Formal Specification of Matchmakers, Front-agents,
and Brokers in Agent Environments using FSP

Amelia Badic& and Costin Badica

1 University of Craiova, Business Information Systems Department
A. l. Cuza 13, Craiova, RO-200585, Romania

2 University of Craiova, Software Engineering Department
Bvd. Decebal 107, Craiova, RO-200440, Romania

Abstract. The aim of the paper is to precisely characterize types of middle-
agents — matchmakers, brokers and front-agents by formally modeling their inter-
actions with requesters and providers. Our approach is based on conceptualizing
these interactions by formal specification using FSP process algebra. The main re-
sultis the development of formal specification models of middle-agents that help
designers and developers by improving their understanding of available types of
middle-agents (including matchmakers, front-agents and brokers) and enable the
formal analysis of software agent systems that incorporate middle-agents.

1 Introduction

Development of agents that enable dynamic interaction between parties that request and
provide information, services or resources requires a careful analysis and understanding
of their capabilities. Our recent work in this area was focused on i) implementation of
middle-agents for connecting requesters with providers in e-commerce scenarios [2]
and ii) formal modeling of middle-agents with the goal to precisely characterize their
interactions with other agents in the system [3, 4].

Connecting requesters with providers is a crucial problem in an agent environment
and its solution requires the use of middle-agents ([5]). Typical use of middle-agents
is encountered in e-commerce. The model agent-based e-commerce system discussed
in [2] uses middle-agents to connect user buyers on the purchasing side with shops on
the selling side in a distributed marketplace. Each user buyer is representé&libgta
agent and each shop is represented I8hapagent. User buyer submits an order to
the system for purchasing a product via his or Géent agent.Clientagent acts as a
Front-agentwith respect to connecting the user buyer with an approp8atgpagent
that provides the requested product. Moreo@ient agent uses a special agent called
Client Information Center CIC that is responsible for providing information which
shop in the system sells which products. So, it can be easily notice@l@as in fact
aMatchmakemvith respect to connectinglientagent with an appropriatghopagent.

In this paper we consider formal models of domain independent interaction pat-
terns between agents involved in intermediation —i.e. we omit in our models i) domain

Badica A. and Badic& C. (2008).

Formal Specification of Matchmakers, Front-agents, and Brokers in Agent Environments using FSP.

In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 9-18
DOI: 10.5220/0001729100090018

Copyright © SciTePress

10

dependent details of the environment and ii) details of thetent languages used for
representing requests, responses, preferences, andliti@sall hus we assume that
these interaction patterns are a defining characteriséaci type of middle-agent. In
this work we employ our framework firstly proposed in [3]. $fiiamework is utilizing
thefinite state process algebraFSP ([11]) modeling language.

We start in section 2 with an overview of middle-agents fang®n Matchmaker
Front-agent andBroker. In section 3 we introduce FSP and some guidelines of model-
ing agent interactions with FSP. Then we present detailédR8dels oMatchmakey
Front-agent andBrokermiddle-agents. We follow in section 4 with experimentalleva
uation of the models. The last part of the paper containsa@laork and conclusions.

2 Background on Middle-Agents

The starting point of our work is the classification of middigents introduced in sem-
inal work [5]. Based on assumptions about what it is iniji&hown by the requesters,
middle-agent, and providers about requester preferemuepravider capabilities, au-
thors of [5] proposed 9 types of middle-agef@sadcasterMatchmakerFront-ageng
AnonymizerBroker, RecommendeBlackboard Introducer, andArbitrator. Based on
literature overview (see survey from [10]) we noticed thragfiently utilized middle-
agents for connecting provider and requester agentslatehmaker Front-agent and
Broker. Additionally, quoting [10], observe that “notions of middagents, matchmak-
ers, brokers [...] are used freely in the literature [...fhout necessarily being clearly
defined”. Therefore in this paper we focused on improving #tate-of-affair by pre-
senting and discussing formal modeldwdtchmakerFront-agent andBrokermiddle-
agents with the goal of highlighting their similarities agifferencesMatchmaker. A
Matchmakemiddle-agent assumes that requester preferences aedlyriiown only
to the requester, while provider capabilities are iniyi&thown to all interaction partici-
pants. This means that a provider will have to advertiseipabilities withMatchmaker
andMatchmakethas responsibility to match a request with registered dlped ad-
vertisements. However, the fact that provider capabdlitiee initially known also by
the requester means that the result of the matching (i.e seqtching providers) is re-
turned byMatchmaketo requester (so provider capabilities become thus knowimeto
requester), and the choice of the matching provider is thgaesibility of the requester.
Consequently the transaction is not intermediateMaychmakeras would be the case
for example with éBrokeror Front-agent

