An Executable Semantics of Object-oriented Models for
Simulation and Theorem Proving

Kenro Yatake and Takuya Katayama

Japan Advanced Institute of Science and Technology
1-1 Asahidai Nomi Ishikawa 923-1292, Japan

Abstract. This paper presents an executable semantics of OO models. We made
it possible to conduct both simulation and theorem proving on the semantics by
implementing its underlying heap memory structure within the expressive inter-
section of the functional language ML and the theorem prover HOL. This paper
also presents a verification system ObjectLogic which supports simulation and
theorem proving of OO models based on the executable semantics. As an appli-
cation example, we show a verification of a UML model of a practical firewall
system.

1 Introduction

As our society has become more dependent on the information systems, it has become
more important to ensure the correctness and validity of those systems. Especially, there
is a growing need for the verification on the analysis level of the development since the
scale of systems is becoming large and the bugs found in the coding stage lead to a fatal
loss for constructors. Verification on the analysis levels allows early detection of bugs
and, as a result, reduces the total cost of development.

Among many verification methods, we focus on theorem proving which is recently
gathering attention in industrial areas. The prominent feature of theorem proving is
induction by which we can prove the correctness of system behavior exhaustively for
arbitrary inputs. In order to apply theorem proving to the analysis models such as UML
(Unified Modeling Language [1]), we need to implement a formal semantics of OO
models in theorem provers.

We consider that the semantics should be executable. This is because an executable
semantics allows us to conduct not only theorem proving but also simulation. Even
though theorem proving is quite a powerful verification method, it is not efficient when
it comes to the cost-effectiveness because it requires manual intervention of users through
proofs. But, simulation can, to some extent, compensate the disadvantage of theorem
proving. Simulation is efficient in that it allows us to identify the result of system execu-
tion at a glance. Although it cannot ensure the 100% correctness, we can immediately
check if the result is apparently correct or not. This is especially useful in the early
stage of model construction where many trivial bugs are included. By simulation, we
can efficiently find trivial bugs in advance of high-cost theorem proving, and as a result,
we can optimize the total cost of verification.

Yatake K. and Katayama T. (2008).

An Executable Semantics of Object-oriented Models for Simulation and Theorem Proving.

In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 71-80
DOI: 10.5220/0001732500710080

Copyright © SciTePress

72

So far, we have implemented a semantics of OO models as a/timethie theorem
prover HOL [2] and conducted verification of a simple libragstem [16]. But, only
theorem proving was possible because the semantics wagemitable. So this time,
for the purpose of simulation, we made the semantics exileuby implementing it
in the functional language Moscow ML [3] (the meta-languafelOL). In HOL, the
semantics is implemented based on a heap memory structur€he types and opera-
tions in the semantics are represented by those of the heapmend all the axioms
are derived from their definition. We implemented the sana diructure as actual op-
eration in ML and made the semantics directly executable tfibk is that this memory
structure is implemented within the intersection of theregpive power of HOL and
ML. This makes it possible to implement the semanticallyiegjent memory struc-
tures both in HOL and ML. To have an equivalent semantics foirtant to make the
result of simulation and theorem proving consistent witbheather.

In this paper, we present the overview of the executable sgosaand its implemen-
tation. We also present a verification system ObjectLogitcivisupports simulation
and theorem proving of OO models based on the executablensiemaAs an applica-
tion, we show a verification of a firewall system where we ptbtleat UML sequence
diagrams satisfies constraints written in OCL (Object Qaist Language [4]).

This paper is organized as follows. Section 2 explains tleevogw of the executable
semantics. Section 3 explains its implementation. Sedtiexplains how to execute the
semantics. Section 5 introduces ObjectLogic. Section @/slaoverification of a firewall
system. Section 7 cites related works. Section 8 gives osiwi and future work.

