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Abstract: Apparently, everything that can be said about concurrency control and recovery is already said. None the 
less, the XML model poses new problems for the optimization of transaction processing. In this position 
paper, we report on our view concerning XML transaction optimization. We explore aspects of fine-grained 
transaction isolation using tailor-made lock protocols. Furthermore, we outline XML storage techniques 
where storage representation and logging can be minimized in specific application scenarios. 

1 INTRODUCTION 

When talking about transaction management, every-
body implicitly refers to relational technology. It is 
true that the basic concepts of ACID transactions 
(Härder and Reuter, 1983) were primarily laid in the 
context of flat table processing and the related query 
languages and later adjusted to object orientation. As 
a major advance for transaction processing, Weikum 
and Vossen (2002) unified concurrency control and 
recovery for both the page and object model. Perfor-
mance concerns led to a refinement of the page 
model to exploit records as more fine-grained units 
of concurrency control. Their textbook used as the 
“bible” in academic lectures “synthesizes the last 
three decades of research into a rigorous and 
consistent presentation” and it systematically 
describes and “organizes that huge research corpus 
into a consistent whole, with a step-by-step de-
velopment of ideas” (J. Gray in the foreword of this 
textbook). It seemed that everything that can be said 
about concurrency control and recovery is said in 
this textbook already.  

But new data models and processing paradigms 
arrived in the recent past. The available types of 
data, their modeling flexibility, and their contents 
themselves have substantially evolved and more and 
more surpass the realms where the relational model 
is appropriate. Above all, the importance of efficient 
XML query processing in multi-user environments 
grows along with the rapidly increasing sizes and 
volumes, the advanced applications and the 
pervasiveness of XML. For semi-structured data, 
XML together with its usages has become a (large) 

set of standards for information exchange and 
representation. It seems, the more domains are 
conquered by XML (by defining schemas for 
business cooperation), the more the relational 
systems approach “legacy”.  

Hence, efficient and effective transaction-pro-
tected collaboration on XML documents (XQuery 
Update Facility) becomes a pressing issue. 
Solutions, optimal in the relational world, may fail 
to be appropriate because of the documents’ tree 
characteristics and differing processing models. 
Structure variations and workload changes imply 
that transaction-related protocols must exhibit better 
flexibility and runtime adjustment. “Blind” transfer 
of relational technology would lead to suboptimal 
solutions for storage and logging, because the 
structure part of XML often exhibits huge 
redundancies. 

Because a number of language and processing 
models are available and standardized for XML 
(DOM, XQuery), general solutions for transaction 
support have to consider protocols for concurrently 
evaluating stream-, navigation-, and path-based 
queries. For this reason, a flexible XML database 
management system (XDBMS) has to support 
XPath, XQuery, and DOM/SAX. DB requests 
specified by different XML languages may be 
scheduled and arbitrary transaction mixes may 
occur. Therefore, serializability has to be guaranteed 
for those applications.  

In the following, we will outline that novel 
approaches for XML concurrency control, document 
storage, as well as logging and recovery may have 
substantial saving and optimization potential. 
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2 LOCK PROTOCOLS  

So far, there hardly exist any specific concurrency 
control protocols for XML. Only some hierarchical 
lock protocols are available from the relational 
world by adjusting the idea of multi-granularity 
locking (Gray, 1978) to the specific needs of XML 
trees. Note, the well-known B-tree latch protocols 
(Graefe, 2007) cannot be used to isolate XML 
transactions; they only isolate concurrent read/write 
operations on B-trees and preserve their structural 
consistency. In contrast, locks isolate concurrent 
transactions on user data and – to guarantee 
serializability – have to be kept until transaction 
commit. With similar arguments, index locking can 
not cope with the navigational DOM operations 
(Mohan, 1990). 

When fine-granular access to document trees has 
to be achieved, declarative requests have to be trans-
lated into sequences of navigating operations. There-
fore, the DOM model is considered, even for 
declarative languages, an adequate representative as 
far as locking requirements are concerned. 

We repeat neither hierarchical lock protocols 
used in all industrial-strength DBMSs (Gray and 
Reuter, 1993) nor our own work on XML locking 
(Haustein and Härder, 2008). Instead, we refer to 
these well-known protocols and only emphasize 
important properties for better comprehension. 