Front-agent assumes that requester preferences are initially knowntorthe re-
quester, while provider capabilities are initially knowatb to provider and middle-
agent. This means that a provider will have to advertiseipabilities withFront-agent
andFront-agentis responsible to match a request with registered capabiidvertise-
ments. Additionally, as the provider capabilities are mdttally known to the requester,
Front-agentalso has the responsibility of intermediating the trarieadietween the re-
quester and the matching provider (this is why often thigtypmiddle-agent is called
Brokerrather tharFront-agent in our opinion a trueBrokeris different, see below).

Broker assumes that requester preferences are initially knowntonhe requester
and the middle-agent and provider capabilities are imjtiahown only to the provider

11

and the middle-agent. The crucial point is that, howevepiester preferences are not
initially known to the provider and provider capabilitieganot initially known to the re-
guester. This means thaBzokerwill truly intermediate transactions between providers
and requesters ibothdirections: i) if a requester submits a request either incabe
matched and it is registered with tiBroker or it is matched with a provider capa-
bility and then transaction is intermediated by Bwker, and ii) if a provider adver-
tises a capability then capability is registered with Breker and also capability is
matched against registered requests; neither match isl fach nothing more happens
or matches are found and corresponding transactions arenatliated by thBroker.

3 FSP Models

Overview of FSP.FSP is an algebraic specification technique of concurreshtanp-
erating processes that allows a compact representatiofiritieastate labeled transition
system (LTS hereafter), rather than describing it as afistaies and transitions.

A FSP model consists of a finite set of sequential and/or caitgpprocess defi-
nitions. Additionally, a sequential process definition sists of a sequence of one or
more definitions of local processes. A process definitiorssis of a process name
associated to a process term. FSP uses a rich set of cordugirocess terms (see
[11] for details). For the purpose of this paper we are usiegfbllowing constructs:
action prefix & — P), nondeterministic choiceQ), and process alphabet extension
(P + {ay,...,an}) for sequential process terms and parallel compositRjQ} and re-
labeling P/{newi/oldy, ..., new/old}) for composite process terms. The modeling
that we propose here follows the general guidelines outling3]. Briefly: i) agents
are modeled as FSP processes and a multi-agent system itethade parallel com-
position of processes; ii) sef® of requesters an® of providers are assumed to be
initially given and agent requests and replies are index#drequester and/or provider
identifiers; iii) matching operation is modeled as a relaid C R x P.

We assume that our system contains providers, requesteérs ariddle-agent. So
in our models we hav®rovider, Requesteand middle-agent FSP processes. Addi-
tionally we assume tha®rovider offers are reproducible arldequesterequests are
non-reproducible (see [3] for a more detailed discussioth@topic).

Matchmaker Middle-Agent in FSP. The block diagram and the FSP specification of a
system with requesters, providers anllatchmakerare shown in figure 1.

Provider agent registers its capability offer (actiorf fer) with the Matchmaker
and then enters a loop where it receives requests Requesteagents via action
receiverequestand processes and replies accordingly via acsiemdre ply. Note that
aProvidercan also withdraw a registered capability offer and wheapability is not
registered it always refuses to serve a request (aotibnsereques}.

