
Formal Specification of Matchmakers, Front-agents,
and Brokers in Agent Environments using FSP

Amelia Bădică1 and Costin Bădică2

1 University of Craiova, Business Information Systems Department
A. I. Cuza 13, Craiova, RO-200585, Romania

2 University of Craiova, Software Engineering Department
Bvd. Decebal 107, Craiova, RO-200440, Romania

Abstract. The aim of the paper is to precisely characterize types of middle-
agents – matchmakers, brokers and front-agents by formally modeling their inter-
actions with requesters and providers. Our approach is based on conceptualizing
these interactions by formal specification using FSP process algebra. The main re-
sult is the development of formal specification models of middle-agents that help
designers and developers by improving their understanding of available types of
middle-agents (including matchmakers, front-agents and brokers) and enable the
formal analysis of software agent systems that incorporate middle-agents.

1 Introduction

Development of agents that enable dynamic interaction between parties that request and
provide information, services or resources requires a careful analysis and understanding
of their capabilities. Our recent work in this area was focused on i) implementation of
middle-agents for connecting requesters with providers in e-commerce scenarios [2]
and ii) formal modeling of middle-agents with the goal to precisely characterize their
interactions with other agents in the system [3, 4].

Connecting requesters with providers is a crucial problem in an agent environment
and its solution requires the use of middle-agents ([5]). Typical use of middle-agents
is encountered in e-commerce. The model agent-based e-commerce system discussed
in [2] uses middle-agents to connect user buyers on the purchasing side with shops on
the selling side in a distributed marketplace. Each user buyer is represented by aClient
agent and each shop is represented by aShopagent. User buyer submits an order to
the system for purchasing a product via his or herClient agent.Client agent acts as a
Front-agentwith respect to connecting the user buyer with an appropriateShopagent
that provides the requested product. Moreover,Client agent uses a special agent called
Client Information Center– CIC that is responsible for providing information which
shop in the system sells which products. So, it can be easily noticed thatCIC is in fact
aMatchmakerwith respect to connectingClient agent with an appropriateShopagent.

In this paper we consider formal models of domain independent interaction pat-
terns between agents involved in intermediation – i.e. we omit in our models i) domain

Bǎdicǎ A. and Bǎdicǎ C. (2008).
Formal Specification of Matchmakers, Front-agents, and Brokers in Agent Environments using FSP.
In Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 9-18
DOI: 10.5220/0001729100090018
Copyright c© SciTePress

dependent details of the environment and ii) details of the content languages used for
representing requests, responses, preferences, and capabilities. Thus we assume that
these interaction patterns are a defining characteristic ofeach type of middle-agent. In
this work we employ our framework firstly proposed in [3]. This framework is utilizing
thefinite state process algebra– FSP ([11]) modeling language.

We start in section 2 with an overview of middle-agents focusing onMatchmaker,
Front-agent, andBroker. In section 3 we introduce FSP and some guidelines of model-
ing agent interactions with FSP. Then we present detailed FSP models ofMatchmaker,
Front-agent, andBrokermiddle-agents. We follow in section 4 with experimental eval-
uation of the models. The last part of the paper contains related work and conclusions.

2 Background on Middle-Agents

The starting point of our work is the classification of middle-agents introduced in sem-
inal work [5]. Based on assumptions about what it is initially known by the requesters,
middle-agent, and providers about requester preferences and provider capabilities, au-
thors of [5] proposed 9 types of middle-agents:Broadcaster, Matchmaker, Front-agent,
Anonymizer, Broker, Recommender, Blackboard, Introducer, andArbitrator. Based on
literature overview (see survey from [10]) we noticed that frequently utilized middle-
agents for connecting provider and requester agents areMatchmaker, Front-agent, and
Broker. Additionally, quoting [10], observe that “notions of middle-agents, matchmak-
ers, brokers [...] are used freely in the literature [...] without necessarily being clearly
defined”. Therefore in this paper we focused on improving this state-of-affair by pre-
senting and discussing formal models ofMatchmaker, Front-agent, andBrokermiddle-
agents with the goal of highlighting their similarities anddifferences.Matchmaker. A
Matchmakermiddle-agent assumes that requester preferences are initially known only
to the requester, while provider capabilities are initially known to all interaction partici-
pants. This means that a provider will have to advertise its capabilities withMatchmaker
andMatchmakerhas responsibility to match a request with registered capabilities ad-
vertisements. However, the fact that provider capabilities are initially known also by
the requester means that the result of the matching (i.e set of matching providers) is re-
turned byMatchmakerto requester (so provider capabilities become thus known tothe
requester), and the choice of the matching provider is the responsibility of the requester.
Consequently the transaction is not intermediated byMatchmaker, as would be the case
for example with aBrokeror Front-agent.

