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Abstract. This paper presents a model for insider threat mitigation. While many 
of the existing insider threat models concentrate on watching insiders’ activities 
for any misbehavior, we believe that considering the insider himself/herself as a 
basic entity before looking into his/her activities will be more effective. In this 
paper, we presented an approach that relies on ontology to extract knowledge 
from an object. This represents expected knowledge that an insider might gain 
by accessing that object. We then utilized this information to build a model for 
insider threat mitigation which ensures that only knowledge units that are 
related to the insider’s domain of access or his/her assigned tasks will be 
allowed to be accessed by such insiders. 

1 Introduction 

Security issues are increasingly becoming cumbersome for both individuals and 
organizations. Individuals want to ensure that their private data remains unexposed to 
others. At the same time, organizations aim to increase their productivity by trusting 
their employees while maintaining confidentiality, integrity, and/or availability [1] of 
information.  However, no organization can fully trust its employees because some 
employees, having malicious intentions, might be waiting for opportunities to access 
information violating the organization’s security policy. Hence, the insider threat 
problem [1, 2, 3, 4, 5] is becoming one of the most severe problems that needs to be 
addressed and resolved in an effective manner. In our work, we define an insider as a 
person with legitimate access to the underlying system. In an organization’s effort to 
stop insiders’ attacks, it must ensure that an insider accesses only documents that are 
relevant to his/her domain of access and his/her assigned tasks [6]. Moreover, the 
nature of insiders, who are privileged to access many resources of the organization, 
enables them to get access to many important assets of the organization. Through the 
broad familiarity with their organization besides their privileges, insiders can 
accumulate knowledge of many assets of their organization. This knowledge gives 
insiders, with malicious intentions, opportunities to obtain sensitive information about 
organizations’ assets by either accessing sensitive assets or by predicting information 
about sensitive objects through their knowledge of related objects. Hence, an 
organization is responsible for making sure that certain insiders’ knowledge does not 
increase to a point by which they can get access to organization’s sensitive data. 
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In this paper, we address the problem of insider threats and present a model that 
enables any organization control its insiders’ activities and stop them from accessing 
objects that they are not allowed to access. In fact, we divided our work into two 
parts. Section 2 deals with extracting knowledge from objects that an insider requests 
access to. We believe that to solve the problem of the insider threat, we need to 
consider the insider as our basic entity that should be dealt with before looking into 
his/her activities. In our effort to extract knowledge from an object (especially 
documents) we followed an ontological approach that enabled us to extract 
knowledge which will be saved as knowledge units from a given object. Then, in 
section 4 we use insider’s accumulated knowledge besides other information to build 
a model to mitigate insider threats. In our model we make sure that individuals of an 
organization do not get access to any object unless it is relevant to their domain of 
access. In fact, we deal with individuals who try to obtain information from 
organization’s other domains which might help them to gain access or uncover 
information about sensitive data of their own organization.    

2 Extracting Knowledge from Objects using Ontology 

We assume that the underlying system has different domains that organization’s 
individuals are allowed to get access to. An insider might be allowed to gain access to 
more than one domain if his/her assigned tasks need that. However, he/she is not 
allowed to simultaneously access more than one account that belongs to only one 
domain.  

Domains in the underlying system are categorized and named according to their 
specialization. For example, a domain that is related to finance is called finance-
domain, a domain that is related to employees and their information might be named 
as human-resource-domain and so on. So, the domain that an insider is accessing can 
be specified and determined. Usually an insider has privileges through which he/she 
can access different objects in his/her organization. Throughout this paper, we use 
‘object’ and ‘document’ to mean the same. So, both words are interchangeably used 
in this paper.  An insider upon accessing an object increases his/her knowledge. We 
assume that any knowledge an insider gains is saved in his/her knowledgebase.  For 
example, consider an insider who got access to an important document that has 
sensitive information. Then this person ascertained different facts from this document. 
These facts are added to the knowledgebase of this individual and are saved in his/her 
knowledgebase as different knowledge units. This section aims to extract knowledge 
units from objects an insider has access to. In our paper we follow an ontological 
approach to extract such knowledge units.  

