
An Aspect for Design by Contract in Java

Sérgio Agostinho1, Pedro Guerreiro2 and Hugo Taborda1

1Universidade Nova de Lisboa 2829-516 Caparica, Portugal

2Universidade do Algarve 8005-139 Faro, Portugal

Abstract. Several techniques exist for introducing Design by Contract in lan-
guages providing no direct support for it, such as Java. One such technique uses
aspects that introduce preconditions and postconditions by means of before and
after advices. For using this, programmers must be knowledgeable of the aspect
language, even if they would rather concentrate on Design by Contract alone.
On the other hand, we can use aspects to weave in preconditions, preconditions
and invariants that have been programmed in the source language, as regular
Boolean functions. In doing this, we must find ways to automatically “inherit”
preconditions and postconditions when redefining functions in subclasses and
we must be able to record the initial state of the object when calling a modifier,
so that it can be observed in the postconditions. With such a system, during de-
velopment, the program will be compiled together with the aspects providing
the Design by Contract facilities, using the compiler for the aspect language,
and the running program will automatically check all the weaved in assertions,
raising an exception when they evaluate to false. For the release build, it suffic-
es to compile using the source language compiler, ignoring the aspects, and the
assertions will be left out.

1 Introduction

Design by Contract (DbC) [18] is a well-established methodology, which aims to
guide the software development from analysis to implementation. It relies on syste-
matic use of assertions that record pre/postconditions associated to each method. Not
many languages provide direct support for DbC, however. Remarkable exceptions are
Eiffel [17], the language on which DbC was invented, and most recently the D lan-
guage. If one wants to follow the discipline of DbC with another language, some kind
of compromise that involves the use of an add-on must be accepted.

The original specification of Java featured DbC, but it did not prevail [8]. Since
2001, DbC support is in the top Request for Enhancements at the Sun Developer
Network. As such, DbC seems to be relatively well accepted and several tools exist
that adjust Java for it, typically using generative programming techniques.

Another approach is to use aspects that introduce preconditions and postconditions
using aspect-oriented programming, by means of before and after advices [2]
[14]. That is, the assertions are written in an aspect and weaved in the executable
program, firing exceptions when the contract is violated. This is interesting but
somewhat defeats the core idea that DbC is also an important part of the documenta-

Agostinho S., Guerreiro P. and Taborda H. (2008).
An Aspect for Design by Contract in Java.
In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
119-128
DOI: 10.5220/0001743001190128
Copyright c© SciTePress

tion of each module, and, as such, should be part of the module itself [18]. Indeed, we
agree that contracts are not crosscutting concerns [3].

We pursue a different way of using aspects for DbC, which more closely resem-
bles the standard approach found in Eiffel: for each method we explicitly program, in
Java, two Boolean methods, one for the precondition and another for the postcondi-
tion. In order to keep things simple, the names of these methods follow strict rules
and they have the same arguments as the original method or an initial sub-list thereof.
As such, in the Java program, these methods can indeed be understood as documenta-
tion, and usually they are not called in the program itself. Then, when we compile the
class with the DbC aspect, the Boolean methods are weaved in automatically and are
evaluated before and after each method call.

This paper has six sections. In section 2, we discuss the features of our system, in-
cluding assertions and contract polymorphism. In section 3, we evaluate our results,
through the use of third-party metrics. In section 4, we discuss performance. In sec-
tion 5, we present related work. We wrap up, on section 6, with the main conclusions
on this experience.

This work was partly supported by the Portuguese Fundação para a Ciência e
Tecnologia, in the context of the SOFTAS project (POSI/EIA/60189/2004). The
authors would like to thank Dr Ana Moreira for her support in this work.

2 Features

DbC advocates software reliability through the use of assertions [11], namely precon-
ditions, postconditions and invariants. Method preconditions are assertions that must
hold when the execution of the method starts. Method postconditions are assertions
that must hold immediately after the execution of the method ends. Class invariants
are assertions that must be held during the lifetime of any object of the class, between
method calls. A precondition failure is a fault in the client, i.e., in the method that
issued the call, while a postcondition failure is a fault in the supplier, i.e., in the fail-
ing method itself. Invariants must be upheld by the supplier after the constructor
execution.

