
TRANSACTIONAL SUPPORT IN NATIVE XML DATABASES

Theo Härder, Sebastian Bächle and Christian Mathis
University of Kaiserslautern, Gottlieb-Daimler-Str., 67663 Kaiserslautern, Germany

Keywords: XML database management, concurrency control, logging and recovery, elementless XML storage.

Abstract: Apparently, everything that can be said about concurrency control and recovery is already said. None the
less, the XML model poses new problems for the optimization of transaction processing. In this position
paper, we report on our view concerning XML transaction optimization. We explore aspects of fine-grained
transaction isolation using tailor-made lock protocols. Furthermore, we outline XML storage techniques
where storage representation and logging can be minimized in specific application scenarios.

1 INTRODUCTION

When talking about transaction management, every-
body implicitly refers to relational technology. It is
true that the basic concepts of ACID transactions
(Härder and Reuter, 1983) were primarily laid in the
context of flat table processing and the related query
languages and later adjusted to object orientation. As
a major advance for transaction processing, Weikum
and Vossen (2002) unified concurrency control and
recovery for both the page and object model. Perfor-
mance concerns led to a refinement of the page
model to exploit records as more fine-grained units
of concurrency control. Their textbook used as the
“bible” in academic lectures “synthesizes the last
three decades of research into a rigorous and
consistent presentation” and it systematically
describes and “organizes that huge research corpus
into a consistent whole, with a step-by-step de-
velopment of ideas” (J. Gray in the foreword of this
textbook). It seemed that everything that can be said
about concurrency control and recovery is said in
this textbook already.

But new data models and processing paradigms
arrived in the recent past. The available types of
data, their modeling flexibility, and their contents
themselves have substantially evolved and more and
more surpass the realms where the relational model
is appropriate. Above all, the importance of efficient
XML query processing in multi-user environments
grows along with the rapidly increasing sizes and
volumes, the advanced applications and the
pervasiveness of XML. For semi-structured data,
XML together with its usages has become a (large)

set of standards for information exchange and
representation. It seems, the more domains are
conquered by XML (by defining schemas for
business cooperation), the more the relational
systems approach “legacy”.

Hence, efficient and effective transaction-pro-
tected collaboration on XML documents (XQuery
Update Facility) becomes a pressing issue.
Solutions, optimal in the relational world, may fail
to be appropriate because of the documents’ tree
characteristics and differing processing models.
Structure variations and workload changes imply
that transaction-related protocols must exhibit better
flexibility and runtime adjustment. “Blind” transfer
of relational technology would lead to suboptimal
solutions for storage and logging, because the
structure part of XML often exhibits huge
redundancies.

Because a number of language and processing
models are available and standardized for XML
(DOM, XQuery), general solutions for transaction
support have to consider protocols for concurrently
evaluating stream-, navigation-, and path-based
queries. For this reason, a flexible XML database
management system (XDBMS) has to support
XPath, XQuery, and DOM/SAX. DB requests
specified by different XML languages may be
scheduled and arbitrary transaction mixes may
occur. Therefore, serializability has to be guaranteed
for those applications.

In the following, we will outline that novel
approaches for XML concurrency control, document
storage, as well as logging and recovery may have
substantial saving and optimization potential.

368
Härder T., Bächle S. and Mathis C. (2008).
TRANSACTIONAL SUPPORT IN NATIVE XML DATABASES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 368-373
DOI: 10.5220/0001725303680373
Copyright c© SciTePress

2 LOCK PROTOCOLS

So far, there hardly exist any specific concurrency
control protocols for XML. Only some hierarchical
lock protocols are available from the relational
world by adjusting the idea of multi-granularity
locking (Gray, 1978) to the specific needs of XML
trees. Note, the well-known B-tree latch protocols
(Graefe, 2007) cannot be used to isolate XML
transactions; they only isolate concurrent read/write
operations on B-trees and preserve their structural
consistency. In contrast, locks isolate concurrent
transactions on user data and – to guarantee
serializability – have to be kept until transaction
commit. With similar arguments, index locking can
not cope with the navigational DOM operations
(Mohan, 1990).

