
IT SERVICE MANAGEMENT OF USING HETEROGENEOUS, 
DYNAMICALLY ALTERABLE CONFIGURATION ITEM 

LIFECYCLES  

David Loewenstern and Larisa Shwartz 
IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY, U.S.A. 

Keywords: IT service management, ITSM tools, heterogeneous dynamically alterable lifecycles, configuration 
management, CMDB, ITSCM. 

Abstract: IT service management requires the management of heterogeneous artifacts such as configuration items 
with differing lifecycles and complex interrelationships. Lifecycle management in such environments is 
critical in providing feedback and control between processes and sustaining communication and 
synchronization between and within processes while maintaining the integrity of the configuration item 
database (CMDB). We propose a method for managing lifecycles of multiple types, with automated 
methods for inheritance of lifecycles, authorization of state changes, propagation of state changes through 
relationships, and dynamic lifecycle updates. 

1 INTRODUCTION 

The provisioning of IT services has required 
increasingly large, complex and distributed IT 
environments, in which intended improvements can 
easily have costly unforeseen consequences. The age 
of monolithic tools for managing large-scale 
information technology (IT) systems has gone. A 
hope of containing the change within one IT service 
tool that assembling procedures and services defined 
has vanished. ITIL (OGS, 2007), the recognized 
standard for IT service management, establishes as a 
matter of fact that managing complex IT 
environments requires coordination and careful 
integration of existing services and processes. Each 
business process could embody its own data and 
own process management. Furthermore, a single 
process, such as configuration management for 
example, could manage various types of data in such 
supporting variety of concepts and formalisms. 
Therefore, one of the important tasks of ITSM is to 
establish communication and synchronization 
between and within processes so they behave in 
consistent way and appear to providers and 
consumers as a united business process support.  

ITIL defines lifecycles as follows: 
Lifecycle - the various stages in the life of an 

IT Service, Configuration Item, Incident, 
Problem, Change, etc. The Lifecycle defines the 

Categories for Status and the Status transitions 
that are permitted. For example: 
■ The Lifecycle of an Application includes 
Requirements, Design, Build, Deploy, Operate, 
Optimize 
■ The Expanded Incident Lifecycle includes 
Detect, Respond, Diagnose, Repair, Recover, 
Restore 
■ The Lifecycle of a Server may include: 
Ordered, Received, In Test, Live, Disposed, etc. 
(OGS, 2007, page 302) 

Lifecycles through specialization and coordination 
can provide feedback and control between functions 
and processes within and across various services of 
IT service management.  

ITIL recommends that configuration of the 
environment be maintained in a carefully-controlled 
configuration management database (CMDB). The 
CMDB includes the authorized attributes of and 
relationships between the configuration items (CIs) 
in the IT environment needed to support impact 
analysis of proposed changes to the environment.  

It needs to be emphasized that the CIs form a 
heterogeneous collection: CIs may represent 
hardware, software, documentation or even non-IT 
objects that impact the IT environment. Therefore 
different CIs may have different collections of 
attributes, different permitted relationships, and 
particularly different lifecycles: collectively, 

155
Loewenstern D. and Shwartz L. (2008).
IT SERVICE MANAGEMENT OF USING HETEROGENEOUS, DYNAMICALLY ALTERABLE CONFIGURATION ITEM LIFECYCLES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 155-160
DOI: 10.5220/0001718401550160
Copyright c© SciTePress



 

different types of CIs. Different lifecycles may have 
little in common: hardware assets may be specified, 
purchased, configured, deployed and 
decommissioned; software may be designed, 
developed, tested and installed; contracts may be 
negotiated, approved and fulfilled. Certain 
transitions from state to state within a particular 
lifecycle may require supporting approvals, but an 
otherwise identical transition in an otherwise 
identical lifecycle in a CI with a similar type may 
require different handling. 

Transitioning a CI from one lifecycle state to 
another is itself a type of change that can impact the 
IT environment. At minimum, state changes in one 
CI often require changes in the containment 
hierarchy rooted at that CI: e.g., decommissioning a 
hardware asset normally makes software installed on 
that asset unusable. A challenge, then, is to provide a 
systematic way to propagate CI lifecycle state 
changes across CMDB relationships given 
heterogeneous CI lifecycles. 

Although successful implementation of a CMDB 
requires management of CI lifecycles, the same sort 
of lifecycle management can be applied to objects 
that are not typically thought of as configuration 
items. For example, service processes themselves 
have lifecycles but are too ephemeral for a CMDB, 
and documents created on-line have lifecycles but do 
not represent anything in the IT environment.  