For each domain of access a predefined ontology of topics is determined in 
advance. That is, for every object an insider accesses, the domain of access is 
identified. For each domain a set of ontology of topics are predefined. These topics 
are terms that are related to the content of the corresponding object. We are interested 
in computing the relevance of the content of a document to the domain of access. 
Hence, the relevance of these related ontological terms to the content of the 
corresponding objects is computed. We assume that an insider upon accessing an 
object, which belongs to a specific domain, might be interested in information that is 
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related to that domain. For example, an insider accessing a document that belongs to a 
finance domain, might be interested in information related to that domain, namely, 
salaries of employees (other examples are valid).  

2.1 Document Categorization  

According to our model specifications, we distinguish between two kinds of 
documents (although other kinds of documents might exist): 

1. Documents in which their contents are stored as tables 

2. Documents in which their contents are stored as plain text 

The first type of documents is easy to extract knowledge units from. Information in 
the tables can be distinguished by a row/column entry. That is, the first row/column 
entry has a named entry. Hence, each entry represents a knowledge unit. Knowledge 
units can be combined to give higher knowledge units. For example, consider a 
document d has the following content that contains a single table (employee-salary 
table) of the form as shown in table 1: 

Table 1. Employee-salary table. 

Name ID Salary 
A 1 $1000 
B 2 $2000 
C 3 $3000 

The above table contains a set of (Name, ID, Salary) of three employees in the 
organization. Hence, at least three knowledge units can be extracted from the above 
table.  

K1→ Name(Employee) K2 → ID(Employee) K3 → Salary(Employee) 

Higher knowledge units can also be extracted by combining existing knowledge units 
[7]. Examples of combining knowledge units are: 

K12 → Name-ID(Employee)   K123 → Name-ID-Salary(Employee) 

The second type of documents needs extra processing to extract different knowledge 
units. In fact we use a measure that quantifies the relevance of the content of a 
document to the domain of access, as explained in the next section.  

2.2 Relevance Factor 

The relevance factor is a measurement that quantifies how much the content of an 
object (especially documents) is related to the domain of access for a specific insider. 
This means that the relevance factor of an object measures how much the several facts 
of the object are related to the domain of access of the corresponding insider. To 
calculate the relevance factor of the object, we followed a procedure presented in [8] 
and borrowed some of their ideas which involve computing the relevance of a 
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document in performing a focused crawling in the web. We adapted some of their 
ideas to fit in our work to calculate the relevance of the content of an object to the 
domain of access of the corresponding insider.  Relevance of the content of an object f 
to the domain of access D will be computed as: 

 (1) 

where: 
 R(f) represents the relevance of the content of document f to the domain of access 

 P(c|f) represents probability that object f mentioned topic c 

In equation (1) the probability P(c|f) is computed as: 

 (2) 

Using Bayes rule and ontology the last conditional probability can be computed as: 

 
(3) 

where the sum ranges over the siblings c’ of c. Finally  in equation (3) can be 
computed using a Bernoulli binomial distribution model: 

 
(4) 

 
(5) 

where: 
t: represents terms(words) in the document f, 
n(f): represents the number of words in f,  
n(f, t): represents the number of times the t appears in f,  

: represents the probability of t in topic c. 

For the probability  in (4) we used the Bernoulli binomial distribution which fits 
the specifications of our problem and works well in our model. 

Consider the following example to verify our procedure of extracting knowledge 
units. An example of existing ontology has been used in this case. Three documents 
are created in plain text. That is, they do not have named entities in tables. All 
documents belong to the same domain, which is the domain of the finance department 
as indicated in table 2 and are accessed by the same insider. We apply the above 
procedure to extract different knowledge units from these documents.  

Table 2. Number of words and domain of access of three documents. 