2.1 Multi-Granularity Locking 

Hierarchical lock protocols – also denoted as multi- 
granularity locking (MGL) – are used “everywhere” 
in the relational world. For performance reasons in 
XDBMSs, fine-granular isolation at the node level is 
needed when accessing individual nodes or 
traversing a path, whereas coarser granularity is 
appropriate when traversing or scanning entire trees. 
Therefore, lock protocols, which enable the isolation 
of multiple granules each with a single lock, are also 
beneficial in XDBMSs. Regarding the tree structure 
of documents, objects can be isolated acquiring the 
usual subtree locks with modes R (read), X 
(exclusive), and U (update with conversion option), 
which implicitly lock all objects in the entire subtree 
addressed. To avoid lock conflicts when objects at 
different levels are locked, so-called intention locks 
with modes IR (intention read) or IX (intention 
exclusive) have to be acquired along the path from 
the root to the object to be isolated and vice versa 
when the locks are released. Hence, we can map the 
relational IRIX protocol to XML trees and use it as a 
generic solution.  

- IR NR LR SR IX CX SU SX
IR + + + + + + + - -

NR + + + + + + + - -
LR + + + + + + - - -

SR + + + + + - - - -

IX + + + + - + + - -
CX + + + - - + + - -

SU + + + + + - - - -
SX + - - - - - - - -

 
Figure 1: taDOM2 lock compatibilities. 

Using the IRIX protocol, a transaction reading 
nodes at any tree level had to use R locks on the 
nodes accessed thereby locking these nodes together 
with their entire subtrees. This isolation is too strict, 
because the lock protocol unnecessarily prevents 
writers to access nodes somewhere in the subtrees. 
Giving a solution for this problem, we want to 
sketch the idea of lock granularity adjustment to 
DOM-specific navigational operations.   

2.2 Fine-Grained DOM-Based Locking 

To develop tailor-made XML lock protocols, Hau-
stein and Härder (2008) have introduced a far richer 
set of locking concepts and developed a family con-
sisting of four DOM-based lock protocols called the 
taDOM group. While MGL essentially rests on 
intention locks and, in our terms, subtree locks, 
these protocols additionally contain locking concepts 
for nodes and levels.  

We differentiate read and write operations and 
rename the well-known (IR, R) and (IX, X) lock 
modes with (IR, SR) and (IX, SX) modes, 
respectively, to stress that subtrees (S) are locked. 
As in the MGL scheme, the U mode (SU in our 
protocol) plays a special role, because it permits lock 
conversion. Novel concepts are introduced by node 
locks and level locks whose lock modes are NR 
(node read) and LR (level read) in a tree which, in 
contrast to MGL, read-lock only a node or all nodes 
at a level, but not the corresponding subtrees. 
Together with the CX mode (child exclusive), these 
locks enable serializable transaction schedules with 
read operations on inner tree nodes, while 
concurrent updates may occur in their subtrees. 
While the remaining locks in Figure 1 coincide with 
those of the URIX protocol, we highlighted these 
three lock modes to illustrate that they provide a 
kind of tailor-made XML-specific extension.  
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Figure 2: Application of the taDOM2 protocol. 

Figure 1 contains the compatibility matrix for 
the basic lock protocol called taDOM2. To illustrate 
its use, let us assume that the node manager has to 
handle for transaction T1 an incoming request 
GetChildNodes() for context node book in Figure 2. 
This requires appropriate locks to isolate T1 from 
modifications of other transactions. Here, the lock 
manager can use the level-read optimization and set 
the perfectly fitting mode LR on book and, in turn, 
protect the entire path from the document root by ap-
propriate intention locks of mode IR. After having 
traversed all children, T1 navigates to the content of 
the price element after the lock manager has set an 
NR lock for it. Then, transaction T2 starts modifying 
the value of lname and, therefore, acquires an SX 
lock for the related text node. The lock manager 
complements this action by acquiring a CX lock for 
the parent node and IX locks for all further ances-
tors. Simultaneously, transaction T3 wants to delete 
the author node and its entire subtree, for which, on 
behalf of T3, the lock manager must acquire IX locks 
on bib and publication, a CX lock on book, and an 
SX lock on author. The lock request on book cannot 
immediately be granted because of the LR lock of 
T1. Thus, T3 – placing its request in the lock request 
queue (LRQ: CX3) – must synchronously wait for 
the LR lock release of T1 on book. 

