Software Model Checking for Internet Protocols with
Java PathFinder

JesUs Martinez and Cristobal Jiménez

Departamento de Lenguajes y Ciencias de la Computacion
University of Malaga, Spain

Abstract. Java is one of the most popular languages used to build complex and
distributed systems. The existence of high-level libraries and middleware makes
it now easy to develop applications for enterprise information systems. Unfortu-
nately, implementing distributed software is always an error-prone task. Thus,
middleware and application protocols must guarantee different functional and
non-functional properties, which has been the field usually covered by tools based
on formal methods. However, analyzing software is still a huge challenge for
these tools, and only a few can deal with software complexity. One such tool is
the Java Pathfinder model checker®). This paper presents a new approach to
the verification of Java systems which communicate through Internet Sockets.
Our approach assumes that almost all the middleware and network libraries used
in Java rely on the protocols available at the TCP/IP transport layer. Therefore,
we have extendedPF, now allowing developers to verify not only single multi-
threaded programs but also fully distributed Socket-based software.

1 Introduction

Model checking [1, 2] is a mature technique for dealing with complex problems within
distributed systems. In contrast to some other existing approaches for verifying com-
munication systems, model checking is an automatic process that normally returns a
simple but clear verdict to questions about functional or non-functional properties of
the system being analyzed, such as safety, liveness, performance or probability, among
others. When a property is not satisfied, the model checker presents a trail of execution
steps which lead users directly to ttmunterexample.

Analyzing a concurrent/distributed system with model checking requires the cre-
ation of an abstract description (model) of the system with the critical behavior to be
analyzed. We also need to specify a set of verification properties using a property-
oriented language. The model checking algorithm will produce a reachability graph
including all the execution paths for the model in order to check whether these paths
satisfy the properties. It is worth noting that the system model must be closed, and the
behavior of the environment must be provided in order to fully analyze it. In the context
of software applications, this environment consists of the underlying platform on which
the software runs, but also includes the networking mechanisms used to communicate
distributed entities.

Martinez J. and Jiménez C. (2008).

Software Model Checking for Internet Protocols with Java PathFinder.

In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 91-100
DOI: 10.5220/0001738600910100

Copyright © SciTePress

92

import java.io.*; | import java.io.*;
import java.net.* | import java.net.*;
|
public class Client{
public static void main (String [] args){

public class BasicServer {
public static void main (String [] args){
int serverPort = 6666;
int c;
try {
InetAddress ia= InetAddress.getLocalHost();
Socket sd = new Socket(ia,serverPort); Socket newsd = ss.accept();
InputStreamReader in= sd.getInputStream(); OutputStreamWriter out =

|

|

| int port = 6666;

|
|
|
|
|

while((¢ = in.read()) !'= -1) | new OutputStreamWriter (newsd.getOutputStream());

|
|
|
|
|
|
|
|

try {
ServerSocket ss = new ServerSocket(port);
while(true) {

System.out.print ((char)c); out.write("Hello World of Sockets!");
sd.close(); newsd.close();

} catch (Exception e) {
e.printStackTrace();

¥
}catch(IOException ie) {
ie.printStackTrace();
¥
¥
¥

Fig. 1. Basic examples using Java Sockets: a Client (left) and eeBSéight).

Unfortunately, one of the main disadvantages of model dngdkas been the tradi-
tional need for in-depth knowledge of formal methods. Ndhynaoftware developers
looking for a model checking tool want to consider it a kindsofrt debugger. How-
ever, verifying software directly with model checking (aling the creation of the for-
mal model mentioned previously) is a challenging task. ter¢ years, there has been a
considerable effort to make this technique available t@tigpers and designers outside
the academic world (p.e. Microsoft’ SLAM [3], Berkeley’s BIST [4] or NASA's JPF
[5. 6]).

JPFis the first software model checker for Java. Started in 19@Brew released
as open source, the tool itself is a Java application whithascan explicit state model
checker for verifying executable Java bytecode programsexplores all potencial
execution paths of a Java program in order to find violatidnsaperties such as dead-
locks or unhandled exceptions. It includes support for pathe Java API (1.6 and
prior versions) [7], making it possible to analyze code withfurther instrumentation.
Moreover,JPFis easy to configure and extend, it being an appropriategotatfo ex-
plore new methods to model check distributed systems.