 Doc1 (project_total_cost) Doc2 (employee_salary) Doc3 (hourly_rates) 
Domain Finance Department Finance Department Finance Department 
Words 53 200 79 
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Table 2 contains information about three documents (project_total_cost,  
employee_salary, hourly_rates) for different employees in an organization. As 
discussed earlier, we are going to extract different knowledge units from different 
documents that belong to a specific domain for a given insider.  Our procedure uses 
an existing ontology that describes the given domain of access. So, a set of related 
terms (called topics in our work) which pertains to the underlying domain of access 
can be obtained from this ontology.  Using our discussed approach, relevance values 
are computed using the above equations (1) - (5). These relevance values represent 
values that measure the relevance of the content of each document to the domain of 
access.  The following tables (table 3, table 4, and table 5) show several calculated 
relevance values for different ontological topics for documents of table 2. 

Table 3 shows that two topics (Name and cost) of a project are found to be 
relevant and one topic is found to be not relevant. Hence, these two relevant topics are 
represented as two new knowledge units and are saved in the corresponding insider’s 
knowledgebase as new knowledge units. A possible representation might be as:  

K1→ Project_Name (for Name attribute)  K2→ Cost 
Table 4 shows that all the three ontological topics are found to be relevant and hence, 
are saved in the insider’s knowledgebase as new knowledge units. They might be 
represented as: 

K3→ Employee_Name(for Name attribute) K4→ Employee_ID (for ID attribute) 
K5→ Salary 

Table 5 shows that two of the ontological topics are found to be relevant and hence, 
are represented as new knowledge units. They might be represented as: 

K6→ Employee_Rank (for Rank attribute) K7→ Hourly_Rates (for Rates attribute) 

Table 3. Doc 1.             Table 4. Doc 2.             Table 5. Doc 3. 
Topics R(f): Doc1 
Name  0.43 

Cost 0.12 

Salary 0.0 

Topics R(f): Doc2 
Name 0.71 

ID 0.71 

Salary 0.3 

Topics R(f): 
Doc3 

Rank 0.1 

Rates 0.48 

Category 0.0 
  

The above new knowledge units are added as new nodes of a knowledge graph (KG) 
[7] for the corresponding insider. For example, if we consider only one knowledge 
unit from the above tables namely (K1, K5, K7) and represent them in a knowledge 
graph KG of the corresponding insider then this KG will look as depicted in fig. 1. In 
fig. 1, O1 corresponds to document 1, O2 corresponds to document 2, and O3 
corresponds to document 3 in our example. All other knowledge units will also be 
added to the insider’s KG. Readers who are interested in more details about 
knowledge graphs and how to build these graphs, may refer to [7] for more details. 
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Fig. 1. An Example of a Knowledge Graph. 

3 Dependency Graphs and Ontology 

In this section we use concepts of ontology [9, 10, 11] discussed in the previous 
section and dependency graphs (DGs) [7] to extract knowledge units from descendent 
documents given that a set of knowledge units in the ancestor document has been 
specified. To provide familiarity with the concept of dependency graph, we give a 
brief description of dependency graphs next.  

3.1 Dependency Graphs (DGs) 

A Dependency graph (DG) “is a global hierarchal graph that shows all dependencies 
among various objects in the system” [7]. 

Usually objects, especially documents, are created depending on other objects in 
the same system. Such a dependency relationship is an important relationship through 
which insiders may be able to locate important objects in the system. A DG contains 
nodes for all objects in the system. Our concept of a DG is similar to the System 
Dependency Graph, SDC, presented by Larsen and Harrold [12] for modeling an 
object-oriented program. 
Fig. 2 represents an example of a DG of objects. The DG is a dynamic graph that is 
updated for every newly created document in the system. A new edge is added 
between the new document and the document (or documents) for which the new 
document relies on. Also, the DG will be updated periodically to reflect operations 
affecting the documents. A DG is a one directional graph in which the direction of the 
edge indicates the dependency direction which can be verified from fig. 2. 
Throughout this paper, we follow the top down approach for representing 
dependencies among different objects in the DG. So, if we consider the dependency 
relation between any two objects as a function F, then we can verify the following 
relation O1 = F(O2, O3) from fig. 2 to be true. 
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O2 O3

O1  
Fig. 2. An example of a Dependency Graph of objects. 

