
MODELING QUALITY ATTRIBUTE VARIABILITY

Eila Niemelä, Antti Evesti and Pekka Savolainen
VTT Technical Research Centre of Finland, Kaitoväylä 1, 90571 Oulu, Finland

Keywords: Modeling, software architecture, quality attribute, variability, ontology, software product family.

Abstract: Due to the emerging service orientation of software architectures, the importance of quality aspects and the
ability to manage the changing quality requirements of a service have raised the question of how to
explicitly define quality requirements and how to assure that quality requirements are defined and handled
in the same way by all developers involved in the development of the service. The contribution of this paper
is a novel approach, which allows to define metrics for quality attributes as quality ontologies, to specify
execution qualities as quality profiles according to a quality variability model and quality ontologies, and to
model quality properties as an integrated part of software architecture. The Unified Modeling Language
(UML) and its extension mechanisms are used for defining quality profiles. The approach is applied to
reliability and security modeling and supported by an integrated tool chain developed on top of the Eclipse
platform.

1 INTRODUCTION

Since the 90s the development of software intensive
systems has focused on component based software
architectures and software family engineering. The
key issue has been the software family architecture
that provides a common architecture and software
components, which are used for implementing the
defined architecture for a set of products (Clements,
Northrop & Northrop 2001). The developed
variability management practices provide solutions
for defining and managing functional variability in
software development (America et al. 2000,
Bachmann, Bass 2001, Bosch et al. 2001). Service
orientation, which is emerging in software families
as well, brings new challenges by requiring
techniques and mechanisms for handling quality
variability at run-time (Ping, Xiaoxing & Jian 2005).

This paper focuses on quality variability
management of execution qualities, such as
reliability and security. In order to handle quality
variability at run-time, the following assumptions
have to be true; First, the quality attributes shall be
defined in an unambiguous way. Second, the quality
attributes have to have quantitative metrics. Third,
the quality characteristics have to be explicitly
defined in the architecture models. Furthermore,
quality characteristics have to be measured at run-
time by the mechanisms that are suitable for the case
at hand. Finally, the dynamic system has to be able

to make decisions concerning validity and
correctness of configurations in the contexts where
the reconfigurations occur. This paper introduces a
novel approach that tackles the three above
mentioned challenges. After that, the last two
challenges can be solved by utilizing the quality
attribute (QA) knowledge of individual architectural
elements. Quality attributes monitoring and decision
making mechanisms required for QA adaptation are
out of the scope of this paper.

The quality definitions exploit ontology design
principles by providing concepts, properties and
rules for a quality attribute. In this paper, we use the
reliability ontology as an example of a quality
ontology. The quality profiles are created based on
the quality variability model and the quality attribute
ontologies. Quality profiles are used as predefined
quality characteristics mapped to architectural
elements while designing the family architecture.
The proposed technique is exemplified by a tool
chain developed by the authors on top of the Eclipse
platform. Evaluation tools are applied for predicting
whether the architecture meets the defined quality
requirements.

The structure of the paper is as follows. After
introduction, the related research is examined.
Sections 3 and 4 introduce our approach and the
developed tools. Section 5 discusses the advantages
and shortcomings of the approach as well as our
future work. Conclusions close the paper.

169
Niemelä E., Evesti A. and Savolainen P. (2008).
MODELING QUALITY ATTRIBUTE VARIABILITY.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 169-176
DOI: 10.5220/0001759801690176
Copyright c© SciTePress

2 RELATED WORK

2.1 Architecture Evolution and Quality

Architecture is the fundamental organization of a
software system embodied in its components, their
relationships to each other and to the environment
(IEEE 2000). Software architecture also includes the
principles guiding its design and evolution. Thus,
the architecture is the key asset in software family
engineering; it assembles the family requirements in
the means of a common structure realized as
software components. Recent software systems are
typically networked systems that embody service
architecture. The service architecture mostly refers
to the software architecture of applications and
middleware, although communication technologies
also create requirements and challenges for the
service architectures. Therefore, a modern software
family architecture shall meet the requirements set
by family members (i.e. business and application
viewpoint) as well as the requirements and
constraints set by the applied distribution topology
and communication technologies (i.e. technical
viewpoint).

