
Knowledge Extraction and Management for Insider
Threat Mitigation

Qutaibah Althebyan and Brajendra Panda

Computer Science and Computer Engineering Department
University of Arkansas, Fayetteville, AR 72701, U.S.A.

Abstract. This paper presents a model for insider threat mitigation. While many
of the existing insider threat models concentrate on watching insiders’ activities
for any misbehavior, we believe that considering the insider himself/herself as a
basic entity before looking into his/her activities will be more effective. In this
paper, we presented an approach that relies on ontology to extract knowledge
from an object. This represents expected knowledge that an insider might gain
by accessing that object. We then utilized this information to build a model for
insider threat mitigation which ensures that only knowledge units that are
related to the insider’s domain of access or his/her assigned tasks will be
allowed to be accessed by such insiders.

1 Introduction

Security issues are increasingly becoming cumbersome for both individuals and
organizations. Individuals want to ensure that their private data remains unexposed to
others. At the same time, organizations aim to increase their productivity by trusting
their employees while maintaining confidentiality, integrity, and/or availability [1] of
information. However, no organization can fully trust its employees because some
employees, having malicious intentions, might be waiting for opportunities to access
information violating the organization’s security policy. Hence, the insider threat
problem [1, 2, 3, 4, 5] is becoming one of the most severe problems that needs to be
addressed and resolved in an effective manner. In our work, we define an insider as a
person with legitimate access to the underlying system. In an organization’s effort to
stop insiders’ attacks, it must ensure that an insider accesses only documents that are
relevant to his/her domain of access and his/her assigned tasks [6]. Moreover, the
nature of insiders, who are privileged to access many resources of the organization,
enables them to get access to many important assets of the organization. Through the
broad familiarity with their organization besides their privileges, insiders can
accumulate knowledge of many assets of their organization. This knowledge gives
insiders, with malicious intentions, opportunities to obtain sensitive information about
organizations’ assets by either accessing sensitive assets or by predicting information
about sensitive objects through their knowledge of related objects. Hence, an
organization is responsible for making sure that certain insiders’ knowledge does not
increase to a point by which they can get access to organization’s sensitive data.

Althebyan Q. and Panda B. (2008).
Knowledge Extraction and Management for Insider Threat Mitigation.
In Proceedings of the 6th International Workshop on Security in Information Systems, pages 99-110
DOI: 10.5220/0001741800990110
Copyright c© SciTePress

In this paper, we address the problem of insider threats and present a model that
enables any organization control its insiders’ activities and stop them from accessing
objects that they are not allowed to access. In fact, we divided our work into two
parts. Section 2 deals with extracting knowledge from objects that an insider requests
access to. We believe that to solve the problem of the insider threat, we need to
consider the insider as our basic entity that should be dealt with before looking into
his/her activities. In our effort to extract knowledge from an object (especially
documents) we followed an ontological approach that enabled us to extract
knowledge which will be saved as knowledge units from a given object. Then, in
section 4 we use insider’s accumulated knowledge besides other information to build
a model to mitigate insider threats. In our model we make sure that individuals of an
organization do not get access to any object unless it is relevant to their domain of
access. In fact, we deal with individuals who try to obtain information from
organization’s other domains which might help them to gain access or uncover
information about sensitive data of their own organization.

2 Extracting Knowledge from Objects using Ontology

We assume that the underlying system has different domains that organization’s
individuals are allowed to get access to. An insider might be allowed to gain access to
more than one domain if his/her assigned tasks need that. However, he/she is not
allowed to simultaneously access more than one account that belongs to only one
domain.

Domains in the underlying system are categorized and named according to their
specialization. For example, a domain that is related to finance is called finance-
domain, a domain that is related to employees and their information might be named
as human-resource-domain and so on. So, the domain that an insider is accessing can
be specified and determined. Usually an insider has privileges through which he/she
can access different objects in his/her organization. Throughout this paper, we use
‘object’ and ‘document’ to mean the same. So, both words are interchangeably used
in this paper. An insider upon accessing an object increases his/her knowledge. We
assume that any knowledge an insider gains is saved in his/her knowledgebase. For
example, consider an insider who got access to an important document that has
sensitive information. Then this person ascertained different facts from this document.
These facts are added to the knowledgebase of this individual and are saved in his/her
knowledgebase as different knowledge units. This section aims to extract knowledge
units from objects an insider has access to. In our paper we follow an ontological
approach to extract such knowledge units.