Front-agent assumes that requester preferences are initially known only to the re-
quester, while provider capabilities are initially known both to provider and middle-
agent. This means that a provider will have to advertise its capabilities withFront-agent
andFront-agentis responsible to match a request with registered capabilities advertise-
ments. Additionally, as the provider capabilities are not initially known to the requester,
Front-agentalso has the responsibility of intermediating the transaction between the re-
quester and the matching provider (this is why often this type of middle-agent is called
Brokerrather thanFront-agent; in our opinion a trueBroker is different, see below).

Broker assumes that requester preferences are initially known only to the requester
and the middle-agent and provider capabilities are initially known only to the provider

10

and the middle-agent. The crucial point is that, however, requester preferences are not
initially known to the provider and provider capabilities are not initially known to the re-
quester. This means that aBrokerwill truly intermediate transactions between providers
and requesters inbothdirections: i) if a requester submits a request either it cannot be
matched and it is registered with theBroker or it is matched with a provider capa-
bility and then transaction is intermediated by theBroker, and ii) if a provider adver-
tises a capability then capability is registered with theBroker and also capability is
matched against registered requests; neither match is found and nothing more happens
or matches are found and corresponding transactions are intermediated by theBroker.

3 FSP Models

Overview of FSP.FSP is an algebraic specification technique of concurrent and coop-
erating processes that allows a compact representation of afinite state labeled transition
system (LTS hereafter), rather than describing it as a list of states and transitions.

A FSP model consists of a finite set of sequential and/or composite process defi-
nitions. Additionally, a sequential process definition consists of a sequence of one or
more definitions of local processes. A process definition consists of a process name
associated to a process term. FSP uses a rich set of constructs for process terms (see
[11] for details). For the purpose of this paper we are using the following constructs:
action prefix (a → P), nondeterministic choice (P|Q), and process alphabet extension
(P+ {a1, . . . , an}) for sequential process terms and parallel composition (P||Q) and re-
labeling (P/{new1/old1, . . . , newk/oldk}) for composite process terms. The modeling
that we propose here follows the general guidelines outlined in [3]. Briefly: i) agents
are modeled as FSP processes and a multi-agent system is modeled as a parallel com-
position of processes; ii) setsR of requesters andP of providers are assumed to be
initially given and agent requests and replies are indexed with requester and/or provider
identifiers; iii) matching operation is modeled as a relationM ⊆ R × P.

We assume that our system contains providers, requesters and a middle-agent. So
in our models we haveProvider, Requesterand middle-agent FSP processes. Addi-
tionally we assume thatProvider offers are reproducible andRequesterrequests are
non-reproducible (see [3] for a more detailed discussion onthis topic).
Matchmaker Middle-Agent in FSP. The block diagram and the FSP specification of a
system with requesters, providers and aMatchmakerare shown in figure 1.

Provider agent registers its capability offer (actiono f f er) with the Matchmaker
and then enters a loop where it receives requests fromRequesteragents via action
receiverequestand processes and replies accordingly via actionsendreply. Note that
aProvidercan also withdraw a registered capability offer and while its capability is not
registered it always refuses to serve a request (actionre f userequest).

Requesteragent submits a request to theMatchmaker(action sendrequest) and
then waits for a reply. TheMatchmakerreplies with a set of matching providers (ac-
tion tell with argumentM(r) ∩ P representing the set of matches; hereP is the set of
registered providers andM(r) is the set of matching providers). NextRequesterhas the
option to choose what provider from setP to contact for performing the service (ac-

11

Requester(r) Matchmaker

Provider(p)

request(r)

tell(r,P)

offer(p)

send_req_to_provider(r,p)

refuse_request(r,p)

withdraw(p)

receive_reply(r,p)

Provider = (o f fer→ ProcessRequest|
receiverequest→ re fuserequest→ Provider),

ProcessRequest = (receiverequest→ sendreply→ ProcessRequest|
withdraw→ Provider).

