 2006.

Desmet, S., Volckaert, B., Van Assche, S., Van der
Weken, D., Dhoedt, D., De Turck, F., 2007.
Throughput evaluation of different enterprise service
bus approaches. In Proceedings of the 2007
international conference on software engineering
research en practice.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

38