This paper presents a novel approach for verifying Javavao& which communi-
cates through Internet Sockets. We found tirt did not support the Java network-
ing API. Moreover, its typical usage included only one exable program at a time.
Therefore, we have extendedr, now allowing developers to verify not only a single
multi-threaded program but also fully distributed Sockased software following the
Client/Server architecture (with at least two executabtegpams). Our approach has
included TCP/IP networking support to the model checkekintpit possible in the
future to analyze some other middleware which usually relyhese protocols, such as
Java Enterprise applications or Web Services.

The paper is organized as follows. Section 2 introduces iffierent Java APIs
which implement the Client/Server model. Section 3 is fecusn the extensiblerr
model checker for Java and our proposed solution to deal®liémt and Server code.
Finally, Section 4 presents our conclusions and lines afré&vork.

93

SelectionKey «interface» Implementediterator
Iterator

«interface»
Set

AbstractinterruptibleChannel|

~==--{ImplementedSet

f 0. |
SelectableChannel i - Selector
S
Ko
Lo hannel Provider

e ImplementedSelector | ~, setKey

| ke Seectetiey |
ServerSocketChannel SocketChannel | Buffer K> Y

T 11

ServerSocket Socket 1 -y ByteBuffer

Fig. 2. The Java Socket API after including java.nio.

2 The Java Client/Server Model

From its inception, the Java API has supported Berkeley &sclhe design of its
j ava. net package was focused on avoiding ill usage which was commtnthe
original C library. Thus, object oriented programming pgd=d the kind of type safety
not present in the UNIX API. Moreover, Java split the behawioSockets for Clients
and Servers into two classes: the Socket and ServerSoekbaps one of the main dif-
ferences between the Java approach and the original C APtheatecoupling of the
entities responsible for managing connections (the SomkdtServerSocket classes)
and for exchanging data over the network (the Input and Q@8peams). Fig. 1 shows
the basic code for TCP Clients and Servers. The left part shioge/Client code, where
the Socket constructor includes the classic socket definghd the connection proce-
dures. Data is read from its associated InputStream. Tlne pigrt in fig. 1 shows an
iterative Server, where the ServerSocket constructor eiefimd binds the socket to a
port and then creates a connection backlog (equivalentetd itist en C primitive).
When a new connection is accepted, the server writes soras twyits associated Out-
putStream and then returns back to attend a new client. Thigesscheme may serve
one client at a time although it is also common to spawn a thie@rder to service
clients in parallel.

94

The originalj ava. net APIlacked one of the most used techniques when building
short-lived servers: demultiplexing I/O. This techniqweids spawning a new thread
for each new service, using instead a single executiondhreserve clients simultane-
ously. This functionality was added in version 1.4, whictlinled the nevy ava. ni o

APl including the Selector framework (implementing theivaOS mechanism for de-
multiplexing 1/0). Unfortunately, this framework achiel/éackward compatibility at
the expense of complicating the class structure existirjgawma. net . The new API

is partially shown in fig. 2, where some new elements are tghi€hannels (an evo-
lution of Stream objects) and Buffers (representing platféevel buffers which allow
zero-copy data operations).

3 Model Checking Internet Protocols with JPF

Java PathFinder can verify any Java program which does ma&ndeon unsupported
native methods. Theprr virtual machine cannot execute platform specific or native
code, which imposes a restriction on what standard libsazén be used from within
the application under test. For instance, the current @ersf JPF does not support

j ava. aw ,j ava. net,j ava. ni 0, and only has limited support fprava. i o and
runtime reflection. The huge state storage requirementsgoftware system also limit
the size of checkable applications. Tiwer developers have estimated a maximum of
10.000 lines of code if no application and property speclfisteactions are used [7].
Fortunately JpPFwas designed as an open tool with extension capabilitieeasdh
extensions allow users to adapt the model checking prooéissit specific applications
and properties. The main mechanisms availab®#for extensions are:

— Listeners. The SearchListener and VMListener interfacag be implemented to
modify the basic behavior of the model checking algorithmuakiant of the Ob-
server design pattern [8] allows listeners to subscribefterdnt events (bytecode
execution, forward or backward steps,...).

— Configurable choice generators. The ChoiceGenerator iddks extension point
responsible for implementing non-determinism policiegxplore the state space
in terms of thread states or data values. After executingstesy transition,JPF
prepares a ChoiceGenerator object which will be calledlecséhe next transition
to run. A ThreadChoiceGenerator will schedule threadsmiowihereas other user-
defined generators are focused on defining a finite data aiterexplore.