Requester = (sendrequest→WaitReply),
WaitReply = (tell(P ⊆ P) → if P , ∅ then ContactProvider(P) elseRequester),
ContactProvider(P ⊆ P) = (while P , ∅ sendrequestto provider(p ∈ P)→

{receivereply(p), re fuserequest(p)} → Requester).

Matchmaker = Matchmaker(∅),
Matchmaker(P ⊆ P) = (request(r ∈ R)→ MatchReq(r,P) |

o f fer(p ∈ P \ P)→ Matchmaker(P∪ {p}) |
withdraw(p ∈ P)→ Matchmaker(P \ {p})),

MatchReq(r ∈ R,P ⊆ P) = (tell(r,M(r) ∩ P)→ Matchmaker(P)) + {tell(r ′ ∈ R,P′ ⊆ P)}.

Requester(r ∈ R) = Requester/{request(r)/sendrequest, tell(r,P ⊆ P)/tell(P),
sendrequestto provider(r, p ∈ P)/sendrequestto provider(p),
receivereply(r, p ∈ P)/receivereply(p), re fuserequest(r, p ∈ P)/re fuserequest(p)}.

Provider(p ∈ P) = Provider/{o f fer(p)/o f fer,
sendrequestto provider(r ∈ R, p)/receiverequest,
receivereply(r ∈ R, p)/sendreply, re fusereply(r ∈ R, p)/re fusereply}.

S ystem = Matchmaker|| (||r∈RRequester(r)) || (||p∈PProvider(p)).

Fig. 1. System withMatchmakermiddle-agent.

tion sendrequestto providerwith argumentp ∈ P representing the chosen provider).
Finally, Requesterwaits for a reply from the contacted provider (actionreceivereply).

Matchmakeragent registers and deregistersProvideroffers and answersRequester
requests for matching offers.MatchmakerinformsRequesterabout available registered
offers (actiontell). Note thatRequesteris responsible to choose an appropriate match-
ing offer from the available matching offers (actionsendrequestto pro- vider). This
complicates a bitRequesterbehavior as compared withFront-agentandBrokercases.

Special care is taken to accurately model agent communication using FSP synchro-
nization.Matchmakermodel requires alphabet extension (construct{tell(r ′ ∈ R,P′ ⊆
P)} in figure 1) to model correctly communication betweenMatchmakerandRequester.

A critical situation may occur when a matching offer is foundbut the matching
Provider chooses to cancel its offer by deregistering it with theMatchmakerbefore
it is actually contacted by theRequester. This ability of theProvider is modeled with
actionre f userequest. Note that this situation cannot occur with theFront-agentand
Broker(remember that bothFront-agentandBroker intermediate the request on behalf
of theRequester) so we did not have to model this ability of theProviderin those cases.

12

Requester(r) Front-agent

Provider(p)

request(r)

success(r)

offer(p)

fragent_req (p)

fragent_reply(r,p)

fail(r)

withdraw(p)

Provider = (o f fer→ ProcessRequest),
ProcessRequest = (receiverequest→ sendreply→ ProcessRequest|

withdraw→ Provider).

Requester = (sendrequest→WaitReply),
WaitReply = ({sucess, f ail} → Requester).

Frontagent = Frontagent(∅),
Frontagent(P) = (request(r ∈ R)→ ResolveReq(r,P) |

o f fer(p ∈ P \ P)→ Frontagent(P ∪ {p}) |
withdraw(p ∈ P)→ Frontagent(P \ {p})),

ResolveReq(r,P) = (if M(r) ∩ P = ∅ then f ail(r)→ Frontagent(P)
elseContactProvider(r,M(r) ∩ P,P)

ContactProvider(r,P′ ,P) = (while P′ , ∅ f ragent req(p ∈ P′)→ f ragent reply(p) →
success(r)→ Frontagent(P)).

