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Abstract. The influence of web-based user-interaction platforms, like forums,
wikis and blogs, has extended its reach into the business sphere, where com-
ments about products and companies can affect corporate values. Thus, guar-
anteeing the authenticity of the published data has become very important. In
fact, these platforms have quickly become the target of attacks aiming at inject-
ing false comments. This phenomenon is worrisome only when implemented by
automated tools, which are able to massively influence the average tenor of com-
ments. The research activity illustrated in this paper aims to devise a method to
detect automatically-generated comments and filter them out. The proposed solu-
tion is completely server-based, for enhanced compatibility and user-friendliness.
The core component leverages the flexibility of logic programming for building
the knowledge base in a way that allows continuous, mostly unsupervised, learn-
ing of the rules used to classify comments for determining whether a comment is
acceptable or not.

1 Introduction

One of the most interesting developments within the World Wide Web begun with the
appearance of real collaborative authoring platforms like Forums, Blogs, Wikis and so
on. Each of these applications essentially implements a variation of the same concept:
a central subject is published (as a forum topic, a blog post, or a wiki page) and the user
community can provide corrections, integrations and useful links. The importance of
these innovative meeting platforms has quickly come to the attention of business play-
ers, since they allow both to get direct feedback useful for product development and
placement, and to enable viral marketing of good products by means of recommenda-
tions. Unfortunately, also corporate attackers know the value of these tools as targets,
and often they try to modify the authentic meaning of the community-provided feed-
back, by adding false knowledge to the system through fake comments. In the same
way as spam hinders e-mail convenience, by burying useful communications under
overwhelming amounts of unsolicited ones, the insertion of malicious additional infor-
mation on knowledge-exchange applications can hide the correct items; hence the name
of comment spam [24, 14, 16]. This paper illustrates a research activity aimed at mitigat-
ing the problem of comment spam, which is regarded as potentially very dangerous [25,
15, 18]. As it will be better explained in the following sections, the embraced approach
tries to optimize effectiveness without requiring the limiting operational assumptions,
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especially regarding the client side, quite commonly afflicting many of the presently
used systems. The paper is organized as follows: section 2 clarifies the importance of
targets, the attack methods, and points to related work; section 3 states the design goals
that have been considered essential in the quest for a new solution; section 4 illustrates
a behavior of the proposed system suitable for attaining the previously stated goals;
section 5 shows the architecture chosen to implement the illustrated behavior; section
6 gives some preliminary considerations on implementation and testing issues; finally,
conclusions are drawn in section 7.

2 Problem Definition and Related Work

Many companies leverage the potential expressed by user communities in various ways.
Customer feedback is useful to decide how to make a product more successful and to
test new ideas. User behavior can suggest market opportunities. On independent com-
munities, user ratings can deeply affect the reputation of a product and its maker; the
bigger a company, the higher the number of comments and their dispersion over both
internal and independent platforms. Of course companies cannot appoint a feedback
manager to read every single comment posted on the web, so they build some spe-
cial filter able to grab the ”meaning” of the comment. Understanding the meaning of
a comment is extremely inaccurate if the easiest, word-based pattern matching filter
techniques are exploited, as in reality many companies are doing.

Consequently, attackers can easily inject fake comments in order to change, for in-
stance, the perceived satisfaction related to a product [17, 13]. Since companies usually
assume that their filters are not precise but the basic data is safe, if the attacker is able
to inject a fake comment without being detected, seeing the product public perception
change could urge the company to adopt costly strategic decisions.

Spammers usually exploit three basic techniques for targeting their victims:

– If a community web site is powered by some common application, for example
Wordpress [4], then a spammer can easily identify this by scanning for known
URLs, and then exploiting potentially known vulnerabilities.

– Field names like ”name” or ”email” in HTML forms can usually be identified as
spam targets because of their relation to user identification; spammers submit mes-
sages to any site providing this kind of form, losing in accuracy but potentially
reaching a broader set of targets more quickly.

– Accepting an even worse trade-off between accuracy and search effort, spammers
can simply try and submit spam to every form they can find regardless of the like-
liness of the the field names.

Once a target has been identified, spammers typically perform two different kind of
attacks:

– Self Replacing Contents. This attack begins with a malicious comment posted on
the feedback manager by the attacker. Afterward the attacker runs a software able
to repeat the previous message, randomizing the time lapses and the source.
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– Smart Comments Generator. This attack begins with a malicious sentences database
pre-built by the attacker. Afterward the attacker runs a daemon software able to re-
trieve sentences from the database, composing them to create messages and sending
them to the target site.

Spammers almost always use automated tools in both phases of their attack: first,
to scan the net for vulnerable web applications, then to submit comment spam to the
interesting targets. As for any other attack, tracing and stopping comment spam at the
network level can be made more difficult by exploiting compromised hosts as stepping
stones and other well-known evasive techniques, and hence the defensive strategies
must involve the specificity of the application layer.

