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Computer Science Department, CINVESTAV-IPN
Av. IPN 2508, Col. Zacatenco, C.P. 07360, Mexico

Abstract. An active database system executes actions automatically in response
to events that are taking place either inside or outside the database. Developing
an active database system, especially an active rule base, is not an easy task be-
cause some (unnoticed) errors may be introduced during its construction. In this
paper, we present a Petri net-based approach to integrate active rules into tra-
ditional database system. We implemented our approach as a software system
called ECAPNSim which not only has verification and simulation functionality
but also allows us to develop multi-platform applications, i.e., a unique active rule
base can work independently of the DBMS.

1 Introduction

An active database system (ADBS) is able to react automatically to meaningful events
that are taking place inside or outside the database system. This reactive behavior is
achieved by combining active rules into the traditional database system. Developing an
active rule base, which is the core of an ADBS, requires considerably effort because
of some of the following aspects: first, the knowledge represented by active rules into
the computer-based system may have structural errors such as redundancy, inconsis-
tency, incompleteness and circularity due to various communication problems between
the expert and the active rule base designer. Second, the functionality of a rule base
may be difficult to understand due to active rules are fired dynamically based on the
previous flow of events. Finally, the tools associated with an active rule system may be
minimal, with little support for browsing, monitoring, or debugging active rules. These
points reflect a need for design rule analysis techniques and tools for debugging and
explanation [1]. In our previous work we developed a Petri net-based approach, called
Conditional Colored Petri Net (CCPN), for modeling and simulating active rules and
their behavior. We implemented our approach as a software system, named ECA rule
Petri net simulator (ECAPNSim) which turns a passive database into an active one [2].
ECAPNSim is introduced as a layer on top of the conventional database system, so it
can establish communication with different database management systems (DBMS).
Such integration allows us to develop multi-platforms applications, and makes it pos-
sible that an active rule base works independently of the DBMS. However, rule base
verification, which is very important to guarantee that an active database works without
errors, was not considered in the development of ECAPNSim.
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In this paper we focus on the integration of an error-free active rule base into a
conventional database system using CCPN approach. First, we model the active rule
base as a CCPN. Second, we detect structural errors by analyzing the structure of the
Petri net. Taking into account the list of errors, the rule designer may perform suitable
actions to correct them. Third, through the token flow in the CCPN, the active rule base
behavior is simulated or performed. Thus, we can not only foresee but also ascertain the
causes that trigger a rule. This work assures that a correct active rule base is integrated
into a database system, in consequence, the obtained active system performs properly.

The remainder of the paper is organized as follows: Section 2 introduces active
database system, knowledge and execution models are reviewed through a small exam-
ple. Section 3 defines structure errors that an active rule base may have, as well as a Petri
net-based method is proposed to detect them. Our software system ECAPNSim is pre-
sented in Section 4. A case study is used to demonstrate the ECAPNSim functionality.
Section 5 shows related works. Finally, conclusion is drawn in Section 6.

2 Active Database System

An active database management system integrates event-based rule processing with tra-
ditional database functionality. Generally, its reactive behavior is achieved through def-
inition of Event-Condition-Action (ECA) rules as part of the database. When an event
happens the rule is triggered, then if the condition evaluation is true, the action is ex-
ecuted [1]. Generally, an active rule takes the following form: ON event IF condition
THEN action.

An event is something that occurs at a point in time. The condition examines the
context in which the event has taken place. The action describes the task to be carried
out by the rule if the condition is fulfilled once an event has taken place. In the following
there are some active rules based on the relation schema account(num, name, bal-
ance, rate)which contains registers about bank’s accounts. Rules in the active rule base
automatically enforce some of the bank’s policies for managing customers’ accounts.

Example 1. Bank’s policies for managing customers’ accounts.

Rule 1. When an new account is registered, if that account has a balance less than
500 and an interest rate greater than 0%, then that account’s interest rate is lowered to
0%.

Rule 2. When an account’s interest rate is modified, if an account has a balance less
than 500 and an interest rate greater than 0%, then that account’s interest rate is lowered
to 0%.

Rule 3. When an account’s balance is modified, if that account has an interest rate
greater than 1% but less than 3%, then that account’s interest rate is raised to 2%.

Rule 4. When an account’s balance is modified, if that account has an interest rate
greater than 1% but less than 3%, then that account is deleted.