For each domain of access a predefined ontology of topics is determined in
advance. That is, for every object an insider accesses, the domain of access is
identified. For each domain a set of ontology of topics are predefined. These topics
are terms that are related to the content of the corresponding object. We are interested
in computing the relevance of the content of a document to the domain of access.
Hence, the relevance of these related ontological terms to the content of the
corresponding objects is computed. We assume that an insider upon accessing an
object, which belongs to a specific domain, might be interested in information that is

100

related to that domain. For example, an insider accessing a document that belongs to a
finance domain, might be interested in information related to that domain, namely,
salaries of employees (other examples are valid).

2.1 Document Categorization

According to our model specifications, we distinguish between two kinds of
documents (although other kinds of documents might exist):

1. Documents in which their contents are stored as tables

2. Documents in which their contents are stored as plain text

The first type of documents is easy to extract knowledge units from. Information in
the tables can be distinguished by a row/column entry. That is, the first row/column
entry has a named entry. Hence, each entry represents a knowledge unit. Knowledge
units can be combined to give higher knowledge units. For example, consider a
document d has the following content that contains a single table (employee-salary
table) of the form as shown in table 1:

Table 1. Employee-salary table.

Name ID Salary
A 1 $1000
B 2 $2000
C 3 $3000

The above table contains a set of (Name, ID, Salary) of three employees in the
organization. Hence, at least three knowledge units can be extracted from the above
table.

K1→ Name(Employee) K2 → ID(Employee) K3 → Salary(Employee)

Higher knowledge units can also be extracted by combining existing knowledge units
[7]. Examples of combining knowledge units are:

K12 → Name-ID(Employee) K123 → Name-ID-Salary(Employee)

The second type of documents needs extra processing to extract different knowledge
units. In fact we use a measure that quantifies the relevance of the content of a
document to the domain of access, as explained in the next section.

2.2 Relevance Factor

The relevance factor is a measurement that quantifies how much the content of an
object (especially documents) is related to the domain of access for a specific insider.
This means that the relevance factor of an object measures how much the several facts
of the object are related to the domain of access of the corresponding insider. To
calculate the relevance factor of the object, we followed a procedure presented in [8]
and borrowed some of their ideas which involve computing the relevance of a

101

document in performing a focused crawling in the web. We adapted some of their
ideas to fit in our work to calculate the relevance of the content of an object to the
domain of access of the corresponding insider. Relevance of the content of an object f
to the domain of access D will be computed as:

 (1)

where:
 R(f) represents the relevance of the content of document f to the domain of access

 P(c|f) represents probability that object f mentioned topic c

In equation (1) the probability P(c|f) is computed as:

 (2)

Using Bayes rule and ontology the last conditional probability can be computed as:

(3)

where the sum ranges over the siblings c’ of c. Finally in equation (3) can be
computed using a Bernoulli binomial distribution model:

(4)

(5)

where:
t: represents terms(words) in the document f,
n(f): represents the number of words in f,
n(f, t): represents the number of times the t appears in f,

: represents the probability of t in topic c.

For the probability in (4) we used the Bernoulli binomial distribution which fits
the specifications of our problem and works well in our model.

Consider the following example to verify our procedure of extracting knowledge
units. An example of existing ontology has been used in this case. Three documents
are created in plain text. That is, they do not have named entities in tables. All
documents belong to the same domain, which is the domain of the finance department
as indicated in table 2 and are accessed by the same insider. We apply the above
procedure to extract different knowledge units from these documents.

Table 2. Number of words and domain of access of three documents.

 Doc1 (project_total_cost) Doc2 (employee_salary) Doc3 (hourly_rates)
Domain Finance Department Finance Department Finance Department
Words 53 200 79

102

Table 2 contains information about three documents (project_total_cost,
employee_salary, hourly_rates) for different employees in an organization. As
discussed earlier, we are going to extract different knowledge units from different
documents that belong to a specific domain for a given insider. Our procedure uses
an existing ontology that describes the given domain of access. So, a set of related
terms (called topics in our work) which pertains to the underlying domain of access
can be obtained from this ontology. Using our discussed approach, relevance values
are computed using the above equations (1) - (5). These relevance values represent
values that measure the relevance of the content of each document to the domain of
access. The following tables (table 3, table 4, and table 5) show several calculated
relevance values for different ontological topics for documents of table 2.