It is important to clarify the meaning of several dependency relations (represented by 
directed edges) that might exist between nodes of a DG. For example, in the above 
example, the relation O1 = F(O2, O3) indicates that object O1 is a function of two 
objects O2 and O3. In reality this relation has a meaning that is consistent with the 
context for which this relation has been created. Generally speaking, this relation 
means that some information in O2 and O3 has been used to derive information in O1. 
This information contributes to some or all knowledge units that O1 contains.  

3.2 Dependency Graphs and Ontology 

A dependency relationship between any two objects (documents in this discussion) as 
discussed earlier is an important relation through which knowledge units are 
specified. An example of such important relation between two objects, which extends 
our previous example in section 2.3 with some modifications, is the following: 
Object D1 contains salaries of employees computed by considering their hourly rates 
and the number of hours they worked. That is: D1 → salary(hourly_rate, 
hours_worked). 
Information in object D1 can be represented by the following table: 

Table 6. Information in object D1. 

Employee ID Salary Hourly_rate Hours_worked 

Also consider that object D2 contains hourly rates of all employees, that is: D2→ 
hourly_rate, and object D3 contains number of hours each employee worked, that is: 
D3→ hours_worked. 

The above three objects D1, D2, and D3 have the following dependency relation: D1 = 
F(D2, D3). Fig. 2 illustrates this relation where (O1, O2, O3) are represented by (D1, D2, 
D3) in our current example.  

Assume that in the above example knowledge units of object D1 have been specified 
using our previous discussion for extracting knowledge units of an object discussed in 
section 2.3.Among the extracted knowledge units are Ui, Uj, and Ul which are 
specified as follows: 

Ui→ salary Uj→ hourly_rates  Ul→ hours_worked 
where Ui, Uj, and Ul represent different knowledge units for different employees 
under consideration in object D1. That is, Ui (as an example) represents a set of 
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knowledge units for salaries of different employees under consideration. Knowledge 
units Uj, and Ul can be interpreted in a similar way.  
As stated earlier there is a dependency relation between D1 and D2. Another 
dependency relation from D1 to D3 also exists. Different sets of knowledge units of D1 
(Ui, Uj, Ul) have been specified. The above two dependency relations and the sets of 
knowledge units can be used to specify part of the knowledge units of descendent 
objects D2 and D3. Hence, in the previous example a new set of knowledge units Um 
among others in D2 can be specified and they have the form Um → hourly_rates.  
Also, a new knowledge unit Ur in D3 can be specified as Ur→ worked_hours. The 
above example is a brief illustration of the importance of dependency graphs in 
extracting knowledge units from different related objects. 

Propagation of Knowledge Units using DGs. In the following, we discuss in more 
details using DGs and ontology to extract knowledge units from an object given that 
this object depends on another object. Fig. 3 shows two objects Di and Dj. Knowledge 
units in Di have been specified based on a specific predefined ontology as K1, K2, K3, 
and K12. Both objects Di and Dj have a dependency relation represented by Dj = F(Di). 
This dependency relation can be captured from the DG of the underlying system and 
is illustrated in fig. 3. Since Dj is dependent on Di there should be at least one 
knowledge unit that is common in both documents. Using this dependency relation 
between the two objects and a common ontology as illustrated in fig. 3 a knowledge 
unit say K1 is a common knowledge unit (attribute) in both objects. Since K1 is 
specified as knowledge unit in Di, it will also be specified as a new knowledge unit in 
Dj.  

DiDj

Ontology

K12 K3

K1 K2

Common 
Ontology

K4 K5

dep. 
relation

Ontology

 
Fig. 3. Overview of knowledge units’ extraction using DGs and Ontology. 
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This fact is shown in fig. 3 and the common knowledge unit K1 in Di has been specified as a 
new knowledge unit in Dj as K5. More precisely, the relevance of each knowledge unit (in 
object Di) to object Dj will be computed using our previous procedure in section 2.3. If any 
knowledge unit of Di is found to be relevant to Dj then it will be specified as a new knowledge 
unit in Dj. Since the two objects use different ontologies, a different name (K5) for the new 
knowledge unit has been specified. 