Several attempts have been made for managing
architecture evolution. Evolution has been taken into
account by designing architectures that are, e.g.,
maintainable, portable and modifiable. Architectural
styles and patterns provide diverse support for
different quality attributes (Clements, Northrop &
Northrop 2001). Styles and patterns provide an
implicit way to achieve the desired quality; they are
selected at design time and specific evaluation
methods are used for estimating how well quality
requirements are met (Dobrica, Niemelä 2002).
Moreover, evaluation methods are qualitative or
predictive. Thus, design and quality evaluation is
more or less heuristic and the results depend heavily
on the expertise of the architect. Still, qualitative
methods have been found useful while analyzing
evolution qualities but the predictive methods that
are applied to the execution qualities, still lack
industrial applications.

2.2 Quality Variability Management

In (Etxeberria, Sagardui & Belategi 2007), six
existing modeling approaches for specifying
variation in quality attributes are compared. The
results show that only some of the approaches
provide support for characterization and quantitative
metrics of quality attributes, and none of them

allows to defining the priority levels of qualities.
Furthermore, all these approaches focus on the
design-time quality variability management.

In the Family Evaluation Framework (van der
Linden, F. et al. 2004), the highest maturity level
includes automated selection, optimization and
verification of variants. The quality options are
realized as variation points. The use of variation
points means that quality variability is static, i.e.
binding is made at design time. However, in service
oriented systems, quality shall be changed in time
according to the context, i.e. taking into account the
external state of a system (environment and user),
and the internal state of the system (i.e. capabilities,
resources, regulations etc.).

Context based adaptation is studied from
different viewpoints; e.g. how to adapt a service
according to user’s preferences, or how to adapt
resources according to available networking and
computing capabilities. Application-aware
adaptation is part of context-awareness; it means
collaboration between the system infrastructure and
individual applications (Noble et al. 1997). The
system infrastructure manages the resources; it
monitors resource levels, notifies applications of
relevant changes, and enforces resource allocation
decisions. Each application independently decides
how to adapt when notified. Resource management
is centralized but adaptation is controlled in a
decentralized way. This is a mixed controlling
architecture with centralized monitoring, and un-
centralized decision-making. In service oriented
systems, quality variability management requires a
similar kind of approach.

2.3 Ontology Orientation

Ontology-orientation refers to design and modeling
methods, techniques and practices used in the
creation of software systems that inherently possess
the ability to understand and utilize the ontology that
describes their computational surroundings and
binds software to its surroundings. Ontology is a
shared knowledge standard or knowledge model
defining concepts, relations, rules and their
instances, which comprise the relevant knowledge
of a topic (Zhou 2005).

Ontology is used for capturing, structuring and
enlarging explicit and tacit knowledge on a topic
across, people, organizations, and computer and
software systems (Gruber 1995). A simplified
ontology contains only a hierarchical classification
(a taxonomy) showing relationships between

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

170

concepts. Appropriate understanding of software
semantics can be achieved, if the semantic properties
and relations of the software are captured to a form
that can be further utilized computationally.
Therefore, a notion for capturing the quality
characteristics of each software entity has to be
explicitly specified.

3 THE APPROACH

Figure 1 depicts the overview of the approach as an
activity diagram. The main steps of quality
variability modeling (i.e. the activities of quality
engineers and a software family architect in Figure
1) are:
• To define the ontology of a specific quality

attribute (QA) based on the domain knowledge
of that quality attribute.

• To define the quality profiles for the QAs based
on the quality requirements of a product family,

the related quality attribute ontologies and the
quality variability model (see section 3.2).

• To map the quality characteristics to
architectural elements.

In Figure 1, stakeholders are named on the left side
and each swim-lane represents the activities
(rounded rectangles) of one stakeholder and the
input and output (rectangles) of each activity.