When fine-granular access to document trees has
to be achieved, declarative requests have to be trans-
lated into sequences of navigating operations. There-
fore, the DOM model is considered, even for
declarative languages, an adequate representative as
far as locking requirements are concerned.

We repeat neither hierarchical lock protocols
used in all industrial-strength DBMSs (Gray and
Reuter, 1993) nor our own work on XML locking
(Haustein and Härder, 2008). Instead, we refer to
these well-known protocols and only emphasize
important properties for better comprehension.

2.1 Multi-Granularity Locking

Hierarchical lock protocols – also denoted as multi-
granularity locking (MGL) – are used “everywhere”
in the relational world. For performance reasons in
XDBMSs, fine-granular isolation at the node level is
needed when accessing individual nodes or
traversing a path, whereas coarser granularity is
appropriate when traversing or scanning entire trees.
Therefore, lock protocols, which enable the isolation
of multiple granules each with a single lock, are also
beneficial in XDBMSs. Regarding the tree structure
of documents, objects can be isolated acquiring the
usual subtree locks with modes R (read), X
(exclusive), and U (update with conversion option),
which implicitly lock all objects in the entire subtree
addressed. To avoid lock conflicts when objects at
different levels are locked, so-called intention locks
with modes IR (intention read) or IX (intention
exclusive) have to be acquired along the path from
the root to the object to be isolated and vice versa
when the locks are released. Hence, we can map the
relational IRIX protocol to XML trees and use it as a
generic solution.

- IR NR LR SR IX CX SU SX
IR + + + + + + + - -

NR + + + + + + + - -
LR + + + + + + - - -

SR + + + + + - - - -

IX + + + + - + + - -
CX + + + - - + + - -

SU + + + + + - - - -
SX + - - - - - - - -

Figure 1: taDOM2 lock compatibilities.

Using the IRIX protocol, a transaction reading
nodes at any tree level had to use R locks on the
nodes accessed thereby locking these nodes together
with their entire subtrees. This isolation is too strict,
because the lock protocol unnecessarily prevents
writers to access nodes somewhere in the subtrees.
Giving a solution for this problem, we want to
sketch the idea of lock granularity adjustment to
DOM-specific navigational operations.

2.2 Fine-Grained DOM-Based Locking

To develop tailor-made XML lock protocols, Hau-
stein and Härder (2008) have introduced a far richer
set of locking concepts and developed a family con-
sisting of four DOM-based lock protocols called the
taDOM group. While MGL essentially rests on
intention locks and, in our terms, subtree locks,
these protocols additionally contain locking concepts
for nodes and levels.

We differentiate read and write operations and
rename the well-known (IR, R) and (IX, X) lock
modes with (IR, SR) and (IX, SX) modes,
respectively, to stress that subtrees (S) are locked.
As in the MGL scheme, the U mode (SU in our
protocol) plays a special role, because it permits lock
conversion. Novel concepts are introduced by node
locks and level locks whose lock modes are NR
(node read) and LR (level read) in a tree which, in
contrast to MGL, read-lock only a node or all nodes
at a level, but not the corresponding subtrees.
Together with the CX mode (child exclusive), these
locks enable serializable transaction schedules with
read operations on inner tree nodes, while
concurrent updates may occur in their subtrees.
While the remaining locks in Figure 1 coincide with
those of the URIX protocol, we highlighted these
three lock modes to illustrate that they provide a
kind of tailor-made XML-specific extension.

TRANSACTIONAL SUPPORT IN NATIVE XML DATABASES

369

publication

book

49.99The Title

First Name Last Name

authortitle price

fname lname

IR
1

LR
1

NR
1

IX
2

IX
2

IX
2

CX
2

SX
2

IX
3

LRQ: CX
3

bib IR
1

IX
2

IX
3

.

Figure 2: Application of the taDOM2 protocol.