A classic analogy of DbC is a business contract. In a business, there are two inter-
ested parties: the client and the supplier. In order to be able to provide a service prop-
erly, the supplier expects that some conditions are met: the preconditions (an obliga-
tion to the client, but a benefit to the supplier). Conversely, at the end of the service,
the client expects that some results are achieved: the postconditions (an obligation to
the supplier, but a benefit to the client). Additionally, the contract can have clauses
that specify conditions that both parties must respect throughout the duration of the
service: the invariants.

2.1 Preconditions, Postconditions and Invariants

In our system, preconditions are Boolean methods with the same name as the original
method, but prefixed with pre, using "lower camel case". Postconditions are also

120

Boolean methods with the same name as the original method, but prefixed with
post. If the method returns a value, an extra first argument is used, representing the
result of the method, to be used in the postcondition:

public boolean preFactorial(int n) { return n >= 0; }
public long factorial(int n) { /* ... */ }
public boolean postFactorial(long result, int n)
 { if (n == 0) return (result == 1);
 else return (result >= 1); }

Each class may have a Boolean invariant method, named invariant,
representing the invariant of the class. Invariants are checked before and after any
public methods are called and after any of the constructors are called:

public class Simple2DCoordinates {
 private int latitude, longitude; // degrees
 public boolean invariant() {
 return latitude >= -90 && latitude <= 90 &&
 longitude >= -180 && longitude <= 180; } }

Under the hood, AspectJ [2] advices are executed before and after every non-
private method execution or class constructor invocation. before advices check
invariant first and then precondition; after advices check invariant first and then
postcondition. We use three types of pointcuts to implement contract assertions: con-
structor executions, static method executions, and non-static method executions. Each
pointcut has two advices: before and after return. Exceptional terminations of a
method or constructor are not evaluated. We need those three types of pointcuts be-
cause in some situations class invariants are not checked. For non-static methods,
invariants are evaluated before preconditions and after postconditions. Before con-
structor execution the invariant is not yet set, so it can not be evaluated. Invariants do
not apply to static methods.

Assertions that fail raise an exception, with type according to assertion type (pre-
condition, postcondition, or invariant). These exceptions extend Java’s Runti-
meException, so that they do not need to be handled through a try/catch block.

2.2 The “old” Construct

In postconditions, it is sometimes necessary to compare the final state of the object,
when the method returns, with its state when it started. This is known as the “old”
mechanism. Languages with native DbC support implement this via a special old
expression, but in our approach that is not feasible. For imitating the old mechanism,
we introduce a class ContractMemory, with a method old(), which returns a
copy of the object before the execution of the method where it appears. Since storing
a copy of the object before each method execution could create an unacceptable over-
head, we let the programmer explicitly make that request in the precondition, using
the remember() method from class ContractMemory.

Sometimes we need to introduce artificial preconditions, only to call remember, so
that old can be used in the postcondition. This is a compromise for simplicity that we
choose to accept. The second issue is the explicit reference to a particular class: Con-

121

tractMemory. This creates coupling between the application and the library, but
there is a workaround that lets us avoid it (see section 2.5).

Finally, there is the cloning issue. Classes using the “old” construct must imple-
ment the Cloneable interface, and therefore must supply the clone() method.
Here we meet a well-know Java complication. The Object class (which every class
extends) does implement the clone() method, but as protected visibility. As
such, one cannot “force” an object cloning without its correspondent class imple-
menting the actual method. This is illustrated as follows:

public class Point2D implements Cloneable {
 private int x, y;
public void incX() { /* … */ }
public boolean preIncX() {
 ContractMemory.remember();
 return true; }
public boolean postIncX() {
 Point2D old = (Point2D) ContractMemory.old();
 return this.getX() == old.getX() + 1; } }

Having this in consideration, and the fact that in many occasions the old construct
is used for accessing a primitive type, we have added an alternative. The Con-
tractMemory class supplies another pair of methods: the observe() and
attribute() [10]. These methods do the same as remember() and old(), but
store primitive types identified by a “tag” string. This alternative is less expensive,
and allows the arbitrary storage of variables. With this, the Point2D example could
be presented as follows:

public class Point2D {
 private int x, y;
public boolean preIncX() {
 ContractMemory.observe(“Point2D.x”, getX()); re-
turn true; }
public void incX() { /* … */ }
public boolean postIncX() {
 int oldX = (Integer)
 ContractMemory.attribute(“Point2D.x”);
 return this.getX() == oldX + 1; } }

The ContractMemory class has only empty stub methods. The actual behavior
is inserted by an aspect. The aspect stores data in two stacks of hash tables, one for
cloned objects and the other for primitive types. The hash tables provide a constant
search time and the stacks support context for method calls and recursion.