Hence, by tailoring the lock granularity to the LR 
operation, the lock protocol enhances transaction 
parallelism by allowing modifications of concurrent 
transactions in subtrees whose roots are read-locked.  

Experimental analysis of taDOM2 led to some 
severe performance problems in specific situations 
which were solved by the follow-up protocol 
taDOM2+. Figure 2 reveals that conversion of LR 
can be very cumbersome, because individual node 
locks have to be set for T1 on all children of book. 
As opposed to efficient ancestor determination of a 

node – delivered for free by prefix-based node 
labeling schemes (O’Neil et al., 2004) such as 
SPLIDs (stable path labeling identifiers) –, 
identification of its children is very expensive, 
because access to the document is needed to 
explicitly locate all affected nodes. By introducing 
suitable intention modes, Haustein and Härder 
(2008) obtained the more complex protocol 
taDOM2+ having 12 lock modes. The DOM3 
standard introduced a richer set of operations which 
led to several new tailored lock modes for taDOM3 
and – to optimize specific conversions – even more 
intention modes resulted in the truly complex 
protocol taDOM3+ specifying compatibilities and 
conversion rules for 20 lock modes. 

Lock manager and lock tables are designed along 
the lines of (Gray and Reuter, 1993); its flexibility 
and efficiency are greatly influenced by the use of 
SPLIDs. The tree-organized locks are kept in a 
main-memory buffer whose layout is independent of 
the physical XML structures used (Section 3.1). 

2.3 Results of a Lock Contest 

To enable a true and precise cross-comparison of 
lock protocols, we implemented in our prototype 
system XTC (XML Transaction Coordinator 
(Haustein and Härder, 2007)) 5 variants of the MGL 
group together with 4 taDOM lock protocols. All of 
them were run under the same benchmark using the 
same system configuration parameters.  

As it turned out by empirical experiments, lock 
depth is an important and performance-critical pa-
rameter of an XML lock protocol. Lock depth n 
specifies that individual locks isolating a navigating 
transaction are only acquired for nodes down to 
level n. Operations accessing nodes at deeper levels 
are isolated by subtree locks at level n. Note, 
choosing lock depth 0 corresponds to the case where 
only document locks are available. In the average, 
the higher the lock depth parameter is chosen, the 
finer are the lock granules, but the higher is the lock 
administration overhead, because the number of 
locks to be managed increases. On the other hand, 
lock conflicts typically occur at levels closer to the 
document root such that fine-grained locks (and their 
more expensive management) at levels deeper in the 
tree do not pay off.  

In our lock protocol competition, we used a doc-
ument of about 580,000 tree nodes (~8MB) and exe-
cuted a constant system load of 66 transactions taken 
from a mix of 5 transaction types. For our dis-
cussion, neither the underlying XML documents nor 
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the mix of benchmark operations are important. 
Here, we only want to show the overall results in 

 
Figure 3: Number of committed transactions. 

 terms of successfully executed transactions 
(throughput) and, as a complementary measure, the 
number of transactions to be aborted due to 
deadlocks. 

Figure 3 clearly indicates the value of tailor- 
made lock protocols. With the missing support for 
node and level locks, protocols of the MGL group 
provided only lock granules adjusted to the needs of 
DOM operations in a suboptimal way. As a conse-
quence, they only reached about half of the taDOM 
throughput. A reasonable application to achieve 
fine-grained protocols requires at least lock depth 2, 
which is also important for deadlock avoidance.  

Hence, the impressive performance behavior of 
the taDOM group reveals that a careful adaptation of 
lock granules to specific operations clearly pays off. 

3 STORAGE AND LOGGING 

Besides the isolation mechanism, transaction support 
adheres to logging and recovery which ensures re-
peatability and rollback of all transaction-protected 
operations in regular and abnormal situations. There-
fore, logging has to provide the needed data re-
dundancy even after crashes or media failures. Fur-
ther, log propagation rules (WAL and Commit rules) 
have to be observed (Härder and Reuter, 1983) often 
leading to I/O-intensive processing modes.  