Requesteragent submits a request to thMatchmaker(action sendreques} and
then waits for a reply. Thdlatchmakemeplies with a set of matching providers (ac-
tion tell with argumentM(r) N P representing the set of matches; hBris the set of
registered providers an#i((r) is the set of matching providers). NéRequestehas the
option to choose what provider from detto contact for performing the service (ac-

12

requestr)

Requestdr) 1P Matchmaker
tell(r,P;

receive_replfr,
_replfr.p) offer(o)

send_req_to_provide(r,p)

withdraw(p)
refuse_requegt,p)
Provider(p)

Provider = (of fer » ProcessRequekt

receiverequest— re fuserequest— Provider),
ProcessRequest = (receiverequest— sendreply — ProcessRequept

withdraw — Provider).
Requester = (sendrequest— WaitReply,
WaitReply = (tell(P c #) — if P # 0thenContactProvidefP) elseRequestér

ContactProvide(P C £) = (while P # 0 sendrequestto_provider(p € P) —
{receivereply(p), re fuserequestp)} — Requester

Matchmaker = Matchmake(®),
Matchmake(P c P) = (requesfr € R) —» MatchReg, P) |
of fer(p € #\ P) » Matchmake(P U {p}) |
withdraw(p € P) - Matchmake(P \ {p})),
MatchRegr € R,P c P) = (tell(r, M(r) n P) - Matchmake(P)) + {tell(r’ € R, P’ C P)}.

Requestdr € R) = Requestef{requestr)/sendrequesttell(r, P ¢ P)/tell(P),
sendrequestto_provider(r, p €)/sendrequestto_provider(p),
receivereply(r, p € P)/receivereply(p), re fuserequestr, p € P)/re fuserequestp)}.
Provider(p € P) = Provider/{of fer(p)/of fer,
sendrequestto_provider(r € R, p)/receiverequest
receivereply(r € R, p)/sendreply, re fusereply(r € R, p)/refusereply}.
System = Matchmaket| (lrex Requestdr)) || (||pep Provider(p)).

Fig. 1. System withiMatchmakemiddle-agent.

tion sendrequestto_providerwith argumentp € P representing the chosen provider).
Finally, Requestewaits for a reply from the contacted provider (acti@seivereply).

Matchmakemlgent registers and deregistBrovideroffers and answerRequester
requests for matching offerblatchmakeinformsRequesteabout available registered
offers (actiontell). Note thatRequesteis responsible to choose an appropriate match-
ing offer from the available matching offers (actisandrequestto_pro- vider). This
complicates a biRequestebehavior as compared witfront-agentand Broker cases.

Special care is taken to accurately model agent commuarcasing FSP synchro-
nization. Matchmakemodel requires alphabet extension (constfteit(r’ € R, P’ C
#)}in figure 1) to model correctly communication betwédatchmakeandRequester

A critical situation may occur when a matching offer is foumat the matching
Provider chooses to cancel its offer by deregistering it with Matchmakerbefore
it is actually contacted by thRequesterThis ability of theProvideris modeled with
actionre fuserequest Note that this situation cannot occur with tRmnt-agentand
Broker(remember that botRront-agentandBrokerintermediate the request on behalf
of theRequestarso we did not have to model this ability of tReoviderin those cases.

13

reques(r)

succe:
Requestdr)) Front-agent

fail(r)
[fragent_req(p) [withdraw(p)

fragen_reply(r,p)| offer(p)

Provider(p)

Provider = (of fer » ProcessReque)st
ProcessRequest = (receiverequest— sendreply — ProcessRequept
withdraw — Provider).

Requester = (sendrequest— WaitReply,
WaitReply = ({sucessfail} - Requester
Frontagent = Frontagen(0),

Frontagen(P) = (requesfr € R) — ResolveReg, P) |

of fer(p € £\ P) — Frontagen{P U {p}) |
withdraw(p € P) — FrontagentP \ {p})),

ResolveRdg, P) = (if M(r)n P = 0then fail(r) —» Frontagen{P)
elseContactProvidefr, M(r) N P, P)

ContactProvidefr, P, P) = (while P’ # 0 fragentreq(p € P’) — fragentreply(p) —
succes@) — Frontagen(P)).