Table 3 shows that two topics (Name and cost) of a project are found to be
relevant and one topic is found to be not relevant. Hence, these two relevant topics are
represented as two new knowledge units and are saved in the corresponding insider’s
knowledgebase as new knowledge units. A possible representation might be as:

K1→ Project_Name (for Name attribute) K2→ Cost
Table 4 shows that all the three ontological topics are found to be relevant and hence,
are saved in the insider’s knowledgebase as new knowledge units. They might be
represented as:

K3→ Employee_Name(for Name attribute) K4→ Employee_ID (for ID attribute)
K5→ Salary

Table 5 shows that two of the ontological topics are found to be relevant and hence,
are represented as new knowledge units. They might be represented as:

K6→ Employee_Rank (for Rank attribute) K7→ Hourly_Rates (for Rates attribute)

Table 3. Doc 1. Table 4. Doc 2. Table 5. Doc 3.
Topics R(f): Doc1
Name 0.43

Cost 0.12

Salary 0.0

Topics R(f): Doc2
Name 0.71

ID 0.71

Salary 0.3

Topics R(f):
Doc3

Rank 0.1

Rates 0.48

Category 0.0

The above new knowledge units are added as new nodes of a knowledge graph (KG)
[7] for the corresponding insider. For example, if we consider only one knowledge
unit from the above tables namely (K1, K5, K7) and represent them in a knowledge
graph KG of the corresponding insider then this KG will look as depicted in fig. 1. In
fig. 1, O1 corresponds to document 1, O2 corresponds to document 2, and O3
corresponds to document 3 in our example. All other knowledge units will also be
added to the insider’s KG. Readers who are interested in more details about
knowledge graphs and how to build these graphs, may refer to [7] for more details.

103

Fig. 1. An Example of a Knowledge Graph.

3 Dependency Graphs and Ontology

In this section we use concepts of ontology [9, 10, 11] discussed in the previous
section and dependency graphs (DGs) [7] to extract knowledge units from descendent
documents given that a set of knowledge units in the ancestor document has been
specified. To provide familiarity with the concept of dependency graph, we give a
brief description of dependency graphs next.

3.1 Dependency Graphs (DGs)

A Dependency graph (DG) “is a global hierarchal graph that shows all dependencies
among various objects in the system” [7].

Usually objects, especially documents, are created depending on other objects in
the same system. Such a dependency relationship is an important relationship through
which insiders may be able to locate important objects in the system. A DG contains
nodes for all objects in the system. Our concept of a DG is similar to the System
Dependency Graph, SDC, presented by Larsen and Harrold [12] for modeling an
object-oriented program.
Fig. 2 represents an example of a DG of objects. The DG is a dynamic graph that is
updated for every newly created document in the system. A new edge is added
between the new document and the document (or documents) for which the new
document relies on. Also, the DG will be updated periodically to reflect operations
affecting the documents. A DG is a one directional graph in which the direction of the
edge indicates the dependency direction which can be verified from fig. 2.
Throughout this paper, we follow the top down approach for representing
dependencies among different objects in the DG. So, if we consider the dependency
relation between any two objects as a function F, then we can verify the following
relation O1 = F(O2, O3) from fig. 2 to be true.

104

O2 O3

O1
Fig. 2. An example of a Dependency Graph of objects.

It is important to clarify the meaning of several dependency relations (represented by
directed edges) that might exist between nodes of a DG. For example, in the above
example, the relation O1 = F(O2, O3) indicates that object O1 is a function of two
objects O2 and O3. In reality this relation has a meaning that is consistent with the
context for which this relation has been created. Generally speaking, this relation
means that some information in O2 and O3 has been used to derive information in O1.
This information contributes to some or all knowledge units that O1 contains.

3.2 Dependency Graphs and Ontology

A dependency relationship between any two objects (documents in this discussion) as
discussed earlier is an important relation through which knowledge units are
specified. An example of such important relation between two objects, which extends
our previous example in section 2.3 with some modifications, is the following:
Object D1 contains salaries of employees computed by considering their hourly rates
and the number of hours they worked. That is: D1 → salary(hourly_rate,
hours_worked).
Information in object D1 can be represented by the following table:

Table 6. Information in object D1.

Employee ID Salary Hourly_rate Hours_worked

Also consider that object D2 contains hourly rates of all employees, that is: D2→
hourly_rate, and object D3 contains number of hours each employee worked, that is:
D3→ hours_worked.