4 Managing Insiders’ Accesses 

We presented an ontological approach to extract knowledge units from an object that 
belongs to a specific domain of a given insider. In our approach we calculated 
relevance values for several facts (called topics). These topics, if found relevant to the 
domain of access, are considered new knowledge units for the given user if he/she has 
not accessed them before. These knowledge units are saved for future use and 
represented by knowledge graphs (KGs). Hence, each knowledge unit is associated 
with a specific relevance value. That is: K1 → R1(f), K2 → R2(f), …, Kn → Rn(f). 
Since we assume that several domains exist, then some objects (especially 
documents) might belong to different domains. These objects might be requested by 
insiders from different domains. When such an object is requested by an insider for 
the first time, knowledge units relevant to that domain are extracted. Subsequent 
requests will use existing knowledge units. An object as a whole might contain 
knowledge units that are relevant to multiple domains. Knowledge units that are not 
relevant to the requesting insider domain should not be disclosed to such insiders 
unless they are not sensitive. So, the system must detect such situations and be able to 
stop them.  In our model, every domain has a specific threshold value. Knowledge 
units of an object having relevance factor more than the threshold value are 
considered sensitive and should not be provided to users who belong to different 
domains. 

These several threshold values are used in sensitivity check which says: 
Sensitivity_Check: For a specific domain of access D and a knowledge unit Ki: if 
relelvance(Ki) > domain_threshold(D), then Ki is sensitive. Otherwise, it is not 
sensitive. 

In our model, employees of an organization can access objects in their domain. 
Objects that do not belong to an insider’s domain should not be accessed by such 
person except for certain cases that will be discussed shortly.  If insiders are allowed 
to freely access documents outside of their domain then this represents a violation that 
might be devastating to the system. An approach that detects similar situations and 
stops insiders from accessing information that they should not access is developed 
and provided next. 
Our model defines the following access policy: 
When an insider requests access, access is only granted if the object: 

1. Is in the same domain of the requesting insider, or 
2. It does not belong to the requesting insider’s domain, but has knowledge 

units that are relevant to the domain of access of that requester, or 
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3. It does not belong to the requesting insider domain and does not contain 
knowledge units that are relevant to his/her domain, but contains knowledge 
units that are not sensitive. 

To clarify things suppose that there exists an object O that belongs to domain A. 
Object O contains knowledge units K1, K2, K3, and K4 with relevance values as: 0.6, 
0.4, 0.8, and 0.2 respectively. These knowledge units are relevant to different 
domains, namely; K1 and K2 are relevant to domain B while K3 and K4 are relevant to 
domain C.  Domain A threshold value equals to 0.7, while domain B threshold value 
equals to 0.65, and domain C threshold value equals to 0.75. Suppose that two 
insiders S1 ϵ dom(B) and S2 ϵ dom(C) try to access object O. Since object O belongs 
to neither domain B nor domain C, then their requests might be denied unless it 
contains knowledge units relevant to their domains or they satisfy the sensitivity 
check. The following cases can be distinguished: 

• Insider S1 belongs to domain B. Both K1 and K2 are relevant to domain B. 
Neither K3 nor K4 are relevant to domain B (they are relevant to domain C) 

• Insider S2 belongs to domain C. Both K3 and K4 are relevant to domain C. 
Neither K1 nor K2 are relevant to domain C (they are relevant to domain B). 

