
Optimization of Log-linear Machine Translation Model
Parameters Using SVMs
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Universidad Politécnica de Valencia, Camino de Vera S/N, Valencia, Spain

2 Departamento de Sistemas Informáticos y Computación
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Abstract. The state-of-the art in statistical machine translation is based on a
log-linear combination of different models. In this approach, the coefficients of
the combination are computed by using the MERT algorithm with a validation
data set. This algorithm presents high computational costs. As an alternative, we
propose a novel technique based on Support Vector Machines to calculate these
coefficients using a loss function to be minimized. We report the experiments on
a Italian-English translation task showing encouraging results.

1 Introduction

Machine Translation (MT) is a research field of great importance in the European Com-
munity, where language plurality implies both a very important cultural richness and
not negligible obstacle towards building a unified Europe. Because of this, a growing
interest on MT has been shown both by politicians and research groups, which become
more and more specialised in this field. In addition, Statistical Machine Translation
(SMT) systems have proved in the last years to be an important alternative to rule-
based MT systems, even outperforming commercial MT systems in the tasks they have
been trained on. Moreover, the development effort behind a rule-based MT system and
an SMT system is dramatically different, the latter being able to adapt to new language
pairs with little or no human effort, whenever suitable corpora are available.

SMT is a pattern-recognition approach to MT. The grounds of modern SMT were
established in [1], where the problem of MT was defined as following: given a sentence
f from a certain source language, an adequate sentenceê that maximises the posterior
probability is to be found.

ê = argmax
e

Pr(e)Pr(f |e) . (1)

At the origins of SMT, only word-based translation modelsPr(f |e) and target lan-
guage modelsPr(e) were used, but since their introduction in SMT by Och and Ney
[2], log-linear models have been a standard way to combine sub-models in MT systems.
A log-linear model implies the following decision rule:

ê = argmax
e

{∑

i

ωiθi(f, e)

}
, (2)
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whereθi are features of the hypothesise and ωi are weights associated with those
features.

Selecting appropriate weightsωi is essential in order to obtain good translation per-
formance. In [3] the Minimum Error Rate Training (MERT) was introduced. The MERT
technique allows to find the values of the weights that minimize a given error rate mea-
sure. This has become much more standard than optimizing theconditional probability
of the training data given the model (i.e., a maximum likelihood criterion), as was com-
mon previously. In [3] was also stated that system performance is best when parameters
are optimized using the same objective function that will beused for evaluation; BLEU
[4], which computes the precision of unigrams, bigrams, trigrams and 4-grams3 with
respect to a reference translation, remains common for bothpurposes and is often re-
tained for parameter optimization even when alternative evaluation measures [5, 6] are
used.

The MERT technique relies on data sets in which source language sentences are
paired with (sets of) reference translations. This technique applies an iterative and (lo-
cally) convergent strategy to find a set of weights which optimizes the BLEU score;
a n-best list of translations provided by the decoder is exploited for this purpose after
each translation step. At each iteration of the MERT procedure, the whole corpus is
translated, and this process continues until convergence is reached.

The main disadvantage of the MERT procedure consists in its high time complex-
ity. Such time complexity is due to the above mentioned iterative nature of the MERT
procedure.

1.1 Support Vector Machines

Support Vector Machines (SVMs) are a learning method introduced by Vapnik in [7]
and [8]. SVMs are a set of related supervised learning methods used for classification
and regression. They belong to a family of generalized linear classifiers. A special prop-
erty of SVMs is that they simultaneously minimize the empirical classification error and
maximize the geometric margin, hence they are also known as maximum margin clas-
sifiers.

SVMs are well-founded in terms of computational learning theory and very open to
theoretical understanding and analysis. In [9] a generalization of the multiclass SVM
learning [10, 11] was introduced. Such a formulation involves features extracted jointly
from inputs and outputs. The naive approach of treating eachstructure as a separate
class is often unfeasible, since it leads to a multiclass problem with a very large number
of classes. This problem is overcome by specifying discriminant functions that exploit
the structure and dependencies within the outputs.