Requestdr € R) = Requestef{requesfr)/sendrequest fail(r)/ fail, succesg)/succesp

Provider(p €) = Provider/{of fer(p)/of fer, fragentreq(p)/receiverequest fragentreply(p)/sendreply,
withdraw(p)/withdraws.

System = Frontagent]| (lrerkRequestdr)) || (|| Provider(p)).

Fig. 2. System withFront-agentmiddle-agent.

Front-agent Middle-Agent in FSP. The block diagram and the FSP specification of a
system composed of requesters, providers aftat-agentare shown in figure 2.

Provider agent is similar toMatchmakercase.Requestelagent is simpler than
Matchmakercase: it submits a request Foont-agent(action sendreques} and then
waits forFront-agentto either resolve that request (actisucceskor fail (actionfail).

Front-agentagent processes requests fr&®aquestermgents and registers offers
from Provideragents. Note that, differently from tidatchmakeyFront-agenthas the
responsibility to choose an appropriate matching providen the available match-
ing providersM(r) N P (hereP is the set of registered providers and(r) is the set
of matching providers) using actiofragentrequestand to resolve the request (ac-
tion fragentreques}. Finally the result is passed to tRequesteagent using action
successln conclusion, the actu@roviderthat fulfils the request for thRequesteon
behalf of theFront-agentis hidden from théRequestethat issued the request.
Broker Middle-Agent in FSP. The block diagram and the FSP specification of a system
composed of requesters, providers arfef@nt-agentare shown in figure 2Provider
andRequesteagents are similar to tHeront-agentcase.

Brokerprocesses requests frdRequesterand processes and registers offers from
Providers If arequest can be served based on available matchingsdffenBroker
behaves similarly witlront-agent Differently fromFront-agent if a request cannot be

14

reques(r)

succe:
Requestdr)) Broker

fail(r)

broker_req(p) | withdraw(p)

broker_replyr,p) offer(p)

Provider(p)

Provider = (of fer » ProcessRequekst
ProcessRequest = (receiverequest— sendreply — ProcessRequekt
withdraw — Provider).

Requester = (sendrequest—> WaitReply,

WaitReply = ({sucessfail} - Requester

Broker = Broken(0, 0),

Broker(P,R) = (requesfr € R\ R) » ResolveRgg, R, P) |

of fer(p € £\ P) - ResolveOf(fp,R P) |
withdraw(p € P) — Broker(R,P\ {p}) |
while R# 0 fail(r e R) — Broker(R\ {r}, P)),
ResolveRdg, R, P) = (if M(r) n P = 0then BrokerRU {r}, P)
elseContactProviderRefm, R, M(r) N P, P)),
ContactProviderRe@, R, P’,P) = (while P’ # 0 brokerreqg(p € P’) — brokerreply(p) — succes§) — Broker(R, P)),
ResolveOfp, R P) = (if M~X(p) N R = 0then BrokerR,P U {p})
elseContactProviderOf ¢p, M~(p) N R, R, P)),
ContactProviderOf p, R, R P) = (if R # 0 then broker.req(p) —
brokerreply(p) — succesg € R’) — ContactProviderOf fp, R \ {r},R\ {r}, P)

elseBroker(R, P)).
Requestdr € R) = Requestef{requesfr)/sendrequest fail(r)/ fail, succes@)/succesks
Provider(p €) = Provider/{of fer(p)/of fer, fragentreq(p)/receiverequest
fragentreply(p)/sendreply, withdraw(p)/withdraw.
System = Broker|| (rcrRequestdr)) || (|lpep Provider(p)).

Fig. 3. System withBroker middle-agent.

served based on currently registered offers then, rathantporting failure, the request

is recorded until: i) either a new matching offer is registewith theBrokeror ii) the
request is deemed failed. Note that when a new offer is egidtheBrokerdetermines

the set of recorded (i.e. not yet served) matching requestsp) N R (M(p) is the

set of matching requesters aRdk the set of recorded requesters) and serves them using
the matching providep — ContactProviderOf fsub-process in figure 3.

System Properties.A basic desirable property of systems with middle-agenthas

they are free of deadlocks. The result is formally statecHsvis.