While a substantial amount of work has been 
done in such areas as product lifecycle management 
(see for example Stark, 2005), telecommunications 
networks, and knowledge management (see for 
example Siemeniuch, 1999); it hasn’t been 
addressed considerably within IT service process 
management. This paper describes a method for 
managing CI lifecycles satisfying the following 
requirements: 
• CI types form one or more hierarchies (with the 

degenerate case that the CI types form no 
structure at all). CI lifecycles are associated 
with CI types. CI types inherit the lifecycle of 
their parent in the hierarchy by default. 

• Lifecycles for different CI types may differ in 
all qualities. 

• Lifecycles may be altered dynamically (i.e., 
without removing the CMDB from service). 

• Rules for propagating lifecycle changes across 
relationships between CIs may be created 
dynamically. 

• Rules for requiring supporting approvals for 
CIs entering or leaving certain states may be 
created dynamically. 

• Rules for requiring supporting approvals for 
changes to any CI attribute when the CI is in a 
particular state, may be created dynamically. 

 

 
Figure 1: An example lifecycle with states of Not Ready, 
Decommission, Production, Under IM, On Hold. The 
Production state is protected. 

This paper will then go on to describe one of 
possible implementations of CI lifecycle 
management and implementation involving both CI 
lifecycles and lifecycles of non-CI objects such as 
recovery plans. 

2 METHOD 

2.1 Lifecycle Representation 

A lifecycle, as shown in figure 1, may be understood 
as a directed graph comprised of labelled states, 
together with the transitions between the states. The 
states represent the legal states for a particular 
category of item; the transitions represent operations 
on the items (e.g., approval, placed into service, etc.) 
that change the state of an item. States in a lifecycle 
may be flagged to associate the states with particular 
policies that restrict requirements that must be 
satisfied to enter or leave the state. 

In figure 1, the Not Ready state is flagged as the 
initial state for the lifecycle and the Production state 
is flagged as a “protected” state requiring an 
approved request for change to enter or leave. 

More completely, a lifecycle is comprised of a 
lifecycle description, lifecycle states, state 
transitions, and assignments as detailed in figure 2. 
The lifecycle description contains a label for the 
lifecycle; a flag marking whether the lifecycle is the 
“default” lifecycle, to be used in the absence of 
assignments and which lifecycle state is the default 
state of the lifecycle; and a marker indicating which 

ICEIS 2008 - International Conference on Enterprise Information Systems

156



 

lifecycle state is to be considered the default state of 
the lifecycle, to which newly created objects 
associated with the lifecycle are to be assigned. A 
lifecycle state is a named entity associated with a 
single lifecycle; it is associated with zero or more 
flags (represented as a binary number) which 
identify policies associated with the state. A state 
transition is an unnamed entity that maps origin 
states to target states in the same lifecycle. Lifecycle 
assignments map lifecycles onto other database 
objects such as configuration items (CIs). 
 

 
Figure 2: Database tables for lifecycles and their 
components and assignments. 

 
Figure 3: Lifecycle assignment structure for Configuration 
Items. 

2.2 Lifecycle Assignment 

Lifecycles may be associated with item categories 
through the Lifecycle Assignment table (figure 2). In 
the case of configuration items (CIs), these 
categories are CI types, such as servers or 
workstations. There could be as many as one 
lifecycle designated for each category, but in most 
cases this is unnecessary: multiple categories may 
share a lifecycle via entries in the Lifecycle 
Assignment table (figure 3). Where categories are 
arranged in a tree-structured hierarchy (with 
categories lower in the hierarchy considered to be 

subcategories of those above them), categories 
without entries in the Lifecycle Assignment table are 
assumed to inherit the assignment of the closest 
ancestor with an entry in that table. If it is possible 
for there to be categories that neither are assigned a 
lifecycle explicitly nor inherit one implicitly, one 
lifecycle should be designated the default lifecycle 
to be used for such cases. 

2.3 State Management 

When a state change is requested for an item by a 
user, the first step is to locate the lifecycle associated 
with the item. As discussed in the previous section, 
if a lifecycle is directly associated with the specific 
subcategory of the item via the Lifecycle 
Assignment table, then that lifecycle is used. 
Otherwise, the lifecycle is inherited or the default 
lifecycle is used. 

The next step is to determine whether the item’s 
current state exists in the lifecycle. It is possible that 
it may not due to changes in either the lifecycle or 
the item: lifecycles may be created, edited, deleted, 
or reassigned, or items may be moved to new 
categories. If not, then the state is updated according 
to the update rules described later. 

Next, the current state, called the origin state, is 
checked against its lifecycle to see if there are any 
associated flags according to the Lifecycle State 
table. If there are, then any protection rules 
associated with those flags are checked as described 
later. If all protection rules are satisfied, or if none 
exists, then a list of possible target states as 
determined by the State Transition table is generated 
and the user is prompted to choose one. This 
selected target state is then also checked for its 
protection rules using the same mechanism used for 
the origin state. If all protection rules are satisfied or 
none exists, then the state change is recorded. A 
detailed description of how protection rules are 
satisfied is presented in the next subsection. 