2 The OO Semantics

We implemented the OO semantics as a theory in HOL. The thisompt specific
to particular models, but implements general OO concepthabit can be used as
a groundwork for various models. The OO concepts covereclasses, attributes,
inheritance (tree), object subtyping and method dynansigatching. Besides covering
general OO concepts, it has two characteristics. Firs#jlaws arbitrary types (without
type variables) to be embedded into the types of objecbatts (fields). Compared to
the verification on the program level, verification on thelgsia level requires high-
availability of types since the analysis models are abtthby various types such as
set, stack and date. In fact, UML, the most major modelinguege, does not limit
available types to particular ones. Therefore, we enabiiithates to have arbitrary
types. This feature is also beneficial in that we can utileeous types and pre-proved
theorems in HOL libraries when constructing models andguaring proofs. But it is
not so easy to realize this feature in the first-order typesl©f.. The problem lies
in the structure of objects, i.e. an object is a data whicldfohultiple attributes of
arbitrary types. So, we cannot represent objects by nateddyng a product of type
variables likex * (3 * 7y * ... because we cannot predict how many variables we should
put in the product. To cope with this problem, we take the apph of automatically
constructing the semantics depending on the type infoomadf the application. If
types are given in advance, an object is easily represegtadoboduct of those types
like num x string * bool. The object referencing and inheritance are realized hyrgut

73

Class model 00 theory
class fig { [types] store, fig, rect, crect
attr x : int; [constants & operators]
attr y : int; store_emp, fig_null, rect_null, crect_null
} fig_new : store -> fig # store
fig_ex : fig -> store -> bool
class rect extends fig { fig_get_x : fig -> store -> int
attr w : int; fig_set_x : fig -> int -> store -> store
attr h : int; rect_cast_fig : rect -> store -> fig

} fig_is_rect : fig -> store -> bool
class crect extends rect { [axioms]

attr ¢ : color; |- !s. let (f,sl) = fig_new s in fig_ex f sl
} |- 'f x s. fig_ex £ s ==>

(fig_get_x £ (fig_set_x f x s) = x)
|- !'r s. rect_is_rect r s ==>
Theory generator fig_is_rect (rect_cast_fig r s) s

Fig. 1. The OO theory.

those products in a heap memory structure. The implementdétails are explained in
the next section. Secondly, it is shallowly embedded, hhe.doncepts such as classes,
attributes, and inheritance are represented directly@estgnd constants in HOL. This
is because our verification target is each instance of OO mofihallow embedding
facilitates the proof of instance levels compared to deepesiding [5]. It also has
the effect of making the theory simple because all the tyjifigrmation is directly
represented by the type system of HOL and there is no needlittcamlly include the
typing constraints into the theory.

The OO theory is defined based on the class model of the taygtens. We im-
plemented the theory generator which inputs a class modebatputs its OO theory.
Fig.1 shows an example. The class model defines static steust a system such as
classes, attributes and inheritance. The OO theory defjpes toperators and axioms
representing basic OO concepts. The type playing centralipthe theory isst or e.

It represents the environment which holds all alive objétthe system and has the
constantt or e_enp representing an empty store. The ty¥pey represents the type of
object references for the clakisg and has the constaht g_nul | representing NULL
reference. The operatbr g_newis a function to create a neiw g instance in the store.
The operatof i g_ex is a predicate to test if i g object exists in the store. The first
axiom is a property about these operators saying “The neseted i g object s alive
in the store after the creation.” The operatbrg_get _x andfi g_set _x are func-
tions to read and write the attributeof the class i g. The second axiom says “If the
fi g object is alive in the store, the value of the attributef the object obtained just
after updating it tor equals tov.” The operatof i g_cast _rect is a function to cast
afi g object downward fronfii g torect. The operatofi g_i s_rect is a predicate
to test if af i g object is an instance of the classct . After an object is created, its
apparent type can be changed by cast operators, but insthoperators remember the
actual type of the object. The third axiom illustrates thisays “If ar ect objectis an
instance of the ect class, it is still the instance of theect class even if it is cast to
thefi g class.” The instance-of operators are used to implemerdyhamic method
dispatching.