The first attempt at solving this problem, then, was to address the methods spam-
mers use to automate their activity. Normally a spammer would attempt to directly
submit the spam without the use of a real, interactive web client. This peculiarity is
worked to the defender’s advantage by most of the currently proposed solutions, which
exploit some kind of client-side-based approach to discriminate between human- and
software-submitted comments.

A possible method requires passing a shared secret that a spammer cannot acquire
without executing client-side code during a “real” session initialization. The shared se-
cret is constructed for example by creating random client and server side code blocks;
the result of these code blocks are then used as a shared secret. Without the support
for executing, for example, Javascript, it becomes very difficult for a spammer to suc-
cessfully acquire the shared secret because of the random construction of the blocks.
However, many users too have legitimate reasons to disable the execution of Javascript,
and consequently they will automatically be identified as spammers, so this cannot be
considered a viable solution.

Another popular method is based on CAPTCHAs, i.e. images containing text that is
impossible to automatically extract. Supposedly, then, the ability to type the text iden-
tifies a human intelligence on the client side. However, these approaches are regarded
as only mildly effective [26, 22, 20, 8, 7], and exhibit obvious, significant drawbacks in
terms of user-friendliness [2].

Akismet [1] takes the approach of a centralized spam identification system and li-
censes api keys to charge users for using the service. It does also have a “free for per-
sonal use” option which enables to protect a blog for free as long as it only has a
small amount of visitors. Akismet parses blog comments and compares them to previ-
ously held spam comments in order to identify spam. There are also many free plug-ins
developed by user communities on different engines for instance: spambam on Word-
Press, MOD for phpBB, phrase spam moderation for blojsom, Spam-X for GeekLog,
spamkiller, spamcheck and AntiSpam for Nucleus.

All of these solutions are characterized by a fixed logic, i.e. the knowledge base
and parameters used for message classification can evolve, but the underlying filtering
algorithm that uses them remains the same. What differentiates our solution is the ease
of reprogramming the classification engine itself, by leveraging the peculiarity of logic
programming.
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3 The Proposed Solution

Consequently to the analysis presented in the preceding sections, the aim of the research
was set to meeting the design goals summarized hereinafter.

Transparency. Users should not be aware of the filtering system to make it work. This
specification implies that any decision about the admissibility of messages must be
taken without the help of interactive or automated means of telling ”real” clients
from automated ones. There is also an additional, quite important advantage of
concentrating all the burden on a server: any lightweight client, for instance as it is
commonly found on mobile devices, will work, paving the way for the extension of
the proposed system to text messaging.

Evolution. The criteria for sorting out bad messages should evolve during the sys-
tem’s lifetime, taking advantage of what the system sees. This property of course
doesn’t rule out the need for a statically-provided initial knowledge base (in fact,
it is required), but the ability to continuously, correctly track the adaptive evasive
measures used by the attackers is deemed as very important.

Accuracy. The system should take advantage of the present knowledge about the co-
mmonly-used spam composition techniques in order to optimize the rate of correct
classification, at the same time being open for the possible integration of novel
knowledge in the future.

Efficiency. The system should be able to carry out its tasks introducing acceptable
delays within reasonable hardware constraints.

The first and foremost design choice was to follow a quite classical approach, basing
the system on the concept of computing a score for each processed comment, and dis-
criminating between spam and ham depending on the score crossing a given threshold
or not.

The comparison to Bayesian filtering commonly used against e-mail spam is quite
natural. However, the design of the proposed approach must take into account some
advantages and disadvantages peculiar of the different context. Among the advantages,
it is useful to notice that many content-hiding methods (like the use of images or ob-
fuscated links), which are commonly found in e-mail spam, are typically disallowed in
comment platforms, allowing filtering systems to deal with natural text only. Among
the disadvantages, for example, there is the difficulty of enhancing scoring accuracy by
means of blacklists or whitelists, because comment spam is less massive, more targeted
than its e-mail counterpart, making the distributed collection of evidence indicting pos-
sible spam sources harder. Another differentiating feature is that while e-mail spammers
work with the only goal of evading filters, even when this means sending blatantly in-
coherent messages, comment spammers have much less freedom in constructing their
messages, which must be credible enough to trick human readers into accepting them
as authentic comments.