 
Figure 4: Database tables for propagation rules. 

IT SERVICE MANAGEMENT OF USING H HETEROGENEOUS, DYNAMICALLY ALTERABLE
CONFIGURATION ITEM LIFECYCLES

157



 

2.4 State Propagation 

After recording the state change, possible state 
propagation across relationships may take place. An 
item may be associated with zero or more 
relationships to other items: these are stored in 
separate tables unrelated to the lifecycle system, 
such as in a CMDB. Relationships describe a 
connection between two items as well as a 
relationship type: multiple relationships may share a 
type (figure 5). Examples of relationship types 
include “contains”, “requires”, “creates”, and there 
may be many others: one of the primary purposes of 
a configuration management database is to maintain 
these relationships.  

 
Figure 5: Relationships among Configuration Items. The 
solid arrows are “mounted on” relationships and the 
dashed arrows are “requires” relationships. The red double 
is state propagation (see text). 

The State Propagation table (figure 4) allows 
state changes to be propagated through such 
relationships so that, for example, taking a piece of 
hardware offline can also mark all of its software as 
unavailable. A row of the State Propagation table is 
interpreted as: if the item is associated with the 
Lifecycle specified in the row, and the target state to 
which the item has transitioned is flagged with the 
Flag listed in the row, then any relationships of the 
type Relationship listed in the row from the item to 
an item associated with the Related Lifecycle that 
are in the Origin State are transitioned to the Target 
State. All propagations are considered to be 
performed simultaneously, and the process is 
checked to prevent cycles. In the example in figure 
5, the tape drive’s state is moved to “offline” in 
response to a repair request. A propagation rule 
changes the state of the server to “not ready” 
because the server is only partially operational, and 
another rule changes the state of the backup software 
to “offline” because it depends on the tape drive. 

2.5 Dynamic Lifecycle Alteration 

Dynamic lifecycle management presents an 
interesting challenge. Many sources only consider 
cases in which lifecycles cannot be altered after they 
are in production. The requirements of data integrity 
support this train of thought. However, in constantly 
changing business environments and fast 
progressing technology that supports them, the 
restriction of preserving lifecycle states for the life 
of the process or even of the implementation could 
significantly and unreasonably limit the flexibility of 
business adaptation. Our implementation of a 
lifecycle allows a full dynamicity. It raises a number 
of interesting questions presented below. 

If an item is discovered to be in a current state 
that does not exist in its associated lifecycle, for 
example if the lifecycle is edited, then one or more 
update rules are applied to correct the state. An 
item’s current state may not be in its associated 
lifecycle because the item’s category has changed, 
because its original lifecycle has been edited or 
deleted, or even because a category containing the 
subcategory of the item has been assigned to a 
different lifecycle. The process for updating the 
lifecycle is a breadth-first search through the Update 
Rule table (figure 4): 
• All rows of Update Rule for which the Origin 

matches the item’s current state are selected. 
• From this selection, all rows for which the 

Target state is associated (via the Lifecycle 
State table) with the item’s current lifecycle are 
selected. If this new selection is not empty, it 
replaces any previous selection. 

• The Target states from the selection, if any, are 
added to a list of states, which is initially empty. 
Duplicates are removed. 

• If the list of states is now empty, stop and report 
an error. 

• The next element of the list of states replaces 
the item’s current state. 

• If the item’s current state is now in the item’s 
associated lifecycle, stop and record the state 
change. Otherwise, repeat this list. 

2.6 Protection Rules 

Lifecycle states may be associated with protection 
rules; such states are called protected states. A state 
is protected if its flags contain (bitwise AND) the 
flag of any row of Protection Rule and their 
Lifecycle fields match. Each row of Protection Rule 
is a protection rule. Each protection rule includes a 
test ID and an exception, and optionally the ID of an 
application. The tests corresponding to the test IDs 

ICEIS 2008 - International Conference on Enterprise Information Systems

158



 

are currently implemented as stored SQL queries 
that can examine the contents of the fields of the 
item whose state triggered the protection rule. The 
tests can also examine the item’s relationships and 
the fields associated with items to which it has a 
relationship. The lifecycle state passes the test if 
there is some entry in the database that matches the 
SQL query. If a lifecycle state does not pass the test, 
then the given exception is signalled to the user. If 
the protection rule contains a pointer to an 
application, that application is run, permitting the 
user to create or modify fields and relationships for 
the item, and then the test is run again. This process 
enables the lifecycle designer to force a user to 
supply missing information for an item or related 
items.  