Above policies can be represented as active rules as follows:
Rule 1. ON insert account IF insert.balance ¡ 500 and insert.rate ¿ 0
THEN update account set rate = 0 where balance ¡ 500 and rate ¿ 0
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Rule 2. ON update account.rate IF update.balance ¡ 500 and update.rate ¿ 0
THEN update account set rate = 0 where balance ¡ 500 and rate ¿ 0

Rule 3. ON update account.balance IF update.rate ¿ 1 and update.rate ¡ 3 THEN
update account set rate = 2 where rate ¿ 1 and rate ¡ 3

Rule 4. ON update account.balance IF update.rate ¿ 1 and update.rate ¡ 3 THEN
delete from account where rate ¿ 1 and rate ¡ 3

Suppose the event update account.balance has been detected (signaling phase),
so Rule 3 and Rule 4 are triggered (triggering phase). Then, conditions of Rule 3 and
Rule 4 must be evaluated to determine if their corresponding actions can be executed
(evaluation phase). Let’s assume the condition update.rate ¿ 1 and update.rate ¡ 3 is
true, rule execution is scheduled (scheduling phase). For simplicity, rule execution will
be done by following the order of rules in the list. Therefore, Rule 3’s action will be
executed first, only then Rule 4’s action will be executed (execution phase). After Rule
3’s action execution, the event update account.rate is signaled, so Rule 2 is triggered
(immediate coupling mode) and execution process is repeated until there is no rule
eligible to trigger. On the other hand, when Rule 4’s action is executed, rule processing
finishes since there is no rule such that is triggered by the event delete from account.

3 Rule Base Development

Developing an active rule base involves transferring expertise from the human expert
through the active rule base designer into the computer. During this process many er-
rors, which have to be detected to ensure a proper perfomance of the system, may arise
because of communications problems between the expert(s) and the rule designer. Veri-
fication concerns the correctness and appropriateness of the structure of a rule base, and
must be an essential part of the whole system development. In our previous works [2] -
[5], we have tackled active rule base verification issues.

Structural errors include redundancy, inconsistency, incompleteness and circularity.
We refer the event and condition parts as premise of an ECA rule, and denote an ECA
rule as Ri(Ei, Ci, Ai) where Ei, Ci and Ai are the event, condition and action of rule
Ri, respectively. Here we take Redundancy error as an example to show our verification
process.

Redundancy is characterized by redundant and subsumed rules. Given a rule i and
a rule j which take the same action, if rule i has a more restrictive premise than rule j,
then rule i is a subsumed rule because whenever it succeeds, rule j must also succeed.

Definition 1. (Subsumed Rules.) A rule Ri(Ei, Ci, Ai) is subsumed by a rule Rj

(Ej , Cj , Aj) if the following conditions are met:

(1) Ej ⊆ Ei,
(2) Cj ⊆ Ci,
(3) Aj ⊆ Ai

When in Definition 1, Ej = Ei, Cj = Ci and Aj = Ai the two rules are absolutely
identical, so they are redundant rules.

Sometimes, rules are not subsumed (or redundant) completely, i.e., only some of
its elements (event, condition, action) are subsumed (or redundant). We identify those
rules as partially subsumed (redundant) rules since they can also cause redundancy.
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Definition 2. (Partially subsumed Rules.) A rule Ri (Ei, Ci, Ai) is partially subsumed
by a rule Rj (Ej , Cj , Aj) if only two of its elements are subsumed by those of Rj .

Rules Ri and Rj are event - condition subsumed rules, if the following conditions
are fulfilled.

(1) Ej ⊆ Ei

(2) Cj ⊆ Ci

(3) Aj 6= Ai

Similarly, we can define event - action subsumed rules and condition - action sub-
sumed rules.

In Example 1, Rule 1 and Rule 2 are partially redundant condition - action rules
because they evaluate the same condition and perform the same action.

Redundancy doesn’t cause a bad performance to the rule base; however, problems
arise when one of the redundant rules is changed or removed but the rest don’t because
their behavior still will be presented in the rule base.

In order to detect structural errors in the rule base, we developed a verification
process which consists of three phases: rule normalization, rule modeling, and rule
verification which we describe in the following.

3.1 Rule Normalization

This step translates the original active rule base into a set of atomic rules. An atomic rule
is that whose event and condition are a conjunction of one or more primitive events and
conditional clauses, respectively, and its action is only one instruction. We consider the
event algebra described in [1]; however, we have restricted our analysis - with no loss
of generality - to disjunction and conjunction operators since the rest of the operators
have the same structure, for example, if events in conjunction operator are ordered then
we have the sequence operator.

A rule Ri(Ei, Ci, Ai) can always be divided into several atomic rules by the fol-
lowing steps:

Step 1. If Ri(Ei, Ci, Ai) is atomic, its OK. If not go to Step 2.
Step 2. Transform each element of Ri(Ei,Ci,Ai) into disjunction form, by using

rules from the boolean algebra, so that each element consists of one or more disjuncts
each one of them is a conjunction of one or more instructions. If the transformed rule
has no disjunctions in its elements, then it is an atomic rule according to the definition.
Otherwise, go to the next step.

Step 3. Divide Ri(Ei, Ci, Ai) into a set of atomic rules whose premises and actions
are the obtained disjuncts in Step 2.