The above three objects D1, D2, and D3 have the following dependency relation: D1 =
F(D2, D3). Fig. 2 illustrates this relation where (O1, O2, O3) are represented by (D1, D2,
D3) in our current example.

Assume that in the above example knowledge units of object D1 have been specified
using our previous discussion for extracting knowledge units of an object discussed in
section 2.3.Among the extracted knowledge units are Ui, Uj, and Ul which are
specified as follows:

Ui→ salary Uj→ hourly_rates Ul→ hours_worked
where Ui, Uj, and Ul represent different knowledge units for different employees
under consideration in object D1. That is, Ui (as an example) represents a set of

105

knowledge units for salaries of different employees under consideration. Knowledge
units Uj, and Ul can be interpreted in a similar way.
As stated earlier there is a dependency relation between D1 and D2. Another
dependency relation from D1 to D3 also exists. Different sets of knowledge units of D1
(Ui, Uj, Ul) have been specified. The above two dependency relations and the sets of
knowledge units can be used to specify part of the knowledge units of descendent
objects D2 and D3. Hence, in the previous example a new set of knowledge units Um
among others in D2 can be specified and they have the form Um → hourly_rates.
Also, a new knowledge unit Ur in D3 can be specified as Ur→ worked_hours. The
above example is a brief illustration of the importance of dependency graphs in
extracting knowledge units from different related objects.

Propagation of Knowledge Units using DGs. In the following, we discuss in more
details using DGs and ontology to extract knowledge units from an object given that
this object depends on another object. Fig. 3 shows two objects Di and Dj. Knowledge
units in Di have been specified based on a specific predefined ontology as K1, K2, K3,
and K12. Both objects Di and Dj have a dependency relation represented by Dj = F(Di).
This dependency relation can be captured from the DG of the underlying system and
is illustrated in fig. 3. Since Dj is dependent on Di there should be at least one
knowledge unit that is common in both documents. Using this dependency relation
between the two objects and a common ontology as illustrated in fig. 3 a knowledge
unit say K1 is a common knowledge unit (attribute) in both objects. Since K1 is
specified as knowledge unit in Di, it will also be specified as a new knowledge unit in
Dj.

DiDj

Ontology

K12 K3

K1 K2

Common
Ontology

K4 K5

dep.
relation

Ontology

Fig. 3. Overview of knowledge units’ extraction using DGs and Ontology.

106

This fact is shown in fig. 3 and the common knowledge unit K1 in Di has been specified as a
new knowledge unit in Dj as K5. More precisely, the relevance of each knowledge unit (in
object Di) to object Dj will be computed using our previous procedure in section 2.3. If any
knowledge unit of Di is found to be relevant to Dj then it will be specified as a new knowledge
unit in Dj. Since the two objects use different ontologies, a different name (K5) for the new
knowledge unit has been specified.

4 Managing Insiders’ Accesses

We presented an ontological approach to extract knowledge units from an object that
belongs to a specific domain of a given insider. In our approach we calculated
relevance values for several facts (called topics). These topics, if found relevant to the
domain of access, are considered new knowledge units for the given user if he/she has
not accessed them before. These knowledge units are saved for future use and
represented by knowledge graphs (KGs). Hence, each knowledge unit is associated
with a specific relevance value. That is: K1 → R1(f), K2 → R2(f), …, Kn → Rn(f).
Since we assume that several domains exist, then some objects (especially
documents) might belong to different domains. These objects might be requested by
insiders from different domains. When such an object is requested by an insider for
the first time, knowledge units relevant to that domain are extracted. Subsequent
requests will use existing knowledge units. An object as a whole might contain
knowledge units that are relevant to multiple domains. Knowledge units that are not
relevant to the requesting insider domain should not be disclosed to such insiders
unless they are not sensitive. So, the system must detect such situations and be able to
stop them. In our model, every domain has a specific threshold value. Knowledge
units of an object having relevance factor more than the threshold value are
considered sensitive and should not be provided to users who belong to different
domains.

These several threshold values are used in sensitivity check which says:
Sensitivity_Check: For a specific domain of access D and a knowledge unit Ki: if
relelvance(Ki) > domain_threshold(D), then Ki is sensitive. Otherwise, it is not
sensitive.