SV M struct4 [9] is a SVM algorithm for predicting multivariate or structured out-
puts. It performs supervised learning by approximating a mapping

H : X → Y , (3)

3 A n-grams is a sequence ofn consecutive words.
4 http://svmlight.joachims.org/svmstruct.html
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using labeled training examples(x1, y1), . . . , (xn, yn). However, unlike regular SVMs
which consider only uni-variate predictions like in classification,SV M struct can pre-
dict complex objects like trees, sequences, or sets. Examples of problems with complex
outputs are natural language parsing, sequence alignment in protein homology detec-
tion, and Markov models for part-of-speech tagging. TheSV M struct algorithm can
also be used for linear-time training of binary and multiclass SVMs under the linear
kernel [12].

The 1-slack cutting-plane algorithm implemented inSV M struct V3.00 uses a new
but equivalent formulation of the structural SVM quadraticprogram which allows a
cutting-plane algorithm that has time complexity linear inthe number of training exam-
ples. Then-slack algorithm ofSV M struct V2.50 is described in [13, 9]. TheSV M struct

implementation is based on theSV M light quadratic optimizer [14].
SV M struct can be thought of as an API for implementing different kinds of com-

plex prediction algorithms, e.g. Multiclass classification [9], Label sequence learning
[9], Natural language parsing [9] and Protein Sequence Alignment [15].

1.2 Motivation

The aim of this work is to replace the slow iterative MERT procedure by a new non-
iterative algorithm based on theSV M struct algorithm. The proposed algorithm is able
to perform the log-linear model parameter optimization with a linear time complexity.

2 Structured SVMs for Log-linear Model Parameter Optimization

This paper introduces a new proposal to perform the optimization of parameters of a
log-linear translation model using theSV M struct algorithm.

A log-linear model implies the following decision rule:

ê = argmax
e

{∑

i

ωiθi(f, e)

}
, (4)

whereθi are features of the hypothesise and ωi are weights associated with those
features. The problem consists on selecting the appropriate vector of weightsω so an
objective function is optimized. SVMs are used to accomplish this optimization.

The vectorω has a crucial influence on the quality of the translations. Inthe follow-
ing, we aim to learnω from a setT of training examples:

T = ((f1, e1), (f2, e2), . . . , (fn, en)) , (5)

where(fi, ei) are sentence pairs.
This training set is assumed to be generated independently and identically dis-

tributed according to some unknown distributionP(F, E). A MT algorithm can be
seen as a function:

hω(f) = argmax
e∈E

{ω · Ψ(f, e)} , (6)
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which maps a given source sentencef to a target sentencee. Our goal is to find a pa-
rameter vectorω so that the predicted translationhω(f) matches the correct translation
on new test data as well as possible. In particular, we want tofind the values ofω that
minimizes the expected loss (also called risk) for the data distributionP(F, E):

RP (hω) =
∫

∆(e, hω(f))dP(F, E) , (7)

where∆(e, e′) is a user defined (non-negative) loss function that quantifies how ’bad’ it
is to predicte′ whene is the correct translation. For example, one may choose∆(e, e′)
to be equal to 1 minus the BLEU score fore′.

Following the principle of (Structural) Empirical Risk Minimization [16], finding a
value ofω that predicts well on new data can be achieved by minimizing the empirical
loss (i.e the training error) on the training setT .

RT (hω) =
n∑

i=1

∆(ei, hω(fi)) . (8)

This minimization lead to the computational problem of finding the value ofω
which minimizesRT (hω). This vectorω is the vector of optimized weights for the
log-linear combination of models.

The problem of finding the value ofω that minimizes the empirical lossRT (hω) of
the translation algorithm was formulated as a minimizationproblem [9]:

min
ω,ξ

{
1
2
||ω||2 +

C

n

n∑

i=1

ξi

}
s.t ∀i : ξi ≥ 0 ,

∀i, ∀e ∈ E : ω · δΨi(e) ≥ ∆(ei, e)− ξi , (9)

whereδΨi(e) = Ψ(ei, fi)− Ψ(e, fi).
The objective is the conventional regularized risk used in SVMs. The constraints in

Equation 9 state that the scoreω · Ψ(ei, fi) of the correct translationei must be greater
than the scoreω · Ψ(e, fi) of any other alternative translatione.