2.3 Contract Polymorphism

How does DbC cope with class inheritance? The Liskov substitution principle [16]
(also known as the “behavioral subtyping principle”) states that if class B is a subtype
of class A, then, in any situation that an instance of A can be used, it can be replaced
by an instance of B. Consequently, the precondition of a method in B can only be the
same or weaker than the corresponding precondition in A, and cannot be stronger.
Conversely, the postcondition of a method in B can only be the same or stronger than
the corresponding one in A, and cannot be weaker. Invariants from A must be res-

122

pected in B. Following our analogy with business, inheritance can be seen as subcon-
tracting. If the original supplier subcontracts the service, then the subcontractor can-
not impose further restrictions to the contract and cannot offer fewer benefits than the
original supplier.

In our system, the implementation of the substitution principle is achieved by
composing preconditions with logical disjunction; and by composing postconditions
with logical conjunction. The invariant preservation is implemented in the same way
as postconditions. This means that actual pre/postconditions are compositions of the
current and inherited pre/postconditions. However, the Eiffel standard [6] recently
relaxed the postcondition evaluation rule: it is not necessary that all partial postcondi-
tions are fulfilled, only the ones correspondent to the partial preconditions evaluated
as true. Recent work by Finder et al [7] claims that disjunction/conjunction composi-
tion rules are necessary, but insufficient, since they do not prevent programmers from
writing covariant preconditions or contravariant postconditions. As such, they pro-
pose additional rules, namely that an evaluation with true value in a method precondi-
tion must imply a true value in the subclasses overridden preconditions (for postcon-
ditions, the rule is inversed).While we adhere to the Eiffel algorithm, we currently do
not support Findler’s proposal on our prototype.

Assertions are discovered through reflection. Starting with the object (static) type,
assertions are searched and evaluated bottom-up until a direct subclass of Object.
For each class, the algorithm looks for a method with the given prefix with no argu-
ments, and adds an argument to the signature until it gets a match. This algorithm
may find the wrong assertion if method (and assertion) overloading is used, with
ambiguous assertion signatures.

Preconditions are evaluated bottom-up and postconditions are evaluated top-down.
In order to ensure the correctness of the side-effect ContractMemory calls, every
partial pre/postcondition must be evaluated. Class invariants are lazily checked bot-
tom-up, since no further restrictions apply to this type of assertions.

Since assertions represent a contract, they should be public. This poses a prob-
lem for evaluating inherited contracts through reflection, because public methods are
always evaluated with respect to their runtime type [9]. Thus, if both class A and B
have a public preFoo() method, given an instance of B, it is not possible to execute
the A.preFoo(). The exceptions to this rule are the static and private me-
thods [15]. Hence, we must resort to private methods and use the Accessib-
leObject.setAccessible(boolean) method [23], which breaks Java’s
visibility protection. Although AspectJ’s privileged keyword allows an aspect to
access private members of a class, it does not work with reflection. As an alternative
to private methods, our system also supports public contracts in the presence of inhe-
ritance, for classes that have a copy constructor.

2.4 Contract Rules

Some authors argue that contract validation should not be disabled in production
builds, or at least not completely [18] [19]. In conformity, our library supplies a me-
chanism which we call contract rules, allowing us to define which assertions should
be checked and in which classes. This can be used in two ways: statically or at run-

123

time. Static rules are written in a properties file, in the LACE format [17] [18]. With
this file it is possible to specify the default assertion check level and the specific
classes in which specific check levels are to be used. These levels are the following:
no: no checks; pre: only preconditions; post: both preconditions and postcondi-
tions; all: all assertions are checked.