In general, saving I/O is the major key to perfor-
mance improvements in DBMSs. Because write 
propagation of modified DB objects causes a large 
share of DB I/O and dependent log I/O, optimization 
of storage structures reduces log I/O at the same 
time. This is particularly true for storing, modifying, 

or querying XML documents, because they may 
contain substantial redundancy in the structure part, 
i.e., the inner nodes of the document tree. Therefore, 
optimization of XML storage representations may 
also be meaningful and show great promise for 
improving performance-critical transaction support. 
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Figure 4: A completely stored XML document. 

3.1 Complete vs. Elementless Storage 

Efficient declarative or navigational processing of 
XML documents requires a fine-granular DOM-tree 
storage representation which is based on variable- 
length files as document containers whose page sizes 
varying from 4K to 64K bytes could be configured 
to the document properties. We allow the 
assignment of several page types to enable the 
allocation of pages for documents, indexes, etc. in 
the same container. To be flexible enough to adjust 
arbitrary insertions and deletions of subtrees, 
dynamic balancing of the document storage structure 
is mandatory. Fast indexed access to each document 
node, location of nodes by SPLIDs as well as 
navigation are important demands, too. As il-
lustrated in Figure 4, we provide an implementation 
based on B*-trees which cares about structural 
balancing and which maintains the nodes stored in 
variable-length format (SPLID+element/attribute 
(dark&white boxes) or SPLID+value (dark&grey 
boxes)) in document order; this lends itself to effec-
tive prefix compression of the SPLIDs reducing their 
avg. size to ~20–30% (Haustein and Härder, 2007).  

B*-trees – made up by the document index and 
the document container – and SPLIDs are the most 
valuable features of physical XML representation. 
B*-trees enable logarithmic access time under arbi-
trary scalability and their split mechanism takes care 
of storage management and dynamic reorganization. 
In turn, SPLIDs provide valuable lock management 
support and immutable node labeling such that all 
modification operations can be performed locally. 

Because of the typically huge repetition of ele-
ment and attribute names, getting rid of the structure 
part in a lossless way helps to drastically save 
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storage space and, in turn, document I/O. As a 
consequence, log space and log I/O may be greatly 
reduced, too. The combined use of a so-called path 
synopsis (Goldman and Widom, 1997) storing only 
path classes and SPLIDs as node labels makes it 
possible to virtualize the entire structure part and to 
reconstruct it or selected paths completely on 
demand.  

In an elementless layout of an XML document, 
only its content nodes are stored in document order – 
in the way as for the complete document. The stored 
node format is of variable length and is composed of 
entries of the form (SPLID, PCR, value) where PCR 
(path class reference) refers to a node in the path 
synopsis and enables the reconstruction of its entire 
path to the root. Compared to the sample of 
complete storage in Figure  , the elementless XML 
fragment exemplified in Figure   saves enormous 
space, but can, nevertheless, reconstructed without 
any loss. 

3.2 Logging and Recovery 

Minimizing log I/O is important for transaction opti-
mization. Again, we could just consider the nodes of 
an XML document as records and “blindly” apply 
standard logging techniques, e.g., using 
physiological logging as a salient method (Gray and 
Reuter, 1993). Then, we had to write Undo/Redo log 
entries for all modifications in the structure and 
content part. 

Instead, our XDBMS adheres to a three-level re-
covery providing hierarchically dependent DB con-
sistency qualities: block consistency, DML-operation 
consistency, and transaction consistency. A very ex-
pensive method, a block-consistent state can be 
guaranteed by reserving a block in each container 
file for before-image logging. When propagating a 
modified block back to disk, a copy of it is first 
written to the before-image block. Because either the 
new or the old block is available, recovery can 
always rely on a block-consistent DB state. A more 

optimistic attitude would not apply such an 
overcautious method, but – if in extremely rare cases 
a corrupted block is detected – enforce archive 
recovery. Of course, such failure cases imply longer 
processing delays, but substantial log-rated I/O is 
saved in normal processing mode. 