3 ITSCM AND CHANGE 
MANAGEMENT  

One of the IT Service Management processes 
defined in ITIL, IT Service Continuity Management 
(ITSCM), has the purpose of ensuring service 
continuity in the event of a major outage. It stands 
out among other ITIL processes particularly in that 
while other processes in ITIL v.3 have a limited set 
of defined activities, ITSCM also defines stages for 
specific activities. ITSCM has primary interfaces to 

all major processes of IT Service Management 
(figure 6):  

• Change Management, 
• Incident Management,  
• Problem Management,  
• Availability Management,  
• Service Level Management,  
• Capacity Management,  
• Configuration Management and  
• Information Security Management.  
 

The ability to keep all interfaces synchronized is 
critical for ITSCM (see e.g., Toigo, 2003). The 
design and implementation of this complex task is 
not addressed in ITIL. Consider that  changes to the 
service infrastructure must be reflected in changes to 
the recovery plan, and so ITSCM artifacts must be 
managed under change control. Changes to 
configuration items, both authorized and 
unauthorized, could result in devaluation of the 
recovery plans.  

To automate detection of plan devaluation, the 
recovery plan can be placed into the CMDB with 
depends-on relationships to its CIs (figure 8). Better, 
the recovery plan can be represented as a composite 
containing plan sections, each represented in the 
CMDB, with containment relationships linking the 
plan with its sections. This fine-grained 
representation of the recovery plan permits the 
 

 

Figure 6: ITSCM and its interfaces. 

IT SERVICE MANAGEMENT OF USING H HETEROGENEOUS, DYNAMICALLY ALTERABLE
CONFIGURATION ITEM LIFECYCLES

159



 
Figure 7: An example of a lifecycle for a recovery plan. 
The Approved state is protected. 

creation of rules relating changes to states of specific 
configuration items to sections of the recovery plan 
to which they have a relationship, therefore making 
it possible to make a focused impact analysis 
highlighting exactly which part of a recovery plan 
must be revised. The recovery plan itself as well as 
each of its components would have their own 
lifecycles, with propagation and protection rules to 
determine the relationship between the state of the 
individual sections and the state of the recovery plan 
as a whole. 

 

Figure 8: Relationships among CIs and recovery plan 
sections. 

Sample rules for a state transition can be defined 
for illustration purposes. In figure 8, a recovery plan 
section can enter the protected Approved state only 
if at least one configuration item is identified in 
recovery plan as a system dependency (i.e., the plan 
section has a depends-on relationship to the CI) and 
all such CIs are in the production state. The recovery 

plan as a whole can enter the Approved state only if 
all of its sections are in the Approved state and in 
addition there is a valid system-user assigned as the 
primary contact. A corresponding propagation rule 
moves the appropriate recovery plan section to the 
rejected state when a CI to which it has a 
dependency leaves the production state, and another 
moves the recovery plan to the rejected state when 
any of its sections enter the rejected state. Still 
another rule can be triggered by the recovery plan’s 
state change to initiate a change management 
process for the recovery plan. 

In this example different lifecycles are 
associated with related artifacts, but common 
approach and propagation rules allow the feedback 
and smooth transition between processes in order to 
facilitate integrated approach to managing IT 
Services which support business lifecycle.  

4 CONCLUSIONS 

Providing a common approach to lifecycle 
management helps to facilitate an integrated 
approach to IT Process Management and so to avoid 
duplication of costs, both in labor and infrastructure. 
This approach is possible using dynamically 
alterable lifecycles. Furthermore it could be used to 
manage lifecycle state hierarchy and identify and 
resolve conflicts, in such helping to enhance 
reliability in overall IT Service management by 
providing some capabilities for self-managing 
services.  

REFERENCES 

Kern A., Kuhlmann M., Schaad A., and Moffatt J., 2002. 
Observations on the role life-cycle in the context of 
enterprise security management, in Proceedings of the 
seventh ACM symposium on Access control models 
and technologies, ACM, pp. 43-51. 

OGS, 2007.  ITIL: Service Design, TSO, Norwich. 
Stark, J., 2005).  Product Lifecycle Management, Springer, 

London, 1st edition. 
Siemieniuch C.E., Sinclair M.A, 1999. Organizational 

aspects of knowledge lifecycle management in 
manufacturing. In International Journal of Human-
Computer Studies, Volume 51, Number 3, pp. 517-
547(31), Academic Press. 

 Toigo, J.W., 2003. Disaster Recovery Planning: 
preparing for the unthinkable, Prentice Hall PTR, 3rd 
edition, pp. 424-238. 

ICEIS 2008 - International Conference on Enterprise Information Systems

160