This formulation includes a loss function∆(ei, e) that scales the desired difference
in score. Intuitively, the larger the loss of an alternativetranslatione, the further should
the score be away for that of the correct translationei. ξi is a slack variable shared
among constraints from the same example, since in general the constraint system is
not feasible. In [17] is proved that this formulation minimizes training loss, while the
SVM-style regularization with the normω in the objective provides protection against
over-fitting for high-dimensionalω. The parameterC allows the user to control the
trade-off between training error and regularization.

The general training algorithm [9] can be seen in Figure 1. This algorithm requires
the implementation of the feature mapping functionΨ(f, e), the loss function∆(ei, e)
and the maximization given in the6th line of the algorithm in order to be adapted to a
specific task.

Following sections explain how to adapt theSV M struct algorithm to perform the
log-linear model parameter optimization.
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Fig. 1. General training algorithm for structured SVMs.

2.1 Feature Mapping

The feature mapping function is a combined feature representation of the inputs and
outputs. In our case, the mapping function takes a pair of input/output sentences and
returns a vector with the scores of each of the models in the log-linear combination for
this pair of sentences.

2.2 Loss Function

The MERT algorithm performs an optimization of the log-linear parameters in order
to obtain the translation which maximizes the BLEU [4] score. Specifically, the BLEU
score measures the precision of unigrams, bigrams, trigrams, and 4-grams between two
sentences. Since the BLEU measure is a score instead of an error rate, the following
loss function is used:

∆(ei, e) = 1−BLEU(ei, e) . (10)

As said in this section, the training algorithm (Figure 1) minimizes the training loss,
so BLEU will be maximized.

Other measures, as for example, TER (Translation Edit Rate)[6] or WER (Word
Error Rate), can be used as well.

2.3 Maximization

While the modeling of the feature mapping and the loss function is more or less straight-
forward, solving the maximization problem typically requires exploiting the structure
of the output values.
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In our case, the maximization is stated as follows:

ê = argmax
e∈E

H(e) . (11)

Among all possible target sentencesE, we have to be able to choose that one which
maximizesH(e). The set of all possible target sentences is infinite so we approximated
this maximization by usingn-best lists.

3 Implementation Details

This section describes the implementation details of the proposed optimization algo-
rithm. In our implementation, publicly-available well-known software in the field of
SMT has been used.

To calculate the feature functionΨ(e, f), the score of each model in the log-linear
combination for the pair of sentences has to be computed. To calculate these scores we
have used an extension of the THOT toolkit [18], which is a toolkit for SMT to train
phrase-based models. The above mentioned extension of the THOT toolkit allows to
obtain the alignment for a pair of sentences which maximizesthe probability given by
the log-linear model. It uses the current vector of weightsω (see section 2) to calculate
this alignment and returns the score of each model for this pair of sentences given this
alignment.

Regarding the maximization problem described in section 2.3, given a source sen-
tenceei we have used the MOSES toolkit [19] to calculate an-best list of translations
according to the current vector of weightsω. Then thesen-best hypothesis are re-scored
according toH(e), and the one with the maximum score is returned as the required tar-
get sentence.

The THOT toolkit and the MOSES toolkit use slightly different translation tables.
Specifically, the MOSES toolkit allows to work with one or more score components for
each phrase pair while the THOT toolkit only allows to work with one. By this reason,
it is necessary to keep two translation tables, one for the MOSES toolkit where the
score for each component appears separately and one for the THOT toolkit where all
the components are gathered in only one value.

4 Experiments

We have carried out an experimentation in order to verify theeffectiveness of our pro-
posal. In our experiments we have compared the performance of both the MERT pro-
cedure and our proposed technique. All the experiments havebeen carried out with the
FUB corpus.