Figure 1 contains the compatibility matrix for
the basic lock protocol called taDOM2. To illustrate
its use, let us assume that the node manager has to
handle for transaction T1 an incoming request
GetChildNodes() for context node book in Figure 2.
This requires appropriate locks to isolate T1 from
modifications of other transactions. Here, the lock
manager can use the level-read optimization and set
the perfectly fitting mode LR on book and, in turn,
protect the entire path from the document root by ap-
propriate intention locks of mode IR. After having
traversed all children, T1 navigates to the content of
the price element after the lock manager has set an
NR lock for it. Then, transaction T2 starts modifying
the value of lname and, therefore, acquires an SX
lock for the related text node. The lock manager
complements this action by acquiring a CX lock for
the parent node and IX locks for all further ances-
tors. Simultaneously, transaction T3 wants to delete
the author node and its entire subtree, for which, on
behalf of T3, the lock manager must acquire IX locks
on bib and publication, a CX lock on book, and an
SX lock on author. The lock request on book cannot
immediately be granted because of the LR lock of
T1. Thus, T3 – placing its request in the lock request
queue (LRQ: CX3) – must synchronously wait for
the LR lock release of T1 on book.

Hence, by tailoring the lock granularity to the LR
operation, the lock protocol enhances transaction
parallelism by allowing modifications of concurrent
transactions in subtrees whose roots are read-locked.

Experimental analysis of taDOM2 led to some
severe performance problems in specific situations
which were solved by the follow-up protocol
taDOM2+. Figure 2 reveals that conversion of LR
can be very cumbersome, because individual node
locks have to be set for T1 on all children of book.
As opposed to efficient ancestor determination of a

node – delivered for free by prefix-based node
labeling schemes (O’Neil et al., 2004) such as
SPLIDs (stable path labeling identifiers) –,
identification of its children is very expensive,
because access to the document is needed to
explicitly locate all affected nodes. By introducing
suitable intention modes, Haustein and Härder
(2008) obtained the more complex protocol
taDOM2+ having 12 lock modes. The DOM3
standard introduced a richer set of operations which
led to several new tailored lock modes for taDOM3
and – to optimize specific conversions – even more
intention modes resulted in the truly complex
protocol taDOM3+ specifying compatibilities and
conversion rules for 20 lock modes.

Lock manager and lock tables are designed along
the lines of (Gray and Reuter, 1993); its flexibility
and efficiency are greatly influenced by the use of
SPLIDs. The tree-organized locks are kept in a
main-memory buffer whose layout is independent of
the physical XML structures used (Section 3.1).

2.3 Results of a Lock Contest

To enable a true and precise cross-comparison of
lock protocols, we implemented in our prototype
system XTC (XML Transaction Coordinator
(Haustein and Härder, 2007)) 5 variants of the MGL
group together with 4 taDOM lock protocols. All of
them were run under the same benchmark using the
same system configuration parameters.

As it turned out by empirical experiments, lock
depth is an important and performance-critical pa-
rameter of an XML lock protocol. Lock depth n
specifies that individual locks isolating a navigating
transaction are only acquired for nodes down to
level n. Operations accessing nodes at deeper levels
are isolated by subtree locks at level n. Note,
choosing lock depth 0 corresponds to the case where
only document locks are available. In the average,
the higher the lock depth parameter is chosen, the
finer are the lock granules, but the higher is the lock
administration overhead, because the number of
locks to be managed increases. On the other hand,
lock conflicts typically occur at levels closer to the
document root such that fine-grained locks (and their
more expensive management) at levels deeper in the
tree do not pay off.

In our lock protocol competition, we used a doc-
ument of about 580,000 tree nodes (~8MB) and exe-
cuted a constant system load of 66 transactions taken
from a mix of 5 transaction types. For our dis-
cussion, neither the underlying XML documents nor

ICEIS 2008 - International Conference on Enterprise Information Systems

370

the mix of benchmark operations are important.
Here, we only want to show the overall results in

Figure 3: Number of committed transactions.

 terms of successfully executed transactions
(throughput) and, as a complementary measure, the
number of transactions to be aborted due to
deadlocks.

Figure 3 clearly indicates the value of tailor-
made lock protocols. With the missing support for
node and level locks, protocols of the MGL group
provided only lock granules adjusted to the needs of
DOM operations in a suboptimal way. As a conse-
quence, they only reached about half of the taDOM
throughput. A reasonable application to achieve
fine-grained protocols requires at least lock depth 2,
which is also important for deadlock avoidance.