Active rule base of Example 1 doesn’t need to be normalized since each rule is
atomic.

3.2 Rule Base Modeling

An active rule base as well as its interaction can be represented by several models.
However, some of them are not suitable to perform active rule base verification because
they represent the rules very general. The Conditional Colored Petri Net (CCPN) model
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[2], which is an extension of Colored Petri Nets, represents each element of an active
rule and it provides a way to represent composite events as well as to consider condition
evaluation. Since this model is an extension of Petri nets it has a sound basis to analyze
active rules behavior. An active rule is mapped to a CCPN structure as follows: the rule
is mapped to a transition where condition is attached, event and action parts are mapped
to input and output places of a transition, respectively. Matching between events and
input places has the following characteristics:

– Primitive places, Pprim, represent primitive events;
– Composite places, Pcomp, represent composite events;
– Copy places, Pcopy, are used when one event triggers two or more rules. An event

can be shared by two or more rules, but in PN theory, one token needs to be dupli-
cated for sharing. A copy place takes the same information as its original one;

– Virtual, Pvirt, places are used for accumulating different events that trigger the
same rule. For example, when the event part of a rule is the composite event OR.

All places in the CCPN are identified by P . P = Pprim ∪ Pcomp ∪ Pcopy ∪ Pvirt.
Rules and transitions are related in the following form:

– Rule transitions, Trule, represent rules;
– Composite transitions, Tcomp, represent composite event generation;
– Copy transitions, Tcopy, duplicate one event for each triggered rule.

All the transitions in CCPN are represented by T. T = Trule ∪ Tcomp ∪ Tcopy.

Fig. 1. CCPN structures of ECA rules. (a) Basic CCPN structure of an ECA rule (b) Copy struc-
ture (c) Composite structure (d) Virtual structure.

Figure 1 shows the basic structures to which an ECA rule can be mapped. In its
most basic form, event, condition and action of a rule matches with a primitive in-
put place, a rule transition and a primitive output place, respectively, as shown in Fig-
ure 1(a).If an event triggers two or more rules it has to be duplicated by means the
copy structure depicted in Figure 1(b). Composite events formation is considered in
CCPN using the composite structure drawn in Figure 1(c). Composite transition’s in-
put places represent all the events needed to form a composite event while its output
place correspond to the whole composite event. Finally, we use the virtual structure to
model the composite event OR as standing for in Figure 1(d). Virtual place acts as an
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“event store”, i.e., when a rule is triggered by several events that place accumulates
them and each one of them can be used to trigger the rule. The CCPN model of a set
of ECA rules is formed by connecting those places that are output and input places
at the same time, i.e., those places that represent both the action of one rule and the
event of another rule. Figure 2 shows the CCPN model of rules of Example 1 in our
ECAPNSim interface. Events/actions: insert account, update account.rate, update
account.balance, and delete account, defined in active rules of Example 1, are rep-
resented by the primitive places E0, E1, E2, and E5, respectively. Places labeled as E3
and E4 are copy places, so, they contain the same information as place E0. Each rule
in Example 1 is represented by a rule typed transition in the CCPN, so that, transition
T1 represents Rule 1, transition T2 stands for Rule 2, and so on. Also each rule typed
transition is attached with the condition of its corresponding rule. Since transition T0 is
a copy typed transition it doesn’t represent any rule; however, it allows us to trigger two
rules at the same time. Condition of transition T0 is always true.

Fig. 2. CCPN with token “insert account(100, James Brown, 300, 0.5)” in place E0.

In CCPN transition firing is defined by two steps: first, verify if a transition is en-
abled; second, verify if it can fire according to the condition evaluation result. If a
transition is enabled and the condition evaluation is true, then that transitions fires.

3.3 Rule Verification

Structural errors considered in this paper have special patterns which allow us to iden-
tify them. Through the analysis of some abnormal structures we conclude that the rules
which may have errors exhibit the following characteristics (either one of them or both):

1. Rules with the Same Action. Those transitions that have primitive output places
with more than one input arc may cause errors because they represent rules with
actions executed by more than one rule
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2. Rules with Common Events. Those transitions that have primitive places which
are duplicated through a copy type transition since they represent rules with events
that trigger more than one rule.

During CCPN construction relevant information is generated, we can retrieve it
using the following methods:

– getInputPlaces(T). It returns the input primitive places of a transition T. For exam-
ple, getInputPlaces(T3) = {E2}. getInputPlaces(T) is different from •T since each
one of them gives us the primitive and all input places of transition T, respectively.

– cond(T). It returns the conditional clauses stored in the rule typed transition T. For
example, cond(T4) = {update.rate ¿1, update.rate ¡ 3}.

By using the CCPN model and the information obtained with above methods, we
developed a set of error detection properties. Here we show our property to detect re-
dundancy.