Requester(r ∈ R) = Requester/{request(r)/sendrequest, f ail(r)/ f ail, success(r)/success}.
Provider(p ∈ P) = Provider/{o f fer(p)/o f fer, f ragent req(p)/receiverequest, f ragent reply(p)/sendreply,

withdraw(p)/withdraw}.
S ystem = Frontagent|| (||r∈RRequester(r)) || (||p∈PProvider(p)).

Fig. 2. System withFront-agentmiddle-agent.

Front-agent Middle-Agent in FSP. The block diagram and the FSP specification of a
system composed of requesters, providers and aFront-agentare shown in figure 2.

Provider agent is similar toMatchmakercase.Requesteragent is simpler than
Matchmakercase: it submits a request toFront-agent(actionsendrequest) and then
waits forFront-agentto either resolve that request (actionsuccess) or fail (action f ail).

Front-agentagent processes requests fromRequesteragents and registers offers
from Provideragents. Note that, differently from theMatchmaker, Front-agenthas the
responsibility to choose an appropriate matching providerfrom the available match-
ing providersM(r) ∩ P (hereP is the set of registered providers andM(r) is the set
of matching providers) using actionf ragent requestand to resolve the request (ac-
tion f ragent request). Finally the result is passed to theRequesteragent using action
success. In conclusion, the actualProvider that fulfils the request for theRequesteron
behalf of theFront-agentis hidden from theRequesterthat issued the request.
Broker Middle-Agent in FSP.The block diagram and the FSP specification of a system
composed of requesters, providers and aFront-agentare shown in figure 2.Provider
andRequesteragents are similar to theFront-agentcase.

Brokerprocesses requests fromRequestersand processes and registers offers from
Providers. If arequest can be served based on available matching offers thenBroker
behaves similarly withFront-agent. Differently fromFront-agent, if a request cannot be

13

Requester(r) Broker

Provider(p)

request(r)

success(r)

offer(p)

broker_req (p)

broker_reply(r,p)

fail(r)

withdraw(p)

Provider = (o f fer→ ProcessRequest),
ProcessRequest = (receiverequest→ sendreply→ ProcessRequest|

withdraw→ Provider).

Requester = (sendrequest→WaitReply),
WaitReply = ({sucess, f ail} → Requester).

Broker = Broker(∅, ∅),
Broker(P,R) = (request(r ∈ R \R)→ ResolveReq(r,R,P) |

o f fer(p ∈ P \ P)→ ResolveO f f(p,R,P) |
withdraw(p ∈ P)→ Broker(R,P \ {p}) |
while R, ∅ f ail(r ∈ R)→ Broker(R\ {r},P)),

ResolveReq(r,R,P) = (if M(r) ∩ P = ∅ then Broker(R∪ {r},P)
elseContactProviderReq(r,R,M(r) ∩ P,P)),

ContactProviderReq(r,R,P′ ,P) = (while P′ , ∅ broker req(p ∈ P′)→ broker reply(p) → success(r)→ Broker(R,P)),
ResolveO f f(p,R,P) = (if M−1(p) ∩ R= ∅ then Broker(R,P∪ {p})

elseContactProviderO f f(p,M−1(p) ∩ R,R,P)),
ContactProviderO f f(p,R′,R,P) = (if R′ , ∅ then broker req(p)→

broker reply(p)→ success(r ∈ R′)→ ContactProviderO f f(p,R′ \ {r},R\ {r},P)
elseBroker(R,P)).

Requester(r ∈ R) = Requester/{request(r)/sendrequest, f ail(r)/ f ail, success(r)/success}.
Provider(p ∈ P) = Provider/{o f fer(p)/o f fer, f ragent req(p)/receiverequest,

f ragent reply(p)/sendreply,withdraw(p)/withdraw}.
S ystem = Broker || (||r∈RRequester(r)) || (||p∈PProvider(p)).

Fig. 3.System withBrokermiddle-agent.

served based on currently registered offers then, rather than reporting failure, the request
is recorded until: i) either a new matching offer is registered with theBrokeror ii) the
request is deemed failed. Note that when a new offer is registered theBrokerdetermines
the set of recorded (i.e. not yet served) matching requests –M−1(p)∩R (M−1(p) is the
set of matching requesters andR is the set of recorded requesters) and serves them using
the matching providerp – ContactProviderO f fsub-process in figure 3.
System Properties.A basic desirable property of systems with middle-agents isthat
they are free of deadlocks. The result is formally stated as follows.