The file is loaded at the library start-up, and if the file is not found, a conservative
configuration is assumed (all default checks, and no specific classes). There are also
runtime rules available, through an API with which we can modify the start-up confi-
guration. In some situations it is useful to temporarily disable assertions within a
public method, in order to execute a few simple calls that momentarily break the
contract. The “expose” mechanism is used for that purpose. It is supported by the
Rules class via two methods: expose()and unexpose(). The ContractRules
class is similar to ContractMemory. It supplies only one method, for retrieving the
Rules singleton object. The Rules object is loaded from a file (or otherwise initia-
lized with default values) at startup, and stored by the main aspect. Inside that object,
two hash tables exist for storing the rules for specific classes, as well as the exposed
classes, respectively.

2.5 Unplugging

Our current prototype implementation has three aspects. The core aspect is responsi-
ble for most of the work, including checking the contracts and loading the configura-
tion rules. The other two introduce the actual behavior of ContractMemory and
ContractRules classes, which are simply “mock” classes. Therefore, if the pro-
grammer is using core features only, unplugging is simply removing the library from
the project, and recompiling as a regular Java project. The same is true if the contracts
are specified in aspects, using AspectJ’s intertype declarations which allow adding
new methods to classes or interfaces. If the project has references to the Contract-
Memory and ContractRules, or if the programmer still wants to continue using
AspectJ, a different solution is required. Since removing all the contracts manually is
not very practical, we supply a stub version of our library that contains only a subset
of the public classes used. This way, plugging the library consists only in replacing
the stub version with the full version.

3 Evaluation Metrics

Plösh [21] proposed a set of metrics to evaluate assertion support in Java. In order to
provide a third-party evaluation, we shall submit our solution to this criteria proposal.
These are the evaluation results:
• Basic assertions: Since Java 1.4 and later support the assertion facility, we do not

feel it is necessary to introduce a specific mechanism for such feature.
• Preconditions and Postconditions: In this area, we fully support the assertions,

but do not guarantee side-effect free assertions.
• Invariants: Same as above.

124

• Enhanced assertion expressions: We support access to the original state of the
object or arbitrary (primitive type) variables, but not arbitrary expressions. We
also support access to the parameter values in postconditions.

• Operations on collections: No support for first-order logic other than the trivial
implication operator.

• Additional expressions: We support the “expose” mechanism, as well as a run-
time API for configurability.

• Interfaces: It is possible to add contracts to interfaces, but only through the inter-
type declaration feature of AspectJ. This means it does not follow the subtyping
principle.

• Correctness I: We impose precondition weakening and postcondition strengthen-
ing in subcontracts.

• Correctness II: The rules for behavioral subtyping are the same as specified in the
Eiffel standard.

• Contract violations: We use runtime exceptions. While there are no monitoring
features (we believe it is up to the programmer to explicitly decide what to do in
these situations), it would be straightforward to implement this.

• Configurability: Assertion enabling/disabling is supported, by assertion type and
class. It would be interesting to support package level granularity, but method
granularity seems “overkill”.

• Efficiency: There is a significant overhead of memory and (specially) processing
usage. This is discussed in detail in Section 4.

4 Performance

The experiment subject is a small text-mode Java application, which reads a comma-
separated values text file, and inserts a pair of values into a hash table. The applica-
tion is in two files: “Dictionary.java” (the supplier class) and “Main.java” (the client
class). Three versions of the program were written: the first version is an optimistic
implementation, in which contracts are only comments (“foobar”); in the second
version contracts are in-lined assertions using Java's 1.4 Assert Facility (“foobar-
jaf”); the third version writes the contracts using our prototype – DbC4J (“foobar-
dbc”). While the second solution may seem pointless, we brought it to our compari-
son because it corresponds to what could be obtained automatically by using a speci-
fication language for contract writing and a code transformation tool. The experiment
was performed with J2SE JDK 1.5.0 and AspectJ 1.5.3, under Fedora Core 4
GNU/Linux. 12 runs were made; the best and worst were removed; the resulting time
value is the average of the 10 remaining values. The time values are measured using
the currentTimeMillis() method. The quantitative results of the experiment
are summarized in Table 1. The measurement units used are: milliseconds (ms), lines
of code (LOC), and bytes (B).