Hence, the impressive performance behavior of
the taDOM group reveals that a careful adaptation of
lock granules to specific operations clearly pays off.

3 STORAGE AND LOGGING

Besides the isolation mechanism, transaction support
adheres to logging and recovery which ensures re-
peatability and rollback of all transaction-protected
operations in regular and abnormal situations. There-
fore, logging has to provide the needed data re-
dundancy even after crashes or media failures. Fur-
ther, log propagation rules (WAL and Commit rules)
have to be observed (Härder and Reuter, 1983) often
leading to I/O-intensive processing modes.

In general, saving I/O is the major key to perfor-
mance improvements in DBMSs. Because write
propagation of modified DB objects causes a large
share of DB I/O and dependent log I/O, optimization
of storage structures reduces log I/O at the same
time. This is particularly true for storing, modifying,

or querying XML documents, because they may
contain substantial redundancy in the structure part,
i.e., the inner nodes of the document tree. Therefore,
optimization of XML storage representations may
also be meaningful and show great promise for
improving performance-critical transaction support.

1.3.3.9.3

1 bib 1.3

1.3.3.2.1
type1.3.3.3

title1.3.3.5
. . .

author
1.3.3.8.3 author

price
1.3.5

. . .
. . .

. . .

1.3.3.5.3 1.9

1 1.3.3.7 1.9.1 . . .

elem.&attrib.content(uncompr.) SPLIDs

document
index

document container

publication
year 1.3.3.1.3

id 1.3.3.2.1.3

1.3.3.7

book
. . .

1.3.3
book 1.3.3.1

1.3.3.5.3

1.3.3.9

1.3.5.9.3TCP/IP

1994
1

65.95

Figure 4: A completely stored XML document.

3.1 Complete vs. Elementless Storage

Efficient declarative or navigational processing of
XML documents requires a fine-granular DOM-tree
storage representation which is based on variable-
length files as document containers whose page sizes
varying from 4K to 64K bytes could be configured
to the document properties. We allow the
assignment of several page types to enable the
allocation of pages for documents, indexes, etc. in
the same container. To be flexible enough to adjust
arbitrary insertions and deletions of subtrees,
dynamic balancing of the document storage structure
is mandatory. Fast indexed access to each document
node, location of nodes by SPLIDs as well as
navigation are important demands, too. As il-
lustrated in Figure 4, we provide an implementation
based on B*-trees which cares about structural
balancing and which maintains the nodes stored in
variable-length format (SPLID+element/attribute
(dark&white boxes) or SPLID+value (dark&grey
boxes)) in document order; this lends itself to effec-
tive prefix compression of the SPLIDs reducing their
avg. size to ~20–30% (Haustein and Härder, 2007).

B*-trees – made up by the document index and
the document container – and SPLIDs are the most
valuable features of physical XML representation.
B*-trees enable logarithmic access time under arbi-
trary scalability and their split mechanism takes care
of storage management and dynamic reorganization.
In turn, SPLIDs provide valuable lock management
support and immutable node labeling such that all
modification operations can be performed locally.

Because of the typically huge repetition of ele-
ment and attribute names, getting rid of the structure
part in a lossless way helps to drastically save

100

150

200

250

300

350

1 2 3 4 5

taDOM3+,taDOM2+

taDOM3,taDOM2

URIX

RIX(+),IRIX(+)

lock depth

lock protocols

taDOM2

taDOM3+
taDOM3
taDOM2+

URIX
IRIX
IRIX+
RIX
RIX+

0

TRANSACTIONAL SUPPORT IN NATIVE XML DATABASES

371

storage space and, in turn, document I/O. As a
consequence, log space and log I/O may be greatly
reduced, too. The combined use of a so-called path
synopsis (Goldman and Widom, 1997) storing only
path classes and SPLIDs as node labels makes it
possible to virtualize the entire structure part and to
reconstruct it or selected paths completely on
demand.

In an elementless layout of an XML document,
only its content nodes are stored in document order –
in the way as for the complete document. The stored
node format is of variable length and is composed of
entries of the form (SPLID, PCR, value) where PCR
(path class reference) refers to a node in the path
synopsis and enables the reconstruction of its entire
path to the root. Compared to the sample of
complete storage in Figure , the elementless XML
fragment exemplified in Figure saves enormous
space, but can, nevertheless, reconstructed without
any loss.