In our model, employees of an organization can access objects in their domain.
Objects that do not belong to an insider’s domain should not be accessed by such
person except for certain cases that will be discussed shortly. If insiders are allowed
to freely access documents outside of their domain then this represents a violation that
might be devastating to the system. An approach that detects similar situations and
stops insiders from accessing information that they should not access is developed
and provided next.
Our model defines the following access policy:
When an insider requests access, access is only granted if the object:

1. Is in the same domain of the requesting insider, or
2. It does not belong to the requesting insider’s domain, but has knowledge

units that are relevant to the domain of access of that requester, or

107

3. It does not belong to the requesting insider domain and does not contain
knowledge units that are relevant to his/her domain, but contains knowledge
units that are not sensitive.

To clarify things suppose that there exists an object O that belongs to domain A.
Object O contains knowledge units K1, K2, K3, and K4 with relevance values as: 0.6,
0.4, 0.8, and 0.2 respectively. These knowledge units are relevant to different
domains, namely; K1 and K2 are relevant to domain B while K3 and K4 are relevant to
domain C. Domain A threshold value equals to 0.7, while domain B threshold value
equals to 0.65, and domain C threshold value equals to 0.75. Suppose that two
insiders S1 ϵ dom(B) and S2 ϵ dom(C) try to access object O. Since object O belongs
to neither domain B nor domain C, then their requests might be denied unless it
contains knowledge units relevant to their domains or they satisfy the sensitivity
check. The following cases can be distinguished:

• Insider S1 belongs to domain B. Both K1 and K2 are relevant to domain B.
Neither K3 nor K4 are relevant to domain B (they are relevant to domain C)

• Insider S2 belongs to domain C. Both K3 and K4 are relevant to domain C.
Neither K1 nor K2 are relevant to domain C (they are relevant to domain B).

Since knowledge units K1 and K2 are relevant to domain B (which insider S1 belongs
to) then both K1 and K2 are accessible by S1. However, since K3 and K4 are not
relevant to his/her domain then they might/might not be accessible. After applying the
sensitivity check: relevance(K3) = 0.8 which is greater than domain C threshold value
= 0.75. That is, K3 is considered sensitive and hence, K3 will not be accessible. Also,
relevance(K4) = 0.2 which is less than 0.75. Hence, K4 is accessible because it does
not contain enough sensitive information related to domain C that must not be
revealed to insider S1. Thus, our model compares relevance of a knowledge unit with
the threshold value of the domain it is relevant to. The reason is to make sure that this
knowledge unit does not contain enough sensitive information that should be kept
hidden from insiders of other domains. That is, the knowledge an insider can gain
from this knowledge unit is less than the sensitivity threshold of that domain. The
same procedure is applied to requests of S2. It is found that knowledge units K3 and
K4 are accessible by S2 because they are relevant to his/her domain. However, for K1
and K2 the sensitivity check is applied. Relevance(K1) = 0.6 which is less than domain
B threshold value. Also relevance(K2) is less than domain B threshold value.
Therefore, both K1 and K2 are accessible by S2 besides K3 and K4. That is, S2 can
access the entire object O.
 From the above example, it can be concluded that insider S2 can access the whole
object O. However, insider S1 gets partial access to the object O. In fact, he will get
access to knowledge units K1, K2, and K4. Since K3 has sensitive information that he
should not access, a filtration process will be initiated which filters the object O out
by removing knowledge unit K3 from that object. The remaining content of object O
is then presented to insider S1.
 Based on the above example, there are three cases to consider: objects that
contain knowledge units that are only relevant to the domain of access of the
requesting individual, objects with knowledge units some of which are relevant to the
domain of access and some others are not relevant, and objects with knowledge units
all of which are not relevant to the domain of access of the requesting individual.

108

For an outstanding request to access an object O by a specific insider Si the following
algorithm is used:
Algorithm: Manage_Insider_Request{
 If O ϵ domain D of Si then
 Grant Access to object O
 Else
 For every knowledge unit Ki ϵ O
 If Ki is relevant to domain D then
 Ki is accessible
 Else //apply the sensitivity check

If relevant(Ki) < domain_threshold then
//threshold for related domain of Ki

 Ki is accessible
 Else
 Ki is not accessible
 If Ki is not accessible then

Filtration(object O)// a function that removes//
sensitive Ki’s from the object O.