— The Model Java Interfacev(l). Even if it is only a Java application (i.e. solely
consists of Java classegkFcan be viewed as a Java Virtual Machine in itself.
The consequence is that (*.class) bytecodes are processed different ways in
aJVM runningJPE i) as ordinary Java classes managed and executed by the host
JVM (standard Java library classesFimplementation classes) or ii) asodelled
classes managed and processed (verifiedplay

Fig. 3 depictsiprinterfaces and their relationship with the host Java virtoa-
chine. In the bottom layer we find the Java Native Interfadd)(dised by the virtual
machine to execute native libraries on top of the platforrarapng system. The Java
layer contains thepFapplication that runs on top of the virtual machine and ukes t

95

Modeal layer
modeled ., verification target
"Wodel Java Jritsrfacs" classes w» —
—— MJ' _______ P -
: .class
JPF (Java application)-. { E -
Java layer I b ' ?} —
=] 5[]
i - ! A =
“Java Native interface” host JVM I O standard Java
| JNI | [— | instaliation
I
Native layer libraries
platform OS

Fig. 3. Layers ingpFand their relationship with the Java virtual machine (frdra tPFwebsite

(7).

library classes available in the classpath (p.e. providedth j ar). The top layer is
called the Model layer, and represents classes used by tlieation target (the real
application being analyzed). Thesl mechanism intercepts class method invocations
and decides if they will be replaced instead by modelledselssThereforelpFwill
execute these classes, which usually behave in a partisaarto guide the model
checking process. This mechanism is particularly usefabtain a closed environment
or to abstract specific behavior which is not needed for aip@malysis (in order to
reduce the so-called state explosion problem).

3.1 Network Emulation in JPF

Following theMJi extension approach, our work has focused on creating apptep
modelled classes to abstrgcava. net andj ava. ni o classes. Therefore, Socket
and ServerSocket classes will be replaced at executioriynoeir own versions, which
will run inside JPFin atomic mode and will use our abstract version of the netwOur
strategy assumes that téde network entity will substitute the real distributed enviro
ment for a multithreaded one, where protocol message egelsanill be replaced by
thread synchonization mechanisms within the abstractoré&tvallowingJprto model
check the protocols in this new way. Note that original pemgs must be transformed
into threads before this approach can be used (as shownfallinging subsection).
Fig. 4 represents our modelled class hierarchy, wherer@liglasses (shaded boxes)
have been replaced by their corresponding modelled vessidnich also require some
additional support. Fig. 5 depicts the complete. diagram for these supporting classes.
The AbstractNetwork class is the mechanism responsibledfstracting the connection
procedure along with its mainteinance. It also allows péersend and receive mes-
sages by locating each other in the network through a Popetagiass. This is a data
structure that stores so-called Slots, which model diffeoencepts of a Socket con-
nection for each port used. Therefore, Slot is the base fdaspecialized entities, each
of which represents a well-defined role in the communicafidrere are Slots for ab-
stractingj ava. net Sockets and ServerSockets (derived from SlotNet)a. ni o

96

SlotO

s @ a @

SlotSer ConnectO [

0 0
| I
-servel ! |
| | ;
dss I | -cos cis
i |
| 1
| 1

Ser I [Socket -ds SlotSocket

| I
| I
I I
-ss] ! ! -8
ss ' | sock
| !

Ser hannel SocketChannel

Fig. 4. mJ1 model for the Socket API.

Channels (derived from SlotChannel) and Streams (deriged SlotStream). The lat-
ter encapsulate the buffers used within transport protoddius, Clients and Servers
may synchronize their data exchanges through mutexeshbiaih the Slots. This class
hierarchy captures the typical behavior of a network whiftérs a reliable message de-
livery service, where entities are identified by their addes and ports. At the moment,
we have finished the support for TCP connection-orienteletscalthough UDP and
Multicast are now in progress. It is worth noting that our iEggeh provides a flexible
way to use model checking for Internet applications, thuenamg up the possibility of
analyzing more complex Java middleware witrin the future. In fact, Java Enterprise
applications or Web Services usually rely on the Socket ARilable, these application
being a future target for our analysis.