Proposition 1. The systems with Matchmaker, Front-agent and Broker shavfig-
ures 1, 2 and 3 are deadlock free.

Proof. We consider thélatchmakersystem proof (other proofs follow the pattern).
Let us consider an arbitrary system st&téAs the system is a parallel composition

of processes, stafg is composed of sub-states corresponding toMachmakerand

to each of theProvider an Requesteprocesses. Any progress fragnwill be caused

15

by an interaction between two processkstchmakemwith a Provider, Matchmaker
with a Requesteor aRequestewith a Provider. Note thatMatchmakercan be in one
of two states: iMatchmake{P) with P C #; ii) MatchRedr, P) withr € RandP C P.

In the first case it means thalatchmakerfinalized to process a request and it
is waiting for a new one. If a new request is available we aneeddf a Provider is
available to register/deregister a capability offer, we are again done. Otherwise it
means that all requesters submitted requests to providdrsvait for service. In this
case we pick randomly a paRequestdr) andProvider(p) withr € R andp € £ and
system will proceed with interaction betweRequestdr) andProvider(p).

In the second case progress will occur through interactetwéenMatchmaker
andRequestdr), asRequestdr) is definitely in statéVaitReply

4 Experimental Results

We conducted a series of experiments to check correctness afiodels introduced in
section 3. As a side effect we have also recorded the size stéte model expressed as
number of states and transitions, depending on the numlvegoésters and providers.
Experimental Setup.Firstly we had to express the general models shown in figures 1
2 and 3 using the FSP language supported by the LTSA tool Tt.main difficulty
is encoding of processes indexed with sets in the languggmsied by LTSA.

Assuming thatS is a set withn elements, mapping of processes indexed with sets
and/or set elements to the FSP notation supported by LTSéwslthe guidelines: i)
an indexs € S is encoded asg]; ii) an indexS C S is encoded asgf]...[s)] S.t.
s=1ifie Sands =0ifi ¢ S. For exampldResolveRdg, {1}, {1, 3}) is mapped to
ResolveReq[2][1][0][1][0][1] andtell(1, {2, 3}) is mapped to
tell[1][0][1][1]

Note that a mapping can be defined such that the size of m$EHEP specification
is linear in the product of number of providers with numbereduesters This is an
important desiderata to make the resulting FSP specifitafia practical value.

Proposition 2. Let m= |R] and n= |P|. The systems with Matchmaker, Front-agent
and Broker shown in figures 1, 2 and 3 can be mapped to the FSfidaye supported
by LTSA tool such that size of resulting specification(@® n).

Proof. First note that mapping of set indexed names of processkadions produces
new names of size linear with andn..
Second, application of the following mapping rules produgarts of FSP specifi-

cation that clearly have a sifa(m x n).
If Proc(S € S) is a set indexed processes afifl= n then the construct:

Proc(S ¢ S) = (while S # 0 actions€ S)...)

is mapped to (here assuming- 3):

3Do not confuse size of FSP specification (i.e. size of FSP nusEsured for example as the
number of nodes of its syntax tree) with size of LTS corresiiato this specification.

16

Table 1.LTS size of the system withatchmakemiddle-agent.

requestell#t providers# states |# transitiong# states after minimizatign
2 3 608 2272 376

3 4 3392 14720 2064
4 5 166400 (1010176 |N/A
5 6 > 1000000> 7000000 [N/A

Proc[s1:0..1][s2:0..1][s3:0..1] = (
while s1 == 1 action[1] ... |
while s2 == 1 action[2] ... |
while s3 == 1 action[3] ...)

Note that the size of the resulted specificatio®(g).
If Prog(S C S),i = 1,2 are setindexed processes &fid= n then the construct:

Proci(S ¢ S) = (while S # 0 Procy(S)...)
is mapped to (here assuming: 3):

Procl1[s1:0..1][s2:0..1][s3:0..1] = (
if s1 == 1| s2 == 1| s3 ==
then Proc2[s1:0..1][s2:0..1][s2:0..1] ...)