Following these observations, another key choice has been made regarding how to
represent the knowledge that allows to decide whether a message is spam or ham (and,
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at the same time, how to to extract this information from the messages in a way that al-
lows efficient and effective processing.) Presently, as already anticipated, the most com-
monly used technique for mass-submission of automatically generated spam is mixing
sentences conveying the desired meaning under different forms. The devised system,
then, was designed according to a general feature extraction paradigm, but currently
adopts a very simple and efficient algorithm using punctuation analysis to split each
message in simple sentences. The single sentence is the base element of the knowledge
base, and is associated with a score representing the probability of finding it in a spam
message. Furthermore, instead of separating the components taking care of the sen-
tence storage and of comment processing, exploiting a standard database for the latter
function, the knowledge base and the scoring algorithm are integrated as an expandable
prolog theory. The resulting system is characterized by a pragmatic approach to the us-
age of the powerful computing models which are typical of the artificial intelligence
field; a twofold advantage is achieved: on the one hand, being able to quickly store
and effectively leverage the knowledge needed for the subsequent classification task,
as detailed in the following sections, on the other hand paving the way to the possible
future integration with more powerful classification algorithms, for example taking into
account multiple sentences at once during the scoring process.

4 Operation

From the functional point of view, the system we are describing has three distinct modes
of operation: Initial Training, Query Processing, and Learning. The first mode of op-
eration is needed at system startup or if novel spam building techniques appear, while
the second and third ones are actually strictly linked and together represent the normal
state of the system.

4.1 Initial Training

Every score based automaton needs a training phase during which the administrator
(the automaton administrator) teaches it the most important pieces of knowledge. In
this phase typical sentences are fed to the system, each one associated to a score that
can be positive or negative.

Negative scores are associated to innocuous sentences that are known to appear
inside spam messages, and are useful to avoid that during the learning phase these
sentences receive a strong spam connotation, possibly leading to a high rate of false
positives. Positive scores are associated to sentences typical of comment spam. In both
cases, the higher the absolute value, the higher the confidence in the sentence classifi-
cation.

During the training process, the administrator submits a purposely crafted form
through the feedback manager to initiate the training phase of the anti spam engine,
sending sentences and their scores. The anti spam engine, following the training re-
quest transforms the sentence and the associated score in a theory-rule, including it in
its knowledge. The longer the administrator coaches the anti spam engine, the more ac-
curate the anti spam engine becomes in discriminating legitimate sentences from spam.
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4.2 Querying Phase

After the training phase, the anti-spam engine should be able to reply correctly to most
of the queries . In order to classify a message, it is divided in sentences, which are indi-
vidually matched against the prolog theory representing the knowledge base. A score is
associated to each sentence, and the sum of all the sentence-scores is compared to the
decision threshold. Of course, the threshold will be chosen as a positive value, so as to
be crossed when a comment exhibits a dominance of spam clues.

4.3 Learning

The system has to update its knowledge base after the detection of a spam message.
Learning from past history is a normal behavior for humans but it is less obvious for

automata. The meaning of machine learning has been well discussed in the past [23, 6];
for this reason saying that our system attains this goal is a maybe too strong claim. In our
model, learning means that the anti spam engine’s knowledge is growing up in function
of past detected spam. Every message is evaluated from the core engine; evaluating
messages means dividing messages into sentences and then evaluate each sentence. If a
message is considered spam, the probability that an automated spamming tool will reuse
its own sentences to build another spam message is high, and consequently adding these
sentences to the knowledge makes sense.

The system is purposely unbalanced towards the learning of new spam-indicating
sentences, in order to be as effective as possible at filtering. This bias, as previously
said, can be counterbalanced during the initial training phase, but false positives can
arise in the long run. We claim that this behavior is preferable to having a higher rate
of false negatives silently slipping through the system. A false positive is easily spotted
by the legitimate user whose comment is blocked, and consequently with a little coop-
eration can be brought to the attention of the system administrator, who can adjust the
knowledge base accordingly.

5 Architecture

The system’s architecture can be deduced from the complete use case diagram shown in
Figure 1; it is modeled according to a structure which differentiates three logical blocks
depending on the communication side the lie on. The first block is located on the client
browser and represents what the end user sees. It is a purely logical component, i.e.
no software is installed on the client to make the proposed system work. The second
block is on the commenting platform web server and represents where the user wants to
publish her comments (Feedback Manager). The third block, the main anti spam engine,
can be co-located with the Feedback Manager, but is designed to be accessible through
remote web service.

When a user tries to post a comment from her browser, the message reaches the
feedback manager which queries the anti-spam engine. The reply summarizes the prob-
ability of the comment of being spam with a numeric score: when the total score is
higher than a given threshold, the feedback manager drops the comment. On the other
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Fig. 1. Use Case Diagram.

Fig. 2. Anti Spam Engine Internal Architecture.

hand if the the comment doesn’t reach the threshold, the feedback manager is allowed to
publish it and to store it on its own database. The threshold is configurable by the feed-
back manager’s administrator and is stored on the feedback manager side. The main
computational load is placed on the anti-spam engine that must elaborate its knowledge
in order to compute a sensible score.