 Return object O to Si after Filtration()
}

The following actions are performed for the above categorization of objects: after
applying the above algorithm to the first type of objects, requests to these objects are
allowed. For second type of objects: knowledge units found to be non sensitive are
accessible by such insiders while knowledge units found to be sensitive are not
accessible. Hence, the filtration operation deletes these sensitive knowledge units
from the requested object. So, the insider receives an object with only partial content
of the original object. For the third type of objects: knowledge units found to be non
sensitive are accessible by such insiders while knowledge units that are sensitive are
not accessible. Hence, the filtration operation deletes these sensitive knowledge units
from the requested object. The filtration operation deletes content of knowledge units
that should not be revealed to the underlying insider. The above procedure ensures
that only relevant information to the insiders’ assigned tasks are revealed besides
information that is not sensitive to his/her domain. This limits malicious activities that
might be initiated by insiders with malicious intensions.

5 Conclusions

This paper studies the problem of insider threats. In our paper we presented an
ontological approach to extract knowledge units from a given object. After extracting
knowledge units we presented a procedure which used these knowledge units to
control insiders’ knowledge. We have the assumption that increased knowledge of
insiders with malicious intension gives them more opportunities to fulfill their
motives. We then presented an insider threat mitigation model which ensures that
insiders, with knowledge of their organization, access only objects that are related to
their domain and assigned tasks. According to our model, knowledge units of a given
object are either sensitive or non sensitive. Our model ensures that insiders who
request objects outside their domain do not get access to objects with sensitive
information. In fact, our model utilized a filtration process which filters out those
sensitive knowledge units from an object and presents the filtered object without the
sensitive information to the requesting insider.

109

Acknowledgements

This work has been supported in part by US AFOSR under grant FA 9550-04-1-0429.
We are thankful to Dr. Robert. L. Herklotz for his support, which made this work
possible. We are also thankful to the anonymous reviewers for their valuable remarks.

References

1. M. Maybury, P. Chase, B. Cheikes, D. Brackne, S. Matzner, T. Hetherington, B. Wood, C.
Sibley, J. Marin, T. Longstaff, L. Spitzner, J. Haile, J. Copeland, S. Lewandowski. Analysis
and Detection of Malicious Insiders. In Proceedings of the 2005 International Conference
on Intelligence Analysis. Sheraton Premiere, McLean, VA. May 2-4.

2. R. Chinchani, A. Iyer, H. Ngo, S. Upadhayaya. Towards a theory of insider threat
assessment. Proceedings of the 2005 International Conference of the Dependable Systems
and Networks (DSN 2005). Yokohama, Japan, June 28 – July 01, 2005.

3. N. Nguyen, P. Reiher, G. Kuenning. Detecting Insider Threats by Monitoring System Call
Activity. In Proceedings of the 2003 IEEE Workshop on Information Assurance. United
States Military Academy, West Point, NY.

4. E. Schultz. A framework for understanding and predicting insider attacks. Computers &
Security, Vol. 21, p. 526-531, 2002.

5. I. Ray and N. Poolsappasit. Using Attack Trees to Identify Malicious Attacks from
Authorized Insiders. In the Proceedings of the Tenth European Symposium on Research in
Computer Security, Milan, Italy, September 2005.

6. B. Aleman-Meza, P. Burns, M. Eavenson, D. Palaniswami, A. Sheth. An Ontological
Approach to the Document Access Problem of Insider Threat. In Proceedings of the IEEE
International Conference on Intelligence and Security Informatics, ISI 2005, Atlanta,
Georgia, USA, May 19-20, 2005, 486-491.

7. Q. Althebyan, B. Panda. A Knowledge-Base Model for Insider Threat Prediction. In
Proceedings of the 2007 IEEE Workshop on Information Assurance United States Military
Academy, West Point, NY 20-22 June 2007.

8. S. Chakrabarty, M. V. D. Berg, and B. Dom. Focused Crawling: A New Approach to
Topic-Specific Web Resource Discovery. Computer Networks, 31(11-16), pp 1623-1640,
1999.

9. S. Symonenko, et al. Semantic Analysis for Monitoring Insider Threats. IEEE Intelligence
and Security Informatics (ISI), 2004.

10. M. K. Henry, S. Arijit, M. Fox and M. Dalkilic. A Measurement Ontology Generalizable
for Emerging Domain Applications. Journal of Database Management (JDM) 18:1, Jan-
Mar 2007, pp. 20-42.

11. M. K. Henry, S. Arijit. Extracting Knowledge from XML Document Repository: A
Semantic Web-Based Approach. Journal of Information Technology and Management, Feb
2007.

12. L. Larsen, M. Harrold. Slicing Object-Oriented Software. In Proceedings of the 18th
International Conference in Software Engineering, March 1996.

110