Proposition 1. The systems with Matchmaker, Front-agent and Broker shown in fig-
ures 1, 2 and 3 are deadlock free.

Proof. We consider theMatchmakersystem proof (other proofs follow the pattern).
Let us consider an arbitrary system stateS. As the system is a parallel composition

of processes, stateS is composed of sub-states corresponding to theMatchmakerand
to each of theProvider anRequesterprocesses. Any progress fromS will be caused

14

by an interaction between two processes:Matchmakerwith a Provider, Matchmaker
with aRequesteror aRequesterwith a Provider. Note thatMatchmakercan be in one
of two states: i)Matchmaker(P) with P ⊆ P; ii) MatchReq(r,P) with r ∈ R andP ⊆ P.

In the first case it means thatMatchmakerfinalized to process a request and it
is waiting for a new one. If a new request is available we are done. If a Provider is
available to register/deregister a capability offer, we are are again done. Otherwise it
means that all requesters submitted requests to providers and wait for service. In this
case we pick randomly a pairRequester(r) andProvider(p) with r ∈ R andp ∈ P and
system will proceed with interaction betweenRequester(r) andProvider(p).

In the second case progress will occur through interaction betweenMatchmaker
andRequester(r), asRequester(r) is definitely in stateWaitReply.

4 Experimental Results

We conducted a series of experiments to check correctness ofour models introduced in
section 3. As a side effect we have also recorded the size of the state model expressed as
number of states and transitions, depending on the number ofrequesters and providers.
Experimental Setup.Firstly we had to express the general models shown in figures 1,
2 and 3 using the FSP language supported by the LTSA tool [11].The main difficulty
is encoding of processes indexed with sets in the language supported by LTSA.

Assuming thatS is a set withn elements, mapping of processes indexed with sets
and/or set elements to the FSP notation supported by LTSA follows the guidelines: i)
an indexs ∈ S is encoded as [s]; ii) an index S ⊆ S is encoded as [s1] . . . [sn] s.t.
si = 1 if i ∈ S andsi = 0 if i < S. For exampleResolveReq(2, {1}, {1, 3}) is mapped to
ResolveReq[2][1][0][1][0][1] andtell(1, {2, 3}) is mapped to
tell[1][0][1][1] .

Note that a mapping can be defined such that the size of resulting FSP specification
is linear in the product of number of providers with number ofrequesters3. This is an
important desiderata to make the resulting FSP specification of a practical value.

Proposition 2. Let m= |R| and n= |P|. The systems with Matchmaker, Front-agent
and Broker shown in figures 1, 2 and 3 can be mapped to the FSP language supported
by LTSA tool such that size of resulting specification is O(m× n).

Proof. First note that mapping of set indexed names of processes and actions produces
new names of size linear withmandn..

Second, application of the following mapping rules produces parts of FSP specifi-
cation that clearly have a sizeO(m× n).

If Proc(S ⊆ S) is a set indexed processes and|S| = n then the construct:

Proc(S ⊆ S) = (while S , ∅ action(s ∈ S) . . .)

is mapped to (here assumingn = 3):

3Do not confuse size of FSP specification (i.e. size of FSP codemeasured for example as the
number of nodes of its syntax tree) with size of LTS corresponding to this specification.

15

Table 1.LTS size of the system withMatchmakermiddle-agent.

requesters# providers# states # transitions# states after minimization
2 3 608 2272 376
3 4 3392 14720 2064
4 5 166400 1010176 N/A
5 6 > 1000000> 7000000 N/A

Proc[s1:0..1][s2:0..1][s3:0..1] = (
while s1 == 1 action[1] ... |
while s2 == 1 action[2] ... |
while s3 == 1 action[3] ...)

Note that the size of the resulted specification isO(n).
If Proci(S ⊆ S), i = 1, 2 are set indexed processes and|S| = n then the construct:

Proc1(S ⊆ S) = (while S , ∅ Proc2(S) . . .)

is mapped to (here assumingn = 3):

Proc1[s1:0..1][s2:0..1][s3:0..1] = (
if s1 == 1 || s2 == 1 || s3 == 1
then Proc2[s1:0..1][s2:0..1][s2:0..1] ...)