74

fig rect crect
£0 r0 [co] |
f1] (2,3,r0) ‘/'rl (10,8,f2,c0) ‘/'lcl| (red,r2) |
f2] (-4,5,rl1) r2[(6,12,£3,cl)
£3] (1,-2,r2) :::r} (4,10,f4,c0)

f£4 (10,0,r3)

Fig. 2. Snapshot of the heap memory.

3 Implementation in HOL

In order to guarantee the soundness of the theory, we impid¢he theory conserva-
tively by definitional extension. This is a standard methmddnstruct sound theories
in HOL, where new theories are derived from existing sourdties by only allowing
introduction of definition and derivation by sound inferernrciles. This can be com-
parable to axiomatical theory construction where axioresdiectly introduced in the
theory, which often makes the theory inconsistent. Therthesoderived from a heap
memory structure which is defined by primitive theoriesadhgexisting in HOL. The
types and constants in the theory are represented by thdise iieap memory and the
axioms are derived from their definitions.

Fig.2 shows a snapshot of the heap memory for the examplelnTdaeheap mem-
ory consists of three sub-heaps which are introduced quoreling to the three classes.
Each sub-heap is represented by a list and the whole heapresemted by a tuple of
them. Object references are represented by indices of theonyeFor example, the ref-
erences$ 0,f 1, f 2,... are represented by natural numbers 0,1,2,0.répresents a null
referencef i g_nul |). Object instances are represented by a tuple or multigdkesu
stored in the sub-heaps. For example, the tupletimepresents &i g instance whose
attribute arex=2 andy=3. Two tuples inf 2 andr 1 together representraect instance
whose attribute are=- 4, y=5, w=10, andh=8. The two tuples are linked by storing
the references1 andf 2 each other. Object subtyping is modeled by this linkedeupl
structure. For example, the three refererfcgs 2 andc1 all point at the samer ect
instance. This means the ect instance can have three apparent tyfges, r ect and
cr ect . The operators in the theory are implemented as the furetmmanipulate the
heap memory. Their definition is detailed in [16].

4 Executing the Semantics

In HOL, the theory is derived from the heap memory structBsedefining the same
data structure in ML, the theory becomes executable. It avnthat HOL and ML
have similar type systems and there exists an intersecfienpressiveness between
them. Fig.3 illustrates this. The common concepts are itidkudatatypes and recursive
functions (primitive recursion and well-founded recurgi8][9]D The heap memory
structure in HOL is defined within this intersection and thenge data structure can be
defined in ML in a straightforward way.

For example, the following HOL functiowr i t e is the function on the sub-he&p
to update the data in the addressy datax:

75

inductive relations, | inductive datatypes exception,
HOL undefined constants recursive functions non-terminating functions, | ML
quantifiers... (prim rec. w.f. rec.) modules. ..

Fig. 3. Expressiveness of HOL and ML.

wite (ninum) (x:'a) (l:"alist) =

if 0O<n/\ n<LENGTHI| then witel n x | else |
(witel O x| =x::(TL 1)) /\
(witel (SUCn) xI|) =(HDI)::(witel nx (TL 1))

This primitive recursive function can be also defined in Mlfakws:

fun wite (n:int) (x:’a) (l:"alist) =

if 0O <nandalson <length | then witel n x | else |
fun witel 0 x | x:(th 1)

| witel n x | (hd I)::(witel (n-1) x (tl 1))

We can see that the definition is directly correspondentpxitet we are using the
integer typei nt in ML instead of the natural number typem This is because ML

does not have a type of natural numbers. This does not makdifeerence in their se-

mantics. As for exception, we cannot use ML exception bezbd@L does not have the
concept. In Java, exceptions are raised in the cases suctldsidference accessing
and illegal down-casting. We handle such cases by retuappgopriate values. This is
summarized by the following axioms:

|- !'s. fig_get_x fig_null s =0
|- 'x s. fig_set_x fig_null x s =s
|- !'f s. fig_is figf s ==> (fig_cast_rect f s = rect_null)