3.2 Logging and Recovery

Minimizing log I/O is important for transaction opti-
mization. Again, we could just consider the nodes of
an XML document as records and “blindly” apply
standard logging techniques, e.g., using
physiological logging as a salient method (Gray and
Reuter, 1993). Then, we had to write Undo/Redo log
entries for all modifications in the structure and
content part.

Instead, our XDBMS adheres to a three-level re-
covery providing hierarchically dependent DB con-
sistency qualities: block consistency, DML-operation
consistency, and transaction consistency. A very ex-
pensive method, a block-consistent state can be
guaranteed by reserving a block in each container
file for before-image logging. When propagating a
modified block back to disk, a copy of it is first
written to the before-image block. Because either the
new or the old block is available, recovery can
always rely on a block-consistent DB state. A more

optimistic attitude would not apply such an
overcautious method, but – if in extremely rare cases
a corrupted block is detected – enforce archive
recovery. Of course, such failure cases imply longer
processing delays, but substantial log-rated I/O is
saved in normal processing mode.

At the propagation level, the buffer manager ap-
plies entry logging for which each DML operation is
decomposed into so-called elementary operations
whose reaches are limited to a single block. Using
log sequence numbers (LSNs), the log entries can be
uniquely related to the blocks modified by these
operations and the attached LSNs enable the
decision whether or not the log entries have to be
applied to the related blocks during recovery. Hence,
restart can reconstruct in a kind of forward recovery
(repeating history) a DML-operation-consistent DB
state and for winner transactions even a transaction-
consistent DB state. Finally, the transaction manager
records the transaction boundaries and all inverse
DML operations (logical DML operation logging is
saving space and, thus, log I/O) to be prepared to
rollback all loser transactions thereby executing
DML operations on the reconstructed operation-
consistent DB state.

3.3 Various Optimizations

The combined use of entry and DML operation log-
ging already seems to require minimal log I/O in
normal situations. Therefore, we focussed on
operation- specific situations and improvement of
related components to gain further optimization
potential.

Reduced logging: For initially storing a docu-
ment, stepwise rollback is not needed and complete
rollback using entry logging is overly expensive.
Therefore, logging of the block numbers involved is
sufficient to empty the affected container pages.

Administration of Fix indicators: Blocks current-
ly accessed by transactions have to be pinned in their
buffer frames to avoid replacement. So-called Fix
marks set by the requesting transactions indicate for
the buffer manager that a block is not eligible for re-
placement. In the initial solution, these Fix marks
were kept in the lock table where checking
performed very poorly. Because search of
replacement candidates is an extremely frequent
task, a specialized structure recording the Fix state
of all frames was added to the buffer manager.

Improved lock table management: Reimplemen-
ting the lock manager avoided static lock table
allocation and large lock granules on the lock table
itself. Using a pool of predefined lock request blocks

1.3.7.3.3
1.3.7.5.3

. . .
1.3.3.9.3

. . .

. . .

1.3.9 1.3.11

1.3.3.1.3 1.3.3.9.3 1.3.11.1.3 . . .

PCR

content(compr. not shown) SPLIDs

1.7.1.3

1.3.1.3

1.3.5.3

1.3.8.3.3.3

5

9 W.11
. . .

. . .
65.95

. . .

document
index

document container
1.3.7.1.3

1.3.3.1.3

1.3.3.5.3

1.3.3.8.3.3.3

7
9

9

13

4

44 1.3.3.2.1.3

1.3.3.7.3.3
1.3.3.7.5.3

. . .
W.11Stevens

TCP/IP
1

1994

Figure 5: An XML document without elements stored.

ICEIS 2008 - International Conference on Enterprise Information Systems

372

and latches for hash table entries provided flexibility
and minimal blocking. Because blocks in the DB
buffer were also administrated by the lock manager,
buffer management and the related entry logging
immediately took advantage by this measure.

Blockwise writes: Single insertion of keys into
the document index is required for document update.
Document creation, in contrast, enables specialized
block handling outside the DB buffer. B-tree blocks
of the index can be entirely filled before transferring
them to the buffer. In turn, entry logging and block
propagation can be optimized by the buffer manager.