Note that the size of the resulted specification isO(n).
If |S1| = m and|S2| = n are sets,M ⊆ S1 × S2 is a relation then the construct:

Proc1(s ∈ S1,S ⊆ S2) = (if M(s) ∩ S = ∅ then . . . elseProc2(M)s) ∩ S) . . .)

is mapped to (here assumingm= 2, n = 3 andM = {(1, 2), (1, 3), (2, 1), (2, 2)}):

Proc1[s:1..2][s1:0..1][s2:0..1][s3:0..1] = (
if s == 1 then

if s2 == 0 && s3 == 0 then ...
else Proc2[0][s2][s3] ...

else if s == 2 then ...
if s1 == 0 && s2 == 0 then ...
else Proc2[s1][s2][0] ...)

Note that the size of the resulted specification isO(m× n).
Results and Discussion.In the experiments we considered 3 systems composed of: i)n
requesters andn+ 1 providers, 2≤ n ≤ 5; ii) 1 middle-agent per system (Matchmaker,
Front-agentand respectivelyBroker), and iii) the matching relationM = {(i, i + 1)|1 ≤
i ≤ n} ∪ {(i, i + 2)|1 ≤ i ≤ n− 1} ∪ {n, 1)}4.

We utilized LTSA tool to analyze the resulting FSP models of systems withMatch-
maker, Front-agentand Broker middle-agents. All the models are free of deadlocks
(thus confirming theoretical results). Sizes in terms of number of states and transitions
of their corresponding labeled transition systems are presented in tables 1, 2 and 3.

4FSP models used in experiments are available athttp://software.ucv.ro/ ˜ badica_

costin/fsp/msvveis08_models.zip

16

Table 2.LTS size of the system withFront-agentmiddle-agent.

requesters# providers# states# transitions# states after minimization
2 3 56 92 52
3 4 160 268 148
4 5 416 704 384
5 6 1024 1744 944

Table 3.LTS size of the system withBrokermiddle-agent.

requesters# providers# states# transitions# states after minimization
2 3 293 464 281
3 4 1788 2997 1718

5 Related Work

Middle-agents were recently put forward in [7] in the context of applications of agents
in e-commerce. [7] covers in some detailMatchmaker, Broker, BroadcasterandRec-
ommenderwith a focus on interaction protocols and languages for describing provider
capabilities. However, whileMatchmakerdescription fits within our model, note that
Brokerdescribed by [7] actually corresponds to our model of aFront-agent.

Our literature review indicates that while there is a growing interest in the subject
of ”middle-agents”, only a few papers address the problem ofa concise definition of
middle-agents in terms of their interaction capabilities.

For example [1] suggests the use of LTSs for modeling agent types without provid-
ing definitions of middle-agents. [10] shows only models of matchmakers and brokers
using input/output automata (following initial proposal in [14]), while [9] informally
describes interactions of middle-agents with requesters and providers as sequences of
message exchanges presented in natural language. Rather, many references to middle-
agents focus in more or less detail on various applications and systems that use different
types of middle-agents, most often brokers and/or matchmakers (see overview in [10])
and highlighting implementation and/or performance issues.

Some recent works propose the use of process algebras for concisely modeling
middle-agent interactions. Paper [3] introduces a generalframework for FSP modeling
of middle-agents and shows how this framework can be used to model aRecommender
agent. Using the same idea, paper [4] presents a model of anArbitrator middle-agent
for coordination of participants in single-item English auctions. Our present work is an
extension of [3, 4] for modelingMatchmaker, Front-agentandBroker middle-agents,
including both theoretical and experimental results.

Our “agents-as-processes” modeling approach is not entirely new. Paper [6] pro-
poses the use ofπ-calculus ([12]) and shows models of a prototype agent system LO-
GOS for an unattended grounds operation-center using a fault resolution scenario. How-
ever, while this paper shows how to use a software tool for checking the proposed spec-
ifications, it does not provide any experimental results – only general guidelines are
given. Paper [13] focuses also on the LOGOS agent system, butusing a CSP [8]. While
this paper discusses some benefits of the method (detecting race conditions, message
omissions, and better understanding of the system) it stilldoes not provide any experi-
mental results and neither discusses the practical problems encountered.