125

Table 1. Performance experiment quantitative results.

 foobar foobar-jaf foobar-dbc
Execution time (ms) 7 7 45082
Source code size (LOC) 177 185 226
Source code size (B) 4396 4759 5406
Bytecode size (B) 4533 4755 23819

From this table, it is possible to observe some interesting facts. First, the DbC4J
version performance is about 6000 times slower than the original version. An extra
test was performed, running the DbC4J version with all assertions disabled: the ex-
ecution time was 49 milliseconds, about 7 times slower than the original. This con-
firms that performance degradation is essentially caused by the infrastructure Java
code (mostly reflection) rather than by the AspectJ code. Secondly, execution time in
the JAF version is similar to the original version. This shows that the assert feature
is optimized by the compiler and virtual machine, and poses no real overhead. Final-
ly, the size of the code increased when using contracts. What the table doesn't show is
that while in the JAF version the increase is on the client side, in the DbC version it is
on the supplier side. This means the DbC version would scale better.

Why is DbC4J performance so low? The largest bottleneck is the use of reflection,
a taxing mechanism. Thus, we can improve performance by decreasing the use of
reflection, either by algorithm optimizations, stricter pointcuts, or simply by changing
the library interface. The second bottleneck is AspectJ's overhead. In spite of conti-
nuous performance improvements in AspectJ's releases, there is little that can be done
here, other than limiting the scope of the pointcut expressions. Finally, it is worth
mentioning that one of the biggest advantages of incorporating DbC in the Java lan-
guage instead of using an ad-hoc solution, is the possibility of using first-order arti-
facts, which could be used to perform low-level compiler/JVM optimizations (similar
to those we observed in the assert facility).

5 Related Work

Behavioral specification languages such as Z [1], and more recently UML’s OCL
[20] presented a great influence in DbC solutions. Several extensions to abstract syn-
tax tree of Java have been proposed [5], [7]. Extending the language is the most
straightforward technique, but makes the code non-valid under a regular Java compi-
ler. As such, several generative programming techniques have been employed.

Using source code preprocessing techniques, such as in iContract [13], contracts
are written in source code comments, which are processed by a tool that generates the
equivalent Java code to verify such contracts. These solutions need to use a specific
language for contracts, which implies an extra effort on the software programmer.
Also, preprocessing is a “one way” technique: traceability is discarded, as well as
interoperability with development tools, such as debuggers and IDEs.

Bytecode instrumentation is a technique in which contract checking code is in-
serted at bytecode level [12]. This technique makes possible the writing of contracts
in the form of executable code, but it is very intrusive, as it interferes with the Java

126

compile/runtime behavior, which may change in different releases, platforms or im-
plementations, as well as cause unpredictable side effects.

A more recent technique is to use the compiler annotation plug-in API made avail-
able in Java 1.6, such as in ModernJass [22]. This facility enables seamless integra-
tion of third-party plug-ins with standard tools, like compilers and IDEs.

Using AOP for implementing DbC is not a novel technique. For instance, Con-
tract4J [24] is an AspectJ solution that, unlike our work, uses Java annotations to
specify the contract, instead of Java code. While this makes contracts less wordy and
simplifies the introduction of the old and result mechanisms, annotations are metada-
ta, which means they are not validated by the Java compiler, but interpreted by a
third-party interpreter.

Specification languages such as the Java Modeling Language (JML) [4] allow
richer specifications than executable code, namely by incorporating static checking
and theorem-proving techniques. However, JML specifications are not executable
code, and as such, the full use of this language requires the adoption of specific tools
(compiler, documentation generator, etc.), besides the JML language itself.

6 Conclusions

Ad-hoc mechanisms that enable Design by Contract in languages that do not have
native support for the methodology tend to be clumsy and unnatural. Ours is no ex-
ception, but at least it does not introduce any additional language complexity. The
contracts are written in the source language, the assertions are indeed compiled (they
are not mere comments) using the language compiler, and if there was nothing else,
they would have some merit as documentation. With the addition of the DbC aspect
and the aspect compiler, the contracts are transparently weaved, and enforced in the
executable program. Note that the programmer does not have to be knowledgeable of
aspect technology: he merely invokes a tool that somehow “switches on” the con-
tracts. From this perspective, the essential idea is similar to the one underlying one of
the killer applications for aspects: profiling. In order to profile a program using an
aspect, one only has to add the aspect: no more interaction is required.