3.2 The Unify Toolset

The Unify toolset allows verification of Client and Servevdgrograms withiPF It

is composed of three main components: a transformation(tdafyProcess), a GUI
called SocketUnify and an executable class analyzerPbyUnifyLoader). UnifyPro-
cess is a command-line Java application which acceptssitiga executable programs
(*.class) along with their original arguments. For eachsslaUnifyProcess uses the
BCEL framework [9] to manipulate it at the bytecode leveleThksult is a set of Class-
Wrappers classes encapsulating the original ones andmafderenting the Runnable
interface. Then, the UnifyLoader application will instiate every ClassWrapper on it
as a thread, it now being possible forrto verify programs which were independent
before. The BCEL approach used to instrument the origirfalveoe has demonstrated
to be more efficient than other more obvious approaches sugbiag Java reflection to
instantiate original classes within UnifyLoader, whiclngeates more states witlrF

97

<<singleton>>

PortMapper AbstractNetwork

-ss

Message

-holes

Slot

i

SlotChannel SlotNet SlotStream
SlotSocketChannel| | SlotServerSocketChannel| -spy SlotServerSocket lotSock SlotOutp p eam
Ko—>
i -reads i -backlog
ReadQueue Backlog

Fig. 5. The Abstract Network class hierarchy.

The Unify toolset also includes a graphical front-end shawifig. 6. This GUI
simplifies the selection of Client and Server classes, alpsltlee user to define options
to guide the creation of ClassWrappers and the executiomifLbader withiPr The
figure shows in the foreground a dialog box where users magtstieipFand Unify
binary folders, along with a set of useful parameters sut¢hekind of analysis (quick
or normal), the abstract network configuration, memory asaglifferent ways to show
results, among others. Regarding verification modes inyJai€uick verification mode
assumes that a server is always available for connectiahgiport which clients will
use, a situation which avoids the exploration of some exacytaths and saves time
and resources in the verification. However, this mode mayltrasfalse positives (OK
verdicts) even when a server is not bound to the same portendiients are trying to
connect. The normal verification mode takes care of thiss@n in JpPFand notifies
the corresponding error.

3.3 Details and Results

Our work has modelled twenty-two classes frprava. net (covering 15% of the
package)j ava. i 0 (13%),j ava. ni o (20%),] ava. ni o. channel (39%) and

j ava. ni 0. channel . spi (100%). All methods from these classes were modified,
except the ones in ByteBuffer related with conversions kepformats (they were not

a priority in this work). We have tested oupF extension with different Java source
code for Clients and Servers, where the limitations enaredtwere usually more

98

QOptions

Unify

Folder For app. binaries {.class)

| CHPRCh TestSimplebin

Folder For app. sources (.java)

| CHPFCh TestSimpletsre

JPF main Folder

| PFCipF []
SocketUnify main folder
|C:\PFC1,Un\Fy2\,bln | p—
Check for closes and non-read data Max. porks | 3l
%l
() Quick verification {sound when conns, are possible) M holee I—ID..I

() Mormal verification

Show statistics
Shaw results
[[] Show saurce code

[C] Redirect JPF output to file E_out.txt i

Buffer data size

128

(&) Mumber of clients: automatic detection

() Select number of dlisnts

Nurnbert of clients | auto]

Max, Memary usage (Mb.) | 900 | I

C | Class [Cancel J [oK]
Client. class
[] [5erver.class B

IPFI

Fig. 6. The Unify GUI front-end.

Table 1. Experiment results using thierFextension for basic Internet applications.

Experiment Visited StatesMax. Depth|Instructions|Time |Memory
EchaC.S 726 25 393515 0:00:018MB
EchaC_S Selector |1153 30 870930 0:00:029MB
KnockKnock-Protocql220 203 6917403 |0:00:0823MB

JPFrelated issues (e.g. some Java classes did not have thiesspondingvJl ver-
sion in the model checker)pFverifies Socket code smoothly in terms of time and re-
sources (states). For instance, table 1 shows some rebtdised after verifying three
Client/Server systems implementing variations of a retjtesgponse protocol (basically
as shown in fig. 1): Ech€_S, EchaC_S_Selector and KnockKnock-Protocol. The first
one uses an iterative server, whereas the second one usetiplexed 1/0 with a Se-
lector, which is internally more complex and also more exspanto analyze. The latter
is the example protocol implemented in the Java Tutoria).[A0 these experiments
have been carried out using a PC Intel Core 2 Duo with 2,4 GId2&B of memory.