The first axiom means “When an attribute of a NULL referenceeferred, it returns
the default value for the attribute type.” The alternatiygr@ach could be to return
an undefined constant like g_unknown_x: i nt, but as it is not supported in ML,
we simply return the default value. The second axiom meanisetan attribute of a
NULL reference is updated, it actually does not cause trexefd the state.” The third
axiom means “When illegal down-casting occurs, it retuhesNULL reference of the
destination class.”

In this way, we can define a semantically equivalent heap mgstauctures both
in HOL and ML. To have an equivalent semantics is importannheke the result of
simulation and theorem proving consistent with each other.

We extended the theory generator so that it outputs the Micttre which imple-
ments the heap memory structure. Its signature providetypi®s and operators corre-
sponding to those in the OO theory. Fig.4 shows the execofitimose operators. The
internal structure of objects and stores are hidden by theug signature restriction.

76

val (r,sl) = rect_new store_emp;
val r = <rect> : rect

val sl <store> : store

val s2 rect_set_x r 10 sl;

val s2 <store> : store

val f = rect_cast_fig r s2;

val £ = <fig> : fig

fig _get_x f s2;

val it = 10 : int

VI VIV IVVI

Fig. 4. Execution of the theory.

5 ObjectLogic

ObjectLogic is a verification system for OO models. It suppdroth simulation and
theorem proving based on our executable semantics. It enaisl to define models
in a high-level language called OML (ObjectLogic Meta-Laage). It is a sequential
OO language whose syntax is closed to Java and is able to tirmmitrary types and
functions from HOL. In OML, we can specify assertions sucimashod contracts (pre-
and post-conditions) and class invariants. From the ageertObjectLogic produces
target propositions (proof obligation) in the OO theoryaldo provides tactics which
tries to prove the goal automatically by applying the axiamihe theory.

Fig.5 shows how it works. Firstly, ObjectLogic construdts simulator and the the-
ory from the classes using the theory generator (1). Themaiislates methods into
functions both on the simulator and the theory (2). Finatltranslates assertions into
HOL propositions (3). We can conduct simulation using the étecutables and theo-
rem proving by proving the HOL propositions.

ObjectLogic can be used for verification of UML models. Aswhaon Fig.5, all we
have to do is to translate UML class diagrams, sequenceatizgand OCL constraints
into classes, methods and assertions in OML (Currentlytthnslation is done by hand
and future version of ObjectLogic will support automatartslation). We can prove that
the internal behavior of the sequence diagrams satisfiesdiieod contracts and class
invariants defined as OCL constraints in the class diagram.

UML OML (3)
OCL Assertions)
Seqg. diag. Methods 8]
Class diag. Classes -—l Tactics
‘ 1 y |
Simulation 3
e . 2) —sz Propositions H Q.E.D
| Functions H—ObjectLogic—ﬂ Functions |
: (1) (1)
[Simulator [] 00 theory |

[ML

[HOL |

Fig. 5. ObjectLogic.

77

fw::filterOut (p:packet):string#packet , Filter rule
pre: not (p=null)

post: not (snd(result)=null) implies
(snd(result)) .srcIP=nattable.ipAddr@pre

frule

—srcIPTable:num list

= fu ~dstTPTable:num list
. —active:bool
~ +check (p:packet) :bool

~+filterOut
(p:packet) :string#packet

Connection table doscounter
'
\

l | | .-- NAT table

contable nattable

-maxSize:num —ipAddr:num

+addConnection ports: (num#bool) list

packet

(1a:numfnum, ga : numfnum) :void Tsronat (sa:numbnum) :numfaum -srelP:num
—dstIP:num
0..maxSize | 0..length(ports) —srcPort:num
—dstPort:num
—protocol :num

connection natrule

localAddr : num#num —localAddr : num#num L
—globalAddr : numf#num globalAddr : num#num

" NAT rule

Fig. 6. UML class diagram of the firewall system.