Design for Contract is a methodology for developing software starting from the
specification of the methods by means of their pre and postconditions. Once we
achieve that, it is only natural to think of automatic generation of test cases, and, even
better, of automatically proving that the contracts cannot be violated during the ex-
ecution of the program [4]. These are ambitious tasks that are better handled, as DbC
itself, with some kind of “native” support. Nevertheless, we cannot exclude that an
ad-hoc solution, in the vein of the one presented here, can be instrumental in bringing
the techniques to wider audiences.

References

1. Abrial, J., Schuman, S., and Meyer, B. A Specification Language. On the Construction of
Programs, Cambridge University Press, McNaughten, R., and McKeag, R. (editors), 1980.

127

2. AspectJ Team, The. The AspectJ Programming Guide. 2003.
3. Balzer, S., Eugster, P., and Meyer, B. Can Aspects Implement Contracts? Proceedings of

Rapid Integration of Software Engineering techniques (RISE), Geneva, Switzerland, Sep-
tember 13-15, 2006.

4. Burdy, L., Cheon, Y., Cok, D., et al. An overview of JML tools and applications. Interna-
tional Journal on Software Tools for Technology Transfer, June 2005.

5. Duncan, A., and Hölzle, U. Adding Contracts to Java with Handshake. Technical report
TRCS98-32, December 8, 1998.

6. Ecma. Eiffel: Analysis, Design and Programming Language (2nd ed.), June 2006.
7. Findler, R., and Felleisen, M. Contract Soundness for Object-Oriented Languages. Confe-

rence on Object Oriented Programming Systems Languages and Applications (OOPSLA),
Florida, USA, 2001.

8. First Person Inc. Oak Language Specification. 1994.
9. Gosling, J., Joy, B., Steele, G., and Bracha, G. The Java Language Specification (3rd edi-

tion). Prentice-Hall, 2005.
10. Guerreiro, P. Simple Support for Design by Contract in C++, TOOLS USA 2001, Proceed-

ings, pages 24-34, IEEE, 2001.
11. Hoare, C. An Axiomatic Basis for Computer Programming. Communications of the ACM,

Vol. 12, No. 10, October 1969.
12. Karaorman, M., and Abercrombie, P. jContractor: Introducing Design-by-Contract to Java

Using Reflective Bytecode Instrumentation. Formal Methods in System Design, Vol. 27,
No. 3, November, 2005.

13. Kramer, R. iContract - the Java design by contract tool. 26th Technology of Object-
Oriented Languages and Systems (TOOLS), California, USA, 1998.

14. Laddad, R. AspectJ in Action: Pratical Aspect-Oriented Programming. Manning, 2003.
15. Lindholm, T., and Yellin, F. The Java Virtual Machine Specification. Prentice-Hall, 1999.
16. Liskov, B., and Wing, J. Family Values: A Behavioral Notion of Subtyping. Technical

report MIT/LCS/TR-562b, Carnegie Mellon University, July 16, 1993.
17. Meyer, B. Eiffel: The Language. Prentice-Hall, 1991.
18. Meyer, B. Object-Oriented Software Construction (2nd ed.). Prentice-Hall, 1997.
19. Mitchell, R., and McKim, J. Design by Contract, by Example. Addison-Wesley, 2002.
20. OMG Unified Modeling Language (UML) 2.0 OCL convenience document. 2005.
21. Plösh, R. Evaluation of Assertion Support for the Java Programming Language. Journal of

Object Technology, Vol. 1, No. 3, Special Issue: TOOLS USA 2002 proceedings.
22. Rieken, J. Design by Contract for Java - Revised (master thesis), Carl von Ossietzky Un-

iversität - Correct System Design Group, April 24th, 2007.
23. Sun Microsystems Java 2 Platform Standard Edition 5.0 API Specification. 2004.
24. Wampler, D. Contract4J for Design by Contract in Java: Designing Pattern-Like Protocols

and Aspect Interfaces. Industry Track at AOSD 2006, Bonn, Germany, March 22, 2006.

128