Quality engineers are responsible for defining
quality attribute ontologies. Each QA ontology is
orthogonal and managed separately in order to get
flexibility for its evolution. Some concepts are
related to each other in different QA ontologies.
These relationships are also defined in ontologies.
The QA ontology, i.e. a set of quality attribute
ontologies, is the first model component of the
approach.

A software family architect is responsible for
defining the family architecture and quality
variability model. The quality variability model that
is the same for all QAs forms the second model
component of the approach. The quality variability
model is used while defining quality profiles. A

Figure 1: The overview of the approach.

MODELING QUALITY ATTRIBUTE VARIABILITY

171

quality profile includes all quality properties related
to one QA. Thus, reliability and security have
separate quality profiles. Each quality property
defined in a profile has a standard set of
characteristics given by the architect based on the
quality variability model and the QA ontology.
Quality profiles are used while mapping quality
properties as stereotypes to architectural elements.

Architecture analyzers are responsible for the
quality evaluation. Each QA requires different
expertise, additional models and tools that utilize the
provided design information. Finally, product
architects derive the product architecture from the
family architecture

3.1 Quality Attribute Ontology

Figure 2 presents a fragment of the reliability
attribute ontology as a taxonomy including the
concepts related to reliability metrics. The reliability
metrics are mainly based on the IEEE 982.1
standard and aligned with the security metrics
(Savolainen, Niemelä & Savola 2007) so that both
metrics ontologies are more usable for software
architects. Also combining the quality attribute
ontologies is easier. Keeping quality ontologies
separate made it possible to refine them concurrently
by different quality engineers.

Figure 2: Reliability metrics Classes.

Concepts of QA metrics are common for all
quality attributes, whereas only part of the metrics
classes and actual metrics in the metrics classes can
be shared by different QA ontologies. Each metrics
has the following properties (Figure 3): description;
purpose; target, i.e. where the metric can be used;
applicability, i.e. when the metric can be used; one

or more formulas; range value for the
measurements; and the best value of the
measurement. Rules constrain the formulas and used
measurement units by defining the set of
measurement targets and value ranges and the time
when the metric is valid.

Figure 3: Concepts of QA metrics ontology.

3.2 Quality Variability Model

In a software family architecture, three types of
quality variability can be identified:
• Variability among quality attributes; e.g.

reliability is important for one family member
but not relevant for the rest of family members.
(optionality)

• Diverse priority levels in quality attributes; e.g.
reliability is an extremely important property in
a high-end product, while in other products only
medium or low level reliability is needed.
(degree)

• Indirect variation, i.e. functional or quality
variation indirectly causes quality variation
or/and vice versa. For example, improving the
reliability of one component requires that all
interrelated components are also at the same
reliability level. (impact)

There can be one or more reasons (i.e. sources)
for quality variability:
• Subjective reasons. The user of a software

service prefers different qualities in different
contexts.

• Business reasons. The type of application may
set different quality criteria, e.g. differing
measurement accuracy related to time, place
and ratio for services intended for professional
use as opposed to those for non-professional
use.

• Technological reasons. Implementation
technology or the amount of available resources
may cause quality variation, especially when an

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

172

externally developed software or service is used
without adaptation.

In order to manage quality variation, the related concepts,
relations and rules have to be defined (

Figure 4, Table 1). The quality variability model
is used as a meta model for defining quality profiles,
i.e. stereotypes of quality properties.

The scope of quality variation defines the size of
impact the quality variation has in software
architecture. There are four types of scopes; family,
product, service and component. The software
family type involves the widest scope; quality
variation affects all family members, thus making
this type of quality variation is strictly restricted.
The software product type of quality variation may
concern a composite of services or a service. The
latter case is understood as an exception, and
therefore, the scope of the product level type is
defined wider than the service level.

Figure 4: Concepts of the quality variability model.