At the propagation level, the buffer manager ap-
plies entry logging for which each DML operation is 
decomposed into so-called elementary operations 
whose reaches are limited to a single block. Using 
log sequence numbers (LSNs), the log entries can be 
uniquely related to the blocks modified by these 
operations and the attached LSNs enable the 
decision whether or not the log entries have to be 
applied to the related blocks during recovery. Hence, 
restart can reconstruct in a kind of forward recovery 
(repeating history) a DML-operation-consistent DB 
state and for winner transactions even a transaction-
consistent DB state. Finally, the transaction manager 
records the transaction boundaries and all inverse 
DML operations (logical DML operation logging is 
saving space and, thus, log I/O) to be prepared to 
rollback all loser transactions thereby executing 
DML operations on the reconstructed operation-
consistent DB state.  

3.3 Various Optimizations 

The combined use of entry and DML operation log-
ging already seems to require minimal log I/O in 
normal situations. Therefore, we focussed on 
operation- specific situations and improvement of 
related components to gain further optimization 
potential. 

Reduced logging: For initially storing a docu-
ment, stepwise rollback is not needed and complete 
rollback using entry logging is overly expensive. 
Therefore, logging of the block numbers involved is 
sufficient to empty the affected container pages. 

Administration of Fix indicators: Blocks current-
ly accessed by transactions have to be pinned in their 
buffer frames to avoid replacement. So-called Fix 
marks set by the requesting transactions indicate for 
the buffer manager that a block is not eligible for re-
placement. In the initial solution, these Fix marks 
were kept in the lock table where checking 
performed very poorly. Because search of 
replacement candidates is an extremely frequent 
task, a specialized structure recording the Fix state 
of all frames was added to the buffer manager.  

Improved lock table management: Reimplemen-
ting the lock manager avoided static lock table 
allocation and large lock granules on the lock table 
itself. Using a pool of predefined lock request blocks 
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Figure 5: An XML document without elements stored. 

ICEIS 2008 - International Conference on Enterprise Information Systems

372



 

and latches for hash table entries provided flexibility 
and minimal blocking. Because blocks in the DB 
buffer were also administrated by the lock manager, 
buffer management and the related entry logging 
immediately took advantage by this measure.  

Blockwise writes: Single insertion of keys into 
the document index is required for document update. 
Document creation, in contrast, enables specialized 
block handling outside the DB buffer. B-tree blocks 
of the index can be entirely filled before transferring 
them to the buffer. In turn, entry logging and block 
propagation can be optimized by the buffer manager.  

We have implemented these features in XTC 
and derived some indicative results for a frequent 
use case, i.e., the storage of a document (113 MB) 
including indexes, auxiliary structures, and logging 
provisions (Sommer, 2007). To enable comparison, 
we have normalized all results to the cost of the 
complete standard structure (100%). Hence, the 
difference to 100% is the saving (gain) achieved by 
a specific measure. In the results shown in Figure 6, 
we have added our optimization measures step by 
step such the plain effect of the indicated 
optimization is the difference to the previous 
quantities (bars). While elementless storage gains 
>10% for the standard variant, the aggregated saving 
of all measures applied reaches the level of ~40%, 
i.e., optimization reduces the initial costs by ~60%. 

4 SUMMARY AND OUTLOOK 

XTC is – to the best of our knowledge – the only 
(freely accessible) XDBMS offering full-fledged 
transaction services. It was used to explore ACID 
properties and served for all comparative experi-
ments. We outlined the state of our work in XML 
concurrency control as well as logging and recovery. 
Our taDOM approach guarantees serializability and 
transaction isolation in multi-lingual XDBMSs and 
even of multi-lingual transactions. Compared to less 

adjusted lock protocols, the impressive performance 
gains of the taDOM group reveal that a careful 
adaptation of lock granules to specific operations 
clearly pays off. Furthermore, the lion’s share of 
XML processing costs is caused by all sorts of 
document I/O including logging can be reduced by a 
variety of measures. 

Currently, we are working on lock manager ex-
tensions supporting lock escalation and tailor-made 
locking on index structures. Another hot topic is 
energy efficiency in XDBMSs including the use 
flash memory, buffering and deferred updates, 
specialized logging techniques and group commit. 
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