6 Verification of a Firewall System

We applied ObjectLogic to verification of a practical firelx@tstem. The specification
of the firewall system is our original one based on a real ptbdfia company close
to Cisc® PIX Firewall. We conducted verification as follows. Firstlye translated
the specification into UML models (structural part into elasagrams and behavioral
part into sequence diagrams) and the requirements intdraants in OCL. Then, we
translated the UML models and the OCL constraints into OMd gaput it to Object-
Logic obtaining the ML executables and the HOL propositidgfisally, we conducted
simulation using the executables and proved propositioit$dL. The OML code is
about 1200 lines containing 8 classes, 35 attributes anarHiRods.

The firewall system is a stateful packet filter with NAT (Netwdé\ddress Transla-
tion) which is the mechanism to translate between a publiadéress of the firewall
and multiple private IP addresses of local hosts. It has dffi@tts of sharing a single
IP address among multiple hosts and hiding private addsesfshe local hosts. Fig.6
shows the class diagram of the firewall system. The modelssadied with respect to
datatypes using HOL types. For example, IP addresses aesegyted by natural num-
bers and the filter rules are represented by lists of perbiésaddress numbers. The key
function of the system is the packet filtering function whistdefined as the method
filterQut () of the clasg w. It inputs a packet and outputs a string message and the
filtered packet. The internal behavior of this method is aefias sequence diagrams,
which we omit to show due to space limitation.

For this firewall, we conducted simulation and theorem prg\uo verify the prop-
erties such as “The outbound packets which do not meet tlee files are always
dropped unless they belong to existing connections” an@ ‘Sdurce IP address of the
outbound packet is always updated by the public IP addrefisedirewall”. Both of
them are crucial for the security of the firewall. The firstgeay ensures that a local
host never connects to illegal hosts in the outside netwitnk. second property (NAT
property) ensures that the private IP addresses of the ihatalork never leak to the

78

- val (fw,s) = new_fw store_emp; (* Creat a FW *)
(* Set confuguration values *)
- val (_,s) = fw_setIpAddr pfm 200 s;
- val (_,s) = fw_setPorts pfm [1200,1210,1220] s;
- val (_,s) = fw_setFilterRules pfm SRCADDR [10,20,30] s;
- val (p,s) = new_packet 20 1070 250 80 TCP s; (* Create a packet *)
> val p = <packet> : packet
val s = <store> : store
- val (msg,p,s) = fw_filterOut fw p s; (* Apply outbound filtering *)
> val msg = "pass: new connection" : string
val p = <packet> : packet
val s = <store> : store
- packet_getInfo p s; (* Display packet information *)
> val it = ((200, 1200), (250, 80), 0) : (int * int) * (int * int) * int

Fig. 7. Simulation of the firewall system.

outside network. The class diagram includes the OCL constrgpresenting the NAT
property which is defined as the contract of the methidd er Qut () .

Fig.7 shows simulation of the firewall. We firstly created awiall object and set
the configuration values such as the public IP address, thenpmbers and the filter
rules. Then, we applied the filtering function to an outbopadket and identified that
the firewall correctly passed the packet and updated thesdBraddress by the NAT
rule. By simulation, we were able to find some trivial bugs: &mample, we found the
lack of method invocation to add a connection by seeing thatrevhere the connection
table remained unchanged. We also found thetn- andel se-parts ofi f statement
were reversed by seeing the result where an apparentlyotpaeket was dropped. We
were able to find these kinds of easy bugs efficiently by sitradaand avoid the worst
case to find them by high-cost theorem proving.