The importance concept classifies the quality
properties into three categories, which follow the
change rules defined for them. The importance type
‘high’ indicates that the quality can’t change in
normal operation. However, the quality level can be
lowered if the system fails to complete a service at
the defined quality level, e.g. by changing resource
allocation in a case in which the service can not be
completed in a given time and it is essential for
survival of the system. The QA management service
is using the value of the importance concept while
making decisions about adaptation strategies. An
example of the adaptation rules for resource
reservation (performance) is as follows; First, the
services with the importance level ‘high’ have the
option to select which resources, to which extent
and at what time to use them. Second, the services
with the importance level ‘medium’ have options for
resources. Third, the services with the importance
level ‘low’ get the remaining resources if still
available. The level of importance can change only
one level up or down, i.e. one level down in case of

lacking resources, and one level up while returning
to normal operation.

The binding time defines when variation takes
place (i.e. design, assembly, start-up or run-time).
This information is used while defining quality
profiles, in quality evaluation and making decisions
at run-time.

The dependency element maps one QA
properties to the related QA ontology and other
related QA properties, further defined according to
the QA ontologies in question. Knowing the
dependencies between quality variations is
necessary in order to deal with the trade-offs, i.e. to
make a decision regarding which variants may be in
force at a certain time.

The decision-making rules are defined in a
separate model because the rules depend on the
system’s quality goals. The information about
allowed changes is defined by the concepts of the
quality variability model. For example, if decreased
performance means that the security level ‘high’
cannot be guaranteed, the decision rule finds which
one, the required performance level or the required
security level, should have the priority. The QA
management service implemented as a middleware
service makes the trade-off decision according to the
information defined for both quality attributes. Thus,
the decision model defines the rules for making
trade-offs at run-time.

Table 1: Summary of the quality variability model.

Element Description Means
Source why it is necessary to

take quality variation
into account

documented
rationale

Scope what quality variation
can occur

constraints

Importa
nce

how quality variation
can take place

decision model,
mechanisms

Binding
time

when the variation can
take place

constraints,
decision model

Depend
ency

relations to other
quality properties

decision model,
mechanisms

4 TOOL SUPPORT

Figure 5 depicts the overview of the tool chain
developed. In the first phase, QA ontologies are
defined by the Protégé tool and stored in the
repository in the Web Ontology Language (OWL)
format. In the second phase, QA profiles are defined
using the Quality Profile Editor (QPE). In the third

MODELING QUALITY ATTRIBUTE VARIABILITY

173

phase, the quality profiles are used while defining
the software family architecture by mapping profiles
to the architectural elements. Finally, architecture
quality is evaluated by using evaluation tools and
the evaluation results are stored in the architectural
models.

The Quality oriented Architecting Environment
(QoAE) is dependent on the exchanged data, which
is transmitted via a file system. Using the existing
file system ensures that data is transmitted via
standard and commonly used techniques, like OWL
files and UML project files of Eclipse. Since the
majority of available ontology tools support OWL
files, in the future it will be possible to replace
Protégé by another ontology tool, without the need
to change any other QoAE parts. The same applies
to the used UML tool (TOPCASED).

In Figure 5 the arrows show how the data can be
moved and modified. A notable thing is that while
the evaluation tools cannot modify the architecture
design, they can add the evaluation results to the
architecture model. Detailed information about the
tools is presented in (Evesti 2007; Immonen,
Niskanen 2005).

From the quality variability management point of
view, the QPE is the most interesting part of the
environment, and therefore explained here more
thoroughly. The procedure is as follows:
1. The architect opens a QA ontology in the QPE.
2. The QPE creates a list of available quality

metrics based on the ontology. Each list item
has a formula, a value range and the best value
of measurement indicated.

3. The architect enters the quality properties
defined for a system family and selects a metric
for each quality property. The metrics are
derived from the ontology.

4. The architect defines the dependencies between
the quality properties in the same or other QA
profiles.

5. Profile editor checks that properties’ value lies
within the valid range of the selected metric(s)
and that the property name is unique.