Note that the size of the resulted specificatio®(g).
If |S1) = mand|S,| = nare setsM C S; X S; is a relation then the construct:

Proci(se€ 81,S C Sy) = (if M(s)n'S =0then ... elsePro;(M)s)NS)...)
is mapped to (here assuming= 2,n = 3 andM = {(1, 2), (1, 3), (2, 1), (2, 2)}):

Procl[s:1..2][s1:0..1][s2:0..1][s3:0..1] = (
if s == 1 then
if s2 == 0 &% s3 == 0 then ...
else Proc2[0][s2][s3] ...
else if s == 2 then ...
if s1 == 0 & s2 == 0 then ...
else Proc2[s1][s2][O] ...)

Note that the size of the resulted specificatio®{gm x n).

Results and Discussionin the experiments we considered 3 systems composedf: i)
requesters and+ 1 providers, < n < 5; ii) 1 middle-agent per systenM@atchmaker
Front-agentand respectivelroker), and iii) the matching relatioM = {(i,i + 1)|1 <
i<nmu{@i,i+21<i<n-1}uU{n1)*

We utilized LTSA tool to analyze the resulting FSP modelsystems withMatch-
maker Front-agentand Broker middle-agents. All the models are free of deadlocks
(thus confirming theoretical results). Sizes in terms of hanof states and transitions
of their corresponding labeled transition systems aregmtesl in tables 1, 2 and 3.

4FSP models used in experiments are availablent@t/software.ucv.ro/ ~padica_
costin/fsp/msvveis08_models.zip

17

Table 2.LTS size of the system witRront-agentmiddle-agent.

requesterl# provider$# state$# transition$# states after minimizatign
2 3 56 92 52

3 4 160 [268 148

4 5 416 [704 384

5 6 1024 [1744 944

Table 3.LTS size of the system witBroker middle-agent.

requesterl# provider$# state$# transition$# states after minimizatign
2 3 293 |464 281
3 4 1788 [2997 1718

5 Related Work

Middle-agents were recently put forward in [7] in the conteikapplications of agents
in e-commerce. [7] covers in some detisihtchmakey Broker, Broadcasterand Rec-
ommendewith a focus on interaction protocols and languages forrilgisg provider
capabilities. However, whildlatchmakerdescription fits within our model, note that
Brokerdescribed by [7] actually corresponds to our model Bf@ant-agent

Our literature review indicates that while there is a grayiimterest in the subject
of "middle-agents”, only a few papers address the problem obncise definition of
middle-agents in terms of their interaction capabilities.

For example [1] suggests the use of LTSs for modeling agemetstyvithout provid-
ing definitions of middle-agents. [10] shows only models @itohmakers and brokers
using input/output automata (following initial proposal[iL4]), while [9] informally
describes interactions of middle-agents with requestedspaoviders as sequences of
message exchanges presented in natural language. Radmgryafierences to middle-
agents focus in more or less detail on various applicatindsgstems that use different
types of middle-agents, most often brokers and/or matclensafsee overview in [10])
and highlighting implementation and/or performance issue

Some recent works propose the use of process algebras foiselynmodeling
middle-agent interactions. Paper [3] introduces a geffiemalework for FSP modeling
of middle-agents and shows how this framework can be usedtiehaRecommender
agent. Using the same idea, paper [4] presents a model Aftdtrator middle-agent
for coordination of participants in single-item Englishctians. Our present work is an
extension of [3, 4] for modelingylatchmaker Front-agentand Broker middle-agents,
including both theoretical and experimental results.

Our “agents-as-processes” modeling approach is not gntiesv. Paper [6] pro-
poses the use af-calculus ([12]) and shows models of a prototype agent sy4t®-
GOS for an unattended grounds operation-center usingtaésolution scenario. How-
ever, while this paper shows how to use a software tool focking the proposed spec-
ifications, it does not provide any experimental results ly general guidelines are
given. Paper [13] focuses also on the LOGOS agent systermsmg a CSP [8]. While
this paper discusses some benefits of the method (deteatiegconditions, message
omissions, and better understanding of the system) itdstédls not provide any experi-
mental results and neither discusses the practical prabdemmountered.