Comments are received by the engine through the Web Application Interface (Fig-
ure 2). Upon receiving a query, the interface starts a feature extraction phase, initially
splitting the entire message into single sentences. In some cases it is not trivial under-
standing where a sentence ends and another begins. This leads to another category of
research problems altogether, which various other groups are working on [19, 5]. Our
current implementation is able to distinguish the sentences from punctuation marks,
but we left an open door to more flexible implementations based on the general feature
extraction model.

The score of each sentence is evaluated according to the rules specified in the knowl-
edge base, which receives the sentences through a Knowledge Interface (KI). Presently,
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the KI invokes the solution of a Prolog goal (representing the query) by means of a
Java-Prolog engine based on tuProlog [12].

The Feedback Manager informs the Anti Spam Engine of rejected messages upon
receiving the score and comparing it to the threshold. This notification causes the En-
gine to update the knowledge base with the offending sentences, through a similar
tuProlog interface.

Finally, it should be noted that the knowledge base could either be shared among
different Feedback Managers (which keep the possibility of differentiating their thresh-
olds), or kept separate for each one. A shared knowledge base has the advantage of
being useful for many “customers” at the cost of only one initial training session, and
being more frequently used, it gathers further knowledge more quickly. On the other
hand, the accuracy could be compromised if the updates and the queries regard too
many different subjects. A separate knowledge base, furthermore, could be integrated
with the Feedback Manager if there is no interest in taking advantage of the more flex-
ible, two-components architecture, thus providing a single package which is easier to
install and configure.

6 Implementation and Testing

The core of the proposed system is fully implemented and functional, whereas its prac-
tical usability is still limited due to the alpha stage in the development of appropriate
front-ends for the integration within comment platforms. In order to foster the diffusion
of the devised system, especially aiming at real-world validation, a WordPress plug-
in is being completed. The alpha version can be requested to the authors, and will be
publicly available shortly. It is organized in three different functional areas: (1) con-
figuration area, which allows the user to insert the fixed threshold, the URL where
the remote Anti Spam Engine (ASE) can be reached, the username and password pro-
tecting it from unauthorized access; (2) Training area, where the user may insert the
word/sentence and the relative score that she wants to teach to the remote ASE; (3)
the WordPress API hook, that is user-transparent bridge to the WP’s comment-handling
engine that grabs the comments to classify them and decide their destination.

We found that a realistic test, measuring the effectiveness of the proposed approach,
is very difficult to perform. The main reasons are related both to the testing methodol-
ogy and to the availability of a suitable data set. In both fields, e-mail spam has received
a great deal of attention, with entire workshops dedicated to the definition of meaningful
metrics, standard evaluation procedures, and the collection of reference databases [10,
11]. Some of the results are in the process of being ported to the field of short messages
[9], which exhibit features more similar to comments than e-mail, and the related tools
[3] could thus be exploited for anti-comment-spam solutions testing, but this adaptation
proved to be far from straightforward. There is only one database known to the authors
that was collected with the goal of testing this kind of systems. However, it was used
with the aim of vaildating a comment spam filter targeted at a rather different kind of
problem, namely link spam [21], and in the words of the authors is quite limited: “a
small collection of 50 blog pages, with 1024 comments”; since the classification pro-
cedure manually tagged each comment as spam or non-spam according to the specific
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meaning of link spam, it is not even directly usable for comment spam in the sense used
in this paper.

Some experimental results have been collected during both manual train-and-test
sessions based both on data gathered from forums that were known to have failed at
rejecting comment spam in the past, and on the aforementioned blog-pages dataset; the
outcome is very encouraging, yet too preliminary to publish as an irrefutable proof of
strenght of the proposed system.

7 Conclusions and Future Work

In this work we described a system to fight the problem of comment spam. The proposed
approach overcomes the limitations of CAPTCHA- and Javascript-based known tech-
niques, which, according to the literature, are only partially effective and can cause ac-
cessibility problems. The architecture of the filtering system is centered on a completely
server-based classification engine implemented as a dynamic filters, whose learning
curve can be controlled by means of a web-based interface for maximum convenience.
The first very important result, consequently, is having designed a system which ex-
hibits excellent compatibility with any client commonly used to send comments (even
on mobile platforms) and requires moderate efforts for its administration. The modu-
lar construction of the classification engine, composed of a feature extractor followed
by the scoring system proper, allows experimenting different methods to represent the
meaning associated with the analyzed comment. Currently, the tested feature extractor
tries to isolate the different sentences composing the comment. Notwithstanding its sim-
plicity, this method yield satisfactory preliminary results; future work will be directed
towards the definition of a more effective and robust algorithm, and comprehensive
experimental validation within realistic environments.
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