The NAT property is proved in HOL as the following theorem:
|- I'(this:fw) (p:packet) (s:store).
let (msg,p’,s’) = fwfilterQut this ps in

packet _ex p s /\ invariants fws ==>
packet _ex p’ s’ ==>

(packet _get SrcAddr p’ s’ = fw_getlpAddr this s)

The functionf w_fi | t er Qut represents the filtering method of the firewall. It means
“If the output packep’ is not NULL (the packet is passed), the source IP address of
p’ is equal to the public IP address of the firewall.” By this tten, we can ensure that
private addresses never leak outside. The proof took 8 famutsve proved 21 lemmas
in the course. The proof code length is about 450 lines (aboetactic per line). The
entire proof is done in the OO theory level using the tactic©bjectLogic without
digging down to the heap memory level. To be able to condumtfgn the OO level,
which is close to human intuition, is the major advantage lojeCtLogic.

In this way, ObjectLogic enables both simulation and theopeoving in the equiv-
alent semantics in ML and HOL. By proving crucial properiiéshe firewall system,
we made sure that ObjectLogic can be applicable to practicitms of proper scale.
In order to make it applicable to general large systems, vesl ie make the proof
more efficient. The key is how efficient we can make the infeesof loop statements.

79

We consider it effective to introduce high-level loop staémts for manipulating object
collections and their inference rules because they frégappear in application do-
mains: calculate the interest for all the accounts in a beakulate the total price of
all the items in the cart in online shopping sites. It is alfective to implement a ver-
ification condition generator for OML. To prove verificaticonditions is much more
efficient than to prove propositions directly in the OO thebecause we can focus on
the proof of datatypes apart from the axioms in the OO theory.

7 Related Work

The semantic equivalence between simulation and theorewingris a notable feature
of our executable semantics, which is realized by definingtihe expressive intersec-
tion of ML and HOL. This is similar to ACL2 which combines a tirem prover and
a programming language based on the same language, anatipplgubset of Com-
mon Lisp. ACL2 is often used as a semantics for both simuladitd theorem proving.
The work by G. Al Sammane [14] presents a tool TheoSim whichlmoes simulation
and theorem proving of VHDL designs. The work by M. Wildingadt [15] defines
a formal model of a microprocessor to integrate simulatiod @rmal analysis. Even
though ACL2 is successful in hardware verification, we cdesit has a limitation in
software verification because the representation is loel lamd the types are limited
to numerals. On the other hand, our tool ObjectLogic is difibe software verification
because it supports objects and allows arbitrary types.dfisider that, in the firewall
verification, the high-abstractness of the semantics saveibf modeling and proving
effort which would have been taken in the case of using ACL2.

There are a lot of work to implement OO semantics in theoremwgns especially
for Java and UML. The work by G. Klein et al. [6] implements settics of Java for
both source language level and bytecode level in Isabelle/H he work by G. Barthe
et al. [7] implements an executable semantics of JavaCaittbpin (virtual machine
and bytecode verifier) in Cog. Both of them adopt a deep enibgde:cause their ver-
ification target is on the platform level such as type safyndness of Hoare calculi
and correctness of the bytecode verifier. We adopted a shafttbedding because our
verification target is on the instance level such as methattacts and class invariants.
A shallow embedding makes the proof on the instance levétieand the theory it-
self simpler than deep embedding. The work by J. Berg et 8].4hd C. Marché et
al. [11] implements Java semantics for reasoning Java gnagannotated with JIML
specifications as memory models in WHY and Isabelle/HOLpeetvely. We defined
a similar memory model, but it differs from them in that italls arbitrary types for ob-
ject attributes, which is effective in the verification orthnalysis level. As for UML,
the work by [12] implements a semantics of UML sequence diagrin PVS. The
work by A. D. Brucker et al. [13] implements a semantics ofgpecification language
OCL as a conservative shallow embedding in Isabelle/HOlmgare to these work,
our semantics is not specific to particular languages butements basic typical OO
concepts. We are aiming at constructing a general-purgosarstics which can be used
as a groundwork for various languages.