The architect stores the valid profile.
Figure 6 depicts a snapshot of the QPE user

interface. As can be seen, the QPE follows the
quality variability model introduced in section 3.
Except for binding time, all the elements of the
quality variability model are fixed while designing a
profile. Binding is made while mapping quality
properties (from a profile) to architectural elements.
Each quality property defined is represented as a
stereotype in a model. Each stereotype is identified
by a name or a quality property identification.

The operation of QoAE was evaluated by
applying the developed ontology and profiles to a
case example of Personal Information Repository
(PIR) system, which is a reliable business-to-
consumer (hospitals and patients) document delivery
system. As a summary, the evaluation proved that
although the tools worked correctly, several
improvements are required. To be feasible the tool
integration has to be seamless; the design
information required for quality evaluation has to be
extracted from the architectural models and
automatically transformed to the form of the used
evaluation tool. Therefore, a mechanism for
extracting and transforming information for
reliability simulation (within the RAP tool) is now
under development.

5 DISCUSSIONS

The goal of our work was to create an approach and
supporting tools for defining quality attribute
variability and to import this design information into
architectural models. Although application of the

Figure 5: Overview of the QoAE.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

174

Figure 6: The GUI of the Profile Editor.

approach and supporting tool environment is still
ongoing, the following observations have been
made.

Defining a quality attribute ontology requires
deep understanding of that quality attribute and its
related methods, standards etc. The quality engineer,
who is responsible for the work, also needs to know
the main concepts related to software architecture
design and variability management. In order to
provide added value, QA ontologies shall be
defined, applied, and refined in community-level
activities. The presented reliability metrics ontology
already includes eighteen metrics but might require
refinement after their application in industrial cases.
Concerning security metrics the situation is worse;
only three metrics were found from standards, and
other four were defined by the authors. Thus,
community wide effort is especially required for
developing quantitative security metrics, and
techniques and tools for analyzing security at
design-time and at run-time. However, we believe
that the quality variation model is mature enough
and can be applied in a more extensive way.

In order to make use of quality definitions in
architecture design, quality ontologies have to be
defined in a strict way. This means that each step
has to be formalized and automated as far as
possible. While there is already a range of
quantitative metrics, no exact knowledge exists up

to now concerning their coverage and applicability.
Thus, empirical experiences are to be collected, e.g.,
for defining realistic estimates for prediction
models.

We defined a quality variability model for
creating the QPE by which quality profiles can be
defined as UML profiles. This approach seems
reasonable and working. However, as tool support is
still evolving, attention shall be paid to ensuring an
adequate maturity level of tools, in order to
guarantee that models can be transformed from one
to another without any need to make changes to
them.

Our future work will focus on refining and
combining QA ontologies (reliability and security),
extending the architecting environment by domain
specific ontologies, and applying the approach and
developed tools to industrial cases. We assume that
it will be a long journey to a point when quality
attribute variability related to all execution qualities
can be managed at run-time, i.e. all required
monitoring mechanisms, measuring techniques, and
decision models for making tradeoffs are defined,
and validated. However, this paper presented the
main concepts and justified why these concepts are
required. The first attempt already made is the run-
time performance adaptation based on service
ontology and an adaptation mechanism as part of
middleware (Pakkala, Perälä & Niemelä 2007).

MODELING QUALITY ATTRIBUTE VARIABILITY

175

6 CONCLUSIONS

This paper introduced an approach which combines
knowledge engineering with quality driven software
architecture development. The metrics of one
quality attribute were introduced and used together
with the quality variability model for defining a
quality profile and representing quality properties in
architectural models. An integrated tool
environment was built for supporting the approach.