17

6 Conclusions and Future Work

In this paper we applied a formal framework based on FSP process algebra for mod-
eling a system that contains requesters, providers and middle-agents. We considered
three types of middle-agents:Matchmaker, Front-agent, andBroker. For each system
we checked the resulting model with the help of LTSA analysistool.

We also identified some paths for continuing this research: i) modeling of more
complex systems containing more types of middle-agents; ii) introduction and analysis
of qualitative properties of agent systems.

References

1. Alagar, V., Holliday, J.: Agent types and their formal descriptions. Technical Report COEN-
2002-09-19A, Santa Clara University. Computer Engineering Department, (2002).

2. Bădică, C., Ganzha, M., Paprzycki, M.: Developing a Model Agent-based E-Commerce Sys-
tem. In: E-Service Intelligence: Methodologies, Technologies andApplications, Studies in
Computational Intelligence 37, Springer, (2007) 555–578.

3. Bădică, A., Bădică, C., Liţoiu, L.: Middle-Agents Interactions as Finite State Processes:
Overview and Example: InProc.16th IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE 2007), (2007) 12–17.

4. Bădică, A., Bădică, C.: Formal modeling of agent-based english auctions using finite state
process algebra. In: N. Nguyen et al. (Eds.):Agent and Multi-Agent Systems: Technologies
and Applications. Proc. KES-AMSTA’2007, LNAI 4496, Springer (2007) 248–257.

5. Decker, K., Sycara, K. P., and Williamson, M.: Middle-agents for the internet. In:Proceed-
ings of the15th Int.Joint Conf.on Artif.Intel. IJCAI’97, vol.1, Morgan Kaufmann, (1997)
578–583.

6. Esterline, A., Rorie, T., and Homaifar, A.: A Process-Algebraic Agent Abstraction. In: Rouff,
C.A. et al. (Eds.):Agent Technology from a Formal Perspective, NASA Monographs in Sys-
tems and Software Engineering, Springer (2006) 88–137.

7. Fasli, M.:Agent Technology For E-Commerce. Wiley, (2007).
8. Hoare, C.A.R.:Communicating Sequential Processes. Prentice Hall International Series in

Computer Science, Hemel Hempstead. (1985).
9. Hristozova, M., Lister, K., and Sterling, L.: Middle-agents – towards theoretical standardiza-

tion. In: I. J. Timm, M. Berger, S. Poslad, and S. Kirn (Eds.):Proc. of the Int. Workshop on
Multi-Agent Interoperability – MAI’02.25th German Conference on Artif.Intel. (KI’2002),
http://www.informatik.uni-bremen.de/agki/www/astap0 2/mai02-ws.pdf , (2002) 65–80.

10. Klusch. M., Sycara, K.P.: Brokering and matchmaking forcoordination of agent societies: A
survey. In Omicini, A., Zambonelli, F., Klusch, M., and Tolksdorf, R. (Eds.):Coordination
of Internet Agents. Models, Technologies, and Applications, Springer (2001) 197–224.

11. Magee, J., Kramer, J.:Concurrency. State Models and Java Programs (2nd ed.). John Wiley
& Sons (2006).

12. Milner, R. Communicating and Mobile Systems: Theπ-calculus, Cambridge University
Press, Cambridge. (1999).

13. Rouff, C., Rash, J., Hinchey, M., and Truszkowski, W.: Formal Methods at NASA Goddard
Space Flight Center. In: Rouff, C.A. et al. (Eds.):Agent Technology from a Formal Perspec-
tive, NASA Monographs in Systems and Software Engineering, Springer (2006) 287–309.

14. Wong, H.C., Sycara, K.: A taxonomy of middle-agents for the internet. InProceedings of the
4th International Conference on MultiAgent Systems (ICMAS-2000), Washington, DC, USA,
IEEE Computer Society. (2000) 465–466. An extended versionof the paper is available at
http://www.cs.cmu.edu/ ˜ softagents/papers/ExtMiddleAgentsICMAS.pdf .

18