Property 1. Redundancy. Let ti and tj , 1 ≤ i, j ≤ m, i 6= j; be two transitions
which represent the Rule i and Rule j of RB, respectively, which execute the same
action and whose conditions have, at least, a common conditional clause. We say that
Rule j is subsumed by Rule i if ti and tj satisfy the following conditions:

a). getInputP laces (ti) ⊆ getInputP laces (tj) ;
b). cond(ti) ⊆ cond(tj);
c). t•i = t•j .

Errors detected in the rule base of Example 1 are the following: (1) Rule 1 and Rule
2, as well as Rule 3 and Rule 4, are partially redundant condition - action rules. (2) Rule
3 and Rule 4 are conflicting rules since their actions contradicts each other under the
same premise. (3) Rule 2 is a circular rule. (4) Rule 2 is an unreachable rule. (5) Rule 4
is a dead-end rule. With the complete list of errors, rule designer must perform suitable
actions to correct each error.

4 Integrating Rule Base and Database System

ECA Petri Nets Simulator (ECAPNSim)was originally developed for modeling and
simulating ECA rule base behavior in active database system [2]. ECAPNSim inte-
grates reactive behavior to traditional databases without special ECA rule syntax and
semantics development. Figure 3 shows the buildtime architecture of ECAPNSim. The
Rule editor module of ECAPNSim takes an active rule base written in a text file and
generates automatically its corresponding CCPN model (ECA-CCPN converter model).

In order to assure an error-free active rule base we add a new module “Rule Veri-
fier” into ECAPNSim, see Figure 3, so that errors such as redundancy, inconsistency,
incompleteness and circularity, can be detected automatically. Rule Verifier uses the
structure of the obtained CCPN model as well as information generated during CCPN
construction to check a rule base according to our verification approach. For example,
in Figure 2 transitions T1 and T2 are detected partially redundant condition - action
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rules by Rule Verifier since both of them evaluate the same condition and execute the
same action (conditions b) and c) of above Property 1). ECAPNSim produces a report
of all the anomalies detected, then notify the rule base designer and suggest him do
appropriated corrections.

Using ECAPNSim rule behavior can also be simulated. Suppose a token with in-
formation: insert account(100, James Brown, 300, 0.5) in place E0 of the CCPN of
Figure 2, which means that the customer James Brown has a new bank account which
is identified with the number 100, with a balance and rate of $300 and 0.5%, respec-
tively. Then transition firing steps are verified. 1) First, since there is a token in place
E0, transition T1 is enabled. 2) Second, since transition T1 is attached with the con-
dition insert.balance ¡ 500 and insert.rate ¿ 3 and the new account’s balance and rate
are less than 500 and greater than 0, respectively, condition evaluation is true. So, the
token is removed from place E0 and deposited in place E1. The token generated from
this transition firing consists of the information: (100, James Brown, 300, 0) because it
corresponds to the action of transition T1. In this moment transition T2 is enabled since
there is a token in place E1. However, condition evaluation is false since transition T2
is attached with condition update.balance ¡ 500 and update.rate ¿ 0 but the updated
balance’s value is 0. So, the token is taken away from the CCPN and the rule base pro-
cessing finishes. As you can see, even though a cycle was detected during verification
phase, at runtime that cycle never happens.

5 Related Work

Rule base verification has been widely investigated particularly with respect to produc-
tion rules [7], [10] - [12]. Earlier work in this area focussed on comparing in pairs the
rules of the rule base, trying to discover certain relationships between their premises and
conclusions. Recent techniques use graphical representations, such as directed graphs
or Petri nets, of the rule base to detect the different structural errors [11], [12]. Petri
nets based approaches model the rule base using a Petri net and the verification is per-
formed through reachability analysis of paths in the graph. However, those approaches
depend on the initial mark of the net to detect errors, therefore, some errors may be not
detected. In this sense, our work can detect all the errors described in this paper since
we focus on the structure of the net and information regarding rules.

Very few work can be found on active rule base verification. References [9] and
[8] tackled this topic by verifying the rule properties, such as triggerability, join appli-
cability, rule coverage, rule cascading, and postcondition satisfaction of an active rule
base, which are mainly focused on checking semantic correctness of active rules. Our
approach can work together with their approaches to check both semantic correctness
and structural errors.

Unlike approaches such as Starburst [6], EXACT [1], and SAMOS [1], we verify
and simulate an active rule base in the same platform ECAPNSim. Through ECAPNSim
an active rule base can work with different DBMSs.
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6 Conclusions

Rule Verifier tool development makes it possible that active rules integrated into a tra-
ditional database are error free. Comparing with other existing active database systems,
our approach has the following advantages:

(1) Formal Petri nets analysis tools can be used to detect structural errors.
(2) ECAPNSim makes rule base verification and simulation in the same platform.

Fig. 3. ECAPNSim buildtime architecture.
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