Regarding the kind of properties available in our extensie& may check at the
moment:

— Deadlocks in the system (e.g. two peers waiting on a blocléad operation).
— Bad uses of the Socket API (usually throwing a Java Exception
— Socket closures with data still pending in the input buffer.

99

It is worth noting that this extension is fully compatibletiviexisting verification
methods and other optimizationsinr, such as partial order reduction, abstract match-
ing, race detectors or observers, among others.

4 Conclusions and Future Work

There are many model checking tools available to perforfieidint analyses for dis-
tributed and concurrent systems. Unfortunately, usermaltly have to deal with the
representation of their systems in the input language dfthleor tools selected, which
is a typical source of new errors (or inconsistencies). htiast, software model check-
ers constitute a smart solution for developers demandiregpap-to-use automatic ver-
ification tool. However, complex or specific domain problemsy need additional ad-
justment and changes in the tools, following the objectileeping these issues hidden
from the user.

This paper has introduced a setJfF extensions to deal with a domain-specific
problem: the verification of Internet Protocols. The extensinclude a way to analyze
Clients and Servers provided directly in bytecode form, sehreo further instrumenta-
tion is required by users. The Java Model Interface has geais with all the features
necessary to create an APl modelling a network abstrac@uom.class hierarchy is
able to verify processes which communicate through TCHitlsiscalable enough to
deal with other transport protocols. Thus, it is now beingiiaved for non-connection-
oriented ones such as UDP and Multicast Sockets.

It is worth noting that our proposal is the first step towards verification of
more complex distributed middleware. Our main objectivihesanalysis of programs
which rely heavily on middleware or high-level librariexcbias J2EE or Web Services,
where the basic communication tasks are hidden althougtstiiebelong to the basic
Client/Server model.

Our future work is focused on introducing more flexible waysléfine and embed
properties for Internet software PF, along with techniques to optimize the verifi-
cation process in terms of resources and time consumptieralgd plan to combine
our proposal with emerging methodologies such as ModelddriZngineering\NiDE)
[11], as shown in [12], whergDE anduML concepts were applied in order to simplify
the design of network services for the Internet by proposingiL2 Communication
Profile. This would make it more straightforward to use th&omatic code genera-
tion facilities available in modern modelling tools in orde obtain Socket-based Java
source code to be analyzed withr

References

1. Clarke, E., Emerson, E.A,, Sistla, A.: Automatic verifion of finite-state concurrent sys-
tems using temporal logic specifications. ACM Trans. on Rrogning Languages and Sys-
tems8 (1986) 244-263

2. Clarke, E., Grumberg, O., Peled, D.: Model Checking. Mi&<3 (2000)

3. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Proceedgsof CAVO1l. Volume 2102 of
Lecture Notes in Computer Science. (2001)

100

10.

11.

12.

. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Sakwerification with BLAST. In:

SPIN Workshop on Model Checking Software. Volume 2648 oftuexNotes in Computer
Science. (2003) 235-239

. Havelund, K., Pressburger, T.: Model Checking Java Rrogrusing Java Path Finder. In:

Software Tools for Technology Transfer. Volume 2. (2000§-3881

. Havelund, K., Visser, W.: Program model checking as a mendt In: Software Tools for

Technology Transfer (STTT). Volume 4. (2002) 8-20

. NASA: The Java PathFinder open source project. Availalkéde

http://javapathfinder.sourceforge.net/ (2008)

. Gamma, E., Helm, H., Johnson, R., Vlissides, J.: Desigtes. Addison-Wesley Pub Co.

(1995)

. Apache Software Foundation: The Bytecode Engineeringraky. Available at

http://jakarta.apache.org/bcel/ (2008)

Sun Microsystems: The Java Tutorial: all about Sockets. Available at
http://java.sun.com/docs/books/tutorial/networkgugpkets/index.html (2008)

Kent, S.: Model Driven Engineering. In: Proceedingskf12002. LNCS 2335, Springer-
Verlag (2002) 286—298

Martinez, J., Merino, P., Salmeron, A.: Applying MDE tfedologies to Design Commu-
nication Protocols for Distributed Systems. In: First inggional Conference on Complex,
Intelligent and Software Intensive Systems, IEEE Comp8tariety (2007) 185-190