We have implemented these features in XTC
and derived some indicative results for a frequent
use case, i.e., the storage of a document (113 MB)
including indexes, auxiliary structures, and logging
provisions (Sommer, 2007). To enable comparison,
we have normalized all results to the cost of the
complete standard structure (100%). Hence, the
difference to 100% is the saving (gain) achieved by
a specific measure. In the results shown in Figure 6,
we have added our optimization measures step by
step such the plain effect of the indicated
optimization is the difference to the previous
quantities (bars). While elementless storage gains
>10% for the standard variant, the aggregated saving
of all measures applied reaches the level of ~40%,
i.e., optimization reduces the initial costs by ~60%.

4 SUMMARY AND OUTLOOK

XTC is – to the best of our knowledge – the only
(freely accessible) XDBMS offering full-fledged
transaction services. It was used to explore ACID
properties and served for all comparative experi-
ments. We outlined the state of our work in XML
concurrency control as well as logging and recovery.
Our taDOM approach guarantees serializability and
transaction isolation in multi-lingual XDBMSs and
even of multi-lingual transactions. Compared to less

adjusted lock protocols, the impressive performance
gains of the taDOM group reveal that a careful
adaptation of lock granules to specific operations
clearly pays off. Furthermore, the lion’s share of
XML processing costs is caused by all sorts of
document I/O including logging can be reduced by a
variety of measures.

Currently, we are working on lock manager ex-
tensions supporting lock escalation and tailor-made
locking on index structures. Another hot topic is
energy efficiency in XDBMSs including the use
flash memory, buffering and deferred updates,
specialized logging techniques and group commit.

REFERENCES

Document Object Model (DOM) Level 2 / Level 3 Core
Specifications, W3C Recommendation, http://www.
w3.org/DOM/ (2005)

Goldman, R. and Widom, J.: DataGuides: Enabling Query
Formulation and Optimization in Semistructured Data-
bases. Proc. VLDB: 436-445 (1997)

Graefe, G.: Hierarchical locking in B-tree indexes. Proc.
National German Database Conf. (BTW 2007), LNI P-
65, Springer, 18–42 (2007)

Gray, J.: Notes on Database Operating Systems. In
Operating Systems: An Advanced Course. Springer,
LNCS 60: 393-481 (1978)

Gray, J. and Reuter, A.: Transaction Processing: Concepts
and Techniques. Morgan Kaufmann (1993)

Härder, T. and Reuter, A.: Principles of Transaction-
Oriented Database Recovery. In Computing Surveys
15(4): 287-317 (1983)

Haustein, M. P. and Härder, T.: An Efficient Infrastructure
for Native Transactional XML Processing. In Data &
Knowl. Eng. 61:3, 500–523 (2007)

Haustein, M. P. and Härder, T.: Optimizing lock protocols
for native XML processing. In Data & Knowl. Eng.
65:1, 147-173 (2008)

Mohan, C.: ARIES/KVL: A Key-Value Locking Method
for Concurrency Control of Multiaction Transactions
Operating on B-Tree Indexes. Proc. VLDB: 392-405
(1990)

O'Neil, P. E., O'Neil, E. J., Pal, S., Cseri, I., Schaller, G.,
and Westbury, N.: ORDPATHs: Insert-Friendly XML
Node Labels. Proc. SIGMOD: 903-908 (2004)

Sommer, T.: Efficient and Transaction-Protected Storage
of Document Collections in XML Database Systems
(in German). Master Thesis, TU Kaiserslautern (2007)

Weikum, G. and Vossen, G.: Transactional Information
Systems. Morgan Kaufmann Publishers (2002)

XQuery 1.0: An XML Query Language.
http://www.w3.org/ TR/xquery/ (2007)

0

20

40

60

80

ga
in

 in
 %

standard

100

variant
reduced

logging
Fix

indicators
improved
lock table

blockwise
writes

complete storage
elementless storage

Figure 6: Effects of optimization measures.

TRANSACTIONAL SUPPORT IN NATIVE XML DATABASES

373