4.1 The FUB Corpus

The FUB corpus [20], is a bilingual Italian–English corpus with a restricted semantic
domain. The application is the translation of queries, requests and complaints that a
tourist may make at the front desk of a hotel, for example, asking for a booked room,
requesting a service of the hotel, etc. The statistics of thecorpus are shown in Table 1.
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Table 1. FUB corpus statistics.

Training Development Test
Language Italian EnglishItalian EnglishItalian English
#Sentences 2900 138 300
#Words 51902 62335 2609 3119 6121 7243
Vocabulary size 2480 1671 534 443 715 547
#Out of vocabulary — 55 31 129 84
Perplexity (trigram) — 19.9 10.6 19.6 10.2

4.2 Results

The experimentation consists on training a MT model with theMOSES toolkit using
the Training set. Then the Development set is used to optimize the parameters of the
trained log-linear model. The MERT procedure and our algorithm are used to perform
the optimization. Finally the translation results of each of them with the Test set are
compared.

As first step, a log-linear model is trained using the MOSES toolkit. This log-linear
combination is composed of eight models: the distortion (reordering) model, the target
language model, the translation model which is also composed of five sub-models and
the word penalty model.

As said in Section 3, the THOT toolkit works with translationtables with only one
score for each phrase pair. So a new translation table has to be built. The score of a
phrase pair in that table is the weighted average (the MOSES default weights are used)
of the five scores in the MOSES translation table for that phrase pair. Once the transla-
tion scores have been gathered, a log-linear combination offour models is obtained. The
new table with the gathered scores is used to perform the optimization of parameters.

To optimize the parameters the MERT procedure is used with its default options
values. It uses a100-best list of translations.

Our proposal uses the extension of the THOT toolkit to perform the feature map-
ping. The maximization described in Section 2.3 is carried out using10-best lists of
translations. The 10-best translations list is re-scored using the following equation:

H(e) = ∆(ei, e)− 〈δΨi(e) · ω〉 . (12)

This H(e) function corresponds to the margin re-scaling (SV M∆m
1 ) on Figure 1

[9].
SV M struct allows to modify a great amount of parameters relative to theSVMs

optimization process. Different combinations of values ofsome parameters have been
tested to choose those values with better performance.

Table 2 shows the BLEU scores for the different models after translating the Test
set. Baseline corresponds with the log-linear model beforeany parameter optimization,
MERT corresponds with the model after being optimized usingthe MERT procedure
and SVMs corresponds with a model which parameters had been optimized using our
proposal.

The results on Table 2 show that our proposal is able to outperform the MERT pro-
cedure. But, if we optimize the parameters using the MERT procedure and the original
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Table 2. BLEU score results summary.

BaselineMERT SVMs
64.46 64.93 65.38

table (the one with eight scores per phrase pair), the BLEU score raises to65.89. In
this case, the MERT procedure is able to optimize the weightsfor each of the sub-
models in the translation model independently. So, the relative significance of each of
this sub-models can vary. Our proposal optimizes the weightof the gathered translation
model, so the relative importance of each of the sub-models do not change respect to
the non-optimized model.

5 Conclusions

This work have introduced a new method to optimize the parameters of a log-linear
translation model using SVMs. Our proposal is based on theSV M struct algorithm
which is an SVM optimization algorithm for multivariate or structured outputs. The
obtained results are very promising: using only a10-best translations list, we outper-
form the MERT procedure when using equal number of components in the log-linear
combination.

As future work, our main goal is to compare our proposal with astandard imple-
mentation of the MERT procedure in terms of time complexity;to achieve such a goal
it is necessary to integrate the functionalities of the THOT, MOSES andSV M struct

toolkits, so the efficiency of the algorithm will be dramatically increased. In addition,
we also plan to accomplish experiments with larger corpora,to use other measures as
WER or TER as loss function, to use word graphs instead of n-best lists to perform the
maximization and finally to find the best way to go through the differences between the
THOT toolkit and the MOSES toolkit.
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