80

8 Conclusions and Future Work

In this paper, we presented an executable semantics of O@Istod the foundation of
both simulation and theorem proving. The semantics is impleted in two languages:
HOL for theorem proving and ML for simulation. We preservd semantics equiv-
alence between them by implementing the underlying heapanestructure within
the expressive intersection of HOL and ML. We also preseatedrification system
ObjectLogic which supports simulation and theorem proviaged on the executable
semantics. As an application, we showed a verification of d_Whbdel of a practical
firewall server system. Future work is to reinforce the vesaifion capability of Object-
Logic by implementing a test suite generator and a verificatondition generator.

References

1. OMG. Unified Modeling Language. URL: http://www.omg.brg

2. The HOL system. URL: http://hol.sourceforge.net/.

3. Moscow ML. URL: http://www.dina.dk/ sestoft/mosml.Htm

4. J. Warmer and A. Kleppe. The Object Constraint Languagecige modeling with UML.
Addison-Wesley, 1999.

. Tobias Nipkow, David von Oheimb and Cornelia Pugckava: Embedding a Programming
Language in a Theorem Prover. In Foundations of Secure Ceatipu 10S Press, 2000.

. Gerwin Klein et al. Bali project, http://isabelle.imtude/Bali/

. G. Barthe, G. Dufay, L. Jakubiec, S. Melo de Sousa, and Bpe®e. A Formal Exe-
cutable Semantics of the JavaCard Platform. In D. Sand®reBiroceedings of ESOP'01,
http://citeseer.ist.psu.edu/470034.html
8. P. S. Rajan. Executing HOL specifications: Towards anuetin semantics for classical

higher order logic. In L. J. M. Claesen and M. J. C. Gordontcedj Higher order Logic
Theorem Proving and its Applications, Leuven, Belgium,t8eyber 1992. Elsevier.

9. S. Berghofer and T. Nipkow. Executing Higher Order Lodit.P. Callaghan, Z. Luo, J.
McKinna, and R. Pollack, editors, Types for Proofs and Pangr (TYPES 2000), volume
2277 of LNCS. Springer-Verlag, 2002.

10. J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A tigperetic memory model for
verification of sequential Java programs. Techn. Rep. CBI2R, Comput. Sci. Inst., Univ.
of Nijmegen, 1999.

11. Claude Marché and Christine Paulin-Mohring. Reagpioin Java programs with aliasing
and frame conditions. In 18th International Conference lo@dofem Proving in Higher Order
Logics (TPHOLs 2005), LNCS, August 2005.

12. Demissie B. Aredo. A Framework for Semantics of UML SemeeDiagrams in PVS. Jour-
nal of Universal Computer Science (JUCS), 8(7), pp. 674-6alg 2002.

13. A. D. Brucker and B. Wolff. A proposal for a formal OCL semtias in Isabelle/HOL.
TPHOLSs 2002, LNCS 2410, pp.99-114, 2002.

14. G. Al Sammane, J. Schmaltz, D. Toma, P. Ostier, D. Bogridiheosim: Combining Sym-
bolic Simulation and Theorem Proving for Hardware Verificat Proc. of the 17th Sympo-
sium on Integrated Circuits and System Design (SBCCI'0a942

15. Matthew Wilding, David Greve, David Hardin, EfficientnSilation of Formal Processor
Models, Formal Methods in Systems Design, 18(3), Kluwer deraic Publishers, May
2001.

16. Kenro Yatake, Toshiaki Aoki and Takuya Katayama. Immating application-specific
Object-Oriented theories in HOL. In Proceedings of the 2merhational Conference on
Theoretical Aspects of Computing (ICTAC'05), pp.501-52605.

()]

~N o