It is commonly known that the role of the
software architect is an extensive one; the architect
should be able not only to understand business
drivers and technical issues but also to be able to
organize the work and to communicate the
architecture to different stakeholders. Furthermore,
quality engineering, even when focusing on only
one quality attribute, requires a lot of domain
knowledge. One of our contributions is that our
approach separates knowledge management of
quality attributes from technical software
engineering. Ontologies help in developing and
sharing architectural knowledge, while modeling
assists in achieving high-quality software
architectures. We believe that this kind of approach
is required for future service oriented systems,
which are co-developed and delivered globally, and
locally adjusted to usage contexts.

REFERENCES

America, P., Obbink, H., van Ommering, R. & van der
Linden, F. 2000. CoPAM: A Component-Oriented
Platform Architecting Method Family for Product
Family Engineering. Software Product Lines,
Experience and Research Directions. 28-31 August.
Boston: Kluwer Academic Publishers.

Bachmann, F. & Bass, L. 2001. Managing Variability in
Software Architectures. Symposium on Software
Reusability, Toronto, Ontario, Canada, 18-20, May.
Toronto, Ontario, Canada: ACM Press.

Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink,
H. & Pohl, K. 2001. Variability Issues in Software
Product Lines. 4th International Workshop on Product
Family Engineering, Bilbao, Spain: European
Software Institute. Vol. LNCS 2290.

Clements, P., Northrop, L. & Northrop, L.M. 2001.
Software Product Lines: Practices and Patterns. 3rd
ed. Boston, MA, USA: Addison-Wesley.

Dobrica, L. & Niemelä, E. 2002. A Survey on Software
Architecture Analysis Methods. IEEE Transactions on
Software Engineering, Vol. 28, No. 7, pp. 638-653.

Etxeberria, L., Sagardui, G. & Belategi, L. 2007.
Modelling Variation in Quality Attributes. 1st

Internatioonal Workshop on Variability Modeling of
Software-Intensive Systems. Jan 16-18, 2007. Lero
The Irish Software Engineering Research Centre.

Evesti, A. 2007. Quality-Oriented Software Architecture
Development. VTT Publications 636. Espoo: VTT.

Gruber, T.R. 1995. Toward Principles for the Design of
Ontologies Used for Knowledge Sharing. International
Journal of Human-Computer Studies, Vol. 43, pp.
907-928.

Std-1417-2000. IEEE 2000. IEEE Recommended Practice
for Architectural Descriptions of Software-Intensive
Systems. New York: IEEE.

Immonen, A. & Niskanen, A. 2005. A tool for reliability
and availability prediction. 31st Euromicro
Conference on Software Engineering and Advanced
Applications. 30 Aug. - 3 Sep. 2005. Porto, Portugal:
IEEE.

Noble, B.D., Narayannan, D., Tilton, J.E., Flinn, J. &
Walker, K.R. 1997. Agile Application-Aware
Adaptation for Mobility. 16th ACM Symposium on
Operating Systems Principles. Saint Malo, France:
IEEE.

Pakkala, D., Perälä, J. & Niemelä, E. 2007. A component
model for adaptive middleware services and
applications. 33rd Euromicro Conference on Software
Engineering and Advanced Applications. Lubeck,
Germany, 28 - 31 Aug. 2007. IEEE.

Ping, Y., Xiaoxing, M. & Jian, L. 2005. Dynamic
software architecture oriented service composition and
evolution. CIT'05: 5th international conference on
computer and information technology. Shanghai,
China, 21-23 September 2005. IEEE.

Savolainen, P., Niemelä, E. & Savola, R. 2007. A
Taxonomy of Information Security for Service Centric
Systems. 33rd Euromicro Conference on Software
Engineering and Advanced Applications. Lubeck,
Germany, 29-31 August. Germany: IEEE.

van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K. &
Obbink, H. 2004. Software Product Family
Evaluation. Software Product Lines, LNCS 3154.
Boston, MA, USA, Aug. 30- Sep. 2. Springer-Verlag.

Zhou, J. 2005. Knowledge Dichotomy and Semantic
Knowledge Management. 1st IFIP WG 12.5 working
conference on Industrial Applications of Semantic
Web. Jyväskylä, Finland, 25 - 27 Aug. 2005.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

176