18

6

Conclusions and Future Work

In this paper we applied a formal framework based on FSP psoalgebra for mod-
eling a system that contains requesters, providers andlenatgents. We considered
three types of middle-agentstatchmaker Front-agent andBroker. For each system
we checked the resulting model with the help of LTSA analysid.

We also identified some paths for continuing this reseajcmddeling of more

complex systems containing more types of middle-agentsitioduction and analysis
of qualitative properties of agent systems.

References

1.

2.

10.

11.

12.

135

14.

Alagar, V., Holliday, J.: Agent types and their formal dastions. Technical Report COEN-
2002-09-19A, Santa Clara University. Computer Engingebepartment, (2002).

Badica, C., Ganzha, M., Paprzycki, M.: Developing a klo&lgent-based E-Commerce Sys-
tem. In: E-Service Intelligence: Methodologies, Technologies Apglications Studies in
Computational Intelligence 37, Springer, (2007) 555-578.

. Badica, A., Badica, C., Litoiu, L.: Middle-Agentsiteractions as Finite State Processes:

Overview and Example: IRroc.16" IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WEH 2007) (2007) 12-17.

. Badica, A., Badica, C.: Formal modeling of agentdzhenglish auctions using finite state

process algebra. In: N. Nguyen et al. (Edé&gent and Multi-Agent Systems: Technologies
and Applications. Proc. KES-AMSTA'200MNAI 4496, Springer (2007) 248-257.

. Decker, K., Sycara, K. P., and Williamson, M.: Middle-atgefor the internet. InProceed-

ings of the15" Int.Joint Conf.on Artif.Intel. IJCAI'97vol.1, Morgan Kaufmann, (1997)
578-583.

. Esterline, A., Rorie, T., and Homaifar, A.: A Process-@gaic Agent Abstraction. In: Rouff,

C.A. et al. (Eds.)Agent Technology from a Formal PerspectiMASA Monographs in Sys-
tems and Software Engineering, Springer (2006) 88-137.

. Fasli, M.:Agent Technology For E-Commerd#iley, (2007).
. Hoare, C.A.R.Communicating Sequential ProcessBsentice Hall International Series in

Computer Science, Hemel Hempstead. (1985).

. Hristozova, M., Lister, K., and Sterling, L.: Middle-ags — towards theoretical standardiza-

tion. In: I. J. Timm, M. Berger, S. Poslad, and S. Kirn (EdBJoc. of the Int. Workshop on
Multi-Agent Interoperability — MAI'0225" German Conference on Artif.Intel. (KI'20Q2)
http://www.informatik.uni-bremen.de/agki/www/astap0 2/mai02-ws.pdf , (2002) 65-80.
Klusch. M., Sycara, K.P.: Brokering and matchmakingcfaordination of agent societies: A
survey. In Omicini, A., Zambonelli, F., Klusch, M., and Tetlorf, R. (Eds.)Coordination
of Internet Agents. Models, Technologies, and ApplicatiSpringer (2001) 197-224.
Magee, J., Kramer, JJoncurrency. State Models and Java Prograi®f¥ ed.) John Wiley
& Sons (2006).

Milner, R. Communicating and Mobile Systems: Thealculus, Cambridge University
Press, Cambridge. (1999).

Rouff, C., Rash, J., Hinchey, M., and Truszkowski, Wrriral Methods at NASA Goddard
Space Flight Center. In: Rouff, C.A. et al. (Edghgent Technology from a Formal Perspec-
tive, NASA Monographs in Systems and Software Engineering n§pri(2006) 287-309.
Wong, H.C., Sycara, K.: A taxonomy of middle-agents lfier internet. IrProceedings of the
4™ International Conference on MultiAgent Systems (ICMAG320NVashington, DC, USA,
IEEE Computer Society. (2000) 465-466. An extended versfahe paper is available at
http://www.cs.cmu.edu/ ~ softagents/papers/ExtMiddleAgentsICMAS.pdf