Since knowledge units K1 and K2 are relevant to domain B (which insider S1 belongs 
to) then both K1 and K2 are accessible by S1. However, since K3 and K4 are not 
relevant to his/her domain then they might/might not be accessible. After applying the 
sensitivity check: relevance(K3) = 0.8 which is greater than domain C threshold value 
= 0.75. That is, K3 is considered sensitive and hence, K3 will not be accessible. Also, 
relevance(K4) = 0.2 which is less than 0.75. Hence, K4 is accessible because it does 
not contain enough sensitive information related to domain C that must not be 
revealed to insider S1. Thus, our model compares relevance of a knowledge unit with 
the threshold value of the domain it is relevant to. The reason is to make sure that this 
knowledge unit does not contain enough sensitive information that should be kept 
hidden from insiders of other domains. That is, the knowledge an insider can gain 
from this knowledge unit is less than the sensitivity threshold of that domain. The 
same procedure is applied to requests of S2. It is found that knowledge units K3 and 
K4 are accessible by S2 because they are relevant to his/her domain. However, for K1 
and K2 the sensitivity check is applied. Relevance(K1) = 0.6 which is less than domain 
B threshold value. Also relevance(K2) is less than domain B threshold value. 
Therefore, both K1 and K2 are accessible by S2 besides K3 and K4. That is, S2 can 
access the entire object O. 
 From the above example, it can be concluded that insider S2 can access the whole 
object O. However, insider S1 gets partial access to the object O. In fact, he will get 
access to knowledge units K1, K2, and K4. Since K3 has sensitive information that he 
should not access, a filtration process will be initiated which filters the object O out 
by removing knowledge unit K3 from that object. The remaining content of object O 
is then presented to insider S1. 
 Based on the above example, there are three cases to consider: objects that 
contain knowledge units that are only relevant to the domain of access of the 
requesting individual, objects with knowledge units some of which are relevant to the 
domain of access and some others are not relevant, and objects with knowledge units 
all of which are not relevant to the domain of access of the requesting individual. 
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For an outstanding request to access an object O by a specific insider Si the following 
algorithm is used: 
Algorithm: Manage_Insider_Request{ 
 If O ϵ domain D of Si then 
  Grant Access to object O 
 Else 
  For every knowledge unit Ki ϵ O  
   If Ki is relevant to domain D then 
    Ki is accessible 
   Else    //apply the sensitivity check 

If relevant(Ki) < domain_threshold then  
//threshold  for related domain of Ki 

     Ki is accessible 
    Else 
     Ki is not accessible 
  If Ki is not accessible then     

Filtration(object O)// a function that removes// 
sensitive Ki’s from the object O.  

 Return object O to Si after Filtration() 
}  

The following actions are performed for the above categorization of objects: after 
applying the above algorithm to the first type of objects, requests to these objects are 
allowed. For second type of objects: knowledge units found to be non sensitive are 
accessible by such insiders while knowledge units found to be sensitive are not 
accessible. Hence, the filtration operation deletes these sensitive knowledge units 
from the requested object. So, the insider receives an object with only partial content 
of the original object. For the third type of objects: knowledge units found to be non 
sensitive are accessible by such insiders while knowledge units that are sensitive are 
not accessible. Hence, the filtration operation deletes these sensitive knowledge units 
from the requested object. The filtration operation deletes content of knowledge units 
that should not be revealed to the underlying insider. The above procedure ensures 
that only relevant information to the insiders’ assigned tasks are revealed besides 
information that is not sensitive to his/her domain. This limits malicious activities that 
might be initiated by insiders with malicious intensions. 

5 Conclusions 

This paper studies the problem of insider threats. In our paper we presented an 
ontological approach to extract knowledge units from a given object. After extracting 
knowledge units we presented a procedure which used these knowledge units to 
control insiders’ knowledge. We have the assumption that increased knowledge of 
insiders with malicious intension gives them more opportunities to fulfill their 
motives.  We then presented an insider threat mitigation model which ensures that 
insiders, with knowledge of their organization, access only objects that are related to 
their domain and assigned tasks. According to our model, knowledge units of a given 
object are either sensitive or non sensitive. Our model ensures that insiders who 
request objects outside their domain do not get access to objects with sensitive 
information. In fact, our model utilized a filtration process which filters out those 
sensitive knowledge units from an object and presents the filtered object without the 
sensitive information to the requesting insider. 
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