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Abstract: Extracting process patterns from EPC (Event-Driven Process Chain) models requires to perform a semantic 
analysis of EPC functions and events. An automated semantic analysis faces the problem that an essential 
part of the EPC semantics is bound to natural language expressions in functions and events with undefined 
process semantics. The semantic annotation of natural language expressions provides an adequate approach 
to tackle this problem. This paper introduces a novel approach that enables an automated semantic 
annotation of EPC functions and events. It employs semantic patterns to analyze the textual structure of 
natural language expressions and to relate them to instances of a reference ontology. Thus, semantically 
annotated EPC model elements are input for subsequent semantic analysis. 

1 INTRODUCTION 

Designing processes is a sophisticated and cognitive 
task for process designers, usually supported by 
tools, such as the ARIS Toolset. Process designs are 
represented as process models in a particular 
language, usually depicted by a graph of activities 
and their casual dependencies. The Event-driven 
Process Chain (EPC) modeling language (Keller et 
al., 1992) has gained a broad acceptance and 
popularity both in research and in practice. 

Engineering processes are characterized by an 
identifiable progression from requirements, through 
specification to design and implementation. Each of 
these phases comprises context specific tasks, 
conducted similarly in different engineering domains 
(Moore, 2000), e.g. the task “Design Architecture” 

usually succeeds to task “Identify Requirements”.  
Similarly conducted tasks in different engineering 

domains motivate the extraction of process patterns, 
tracing back to obviously existing structural analogies 
in process models describing various domains in 
engineering domains (Bögl et al., 2008).  

A process pattern represents a common or best 
practice solution to solve a particular problem in a 
certain context. Hence, it might assist process 
modelers for constructing high quality process 
solutions. Extracting process patterns requires to 
compare process models either human-driven or 
automatically. Prerequisites for an automatable 
comparison of conceptual models are discussed in 
Pfeiffer (2005). Most emphasized prerequisites refer 
to a formal semantics of modeling language and 
constructs. Additionally, a reference ontology should 
capture the real world semantics.  

EPC models express the model element structure 
in terms of the meta language constructs which are 
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Functions (F), Events(E) and Connectors (and, xor, 
or). Natural language expressions describe the inner 
process semantics of functions and events. 
Depending on the sequence of words and on its 
semantics, different meanings may arise. For 
example, “Define Software Requirements with 
Customer” has a different meaning than “Define 
Software Requirements for Customer”. The former 
expression means that software requirements are 
defined in cooperate manner with a customer; the 
latter one indicates the customer as output target of 
the performed activity. 

Semantic annotation of EPC models constitutes 
an appropriate solution to tackle the problem of 
different meanings but raises the problems to 
determine the process semantics of lexical terms 
used in natural language expressions and to link 
them to reference ontology instances. The process 
semantics of lexical terms represents process tasks 
executed on process objects, for instance. 

Linking lexical terms to reference ontology 
instances requires the availability of corresponding 
reference ontology instances. In case of non-
corresponding instances, semantic annotation also 
entails to populate a reference ontology with new 
instances derived from lexical terms.  

Natural language expressions follow naming 
conventions or standards that represent guidelines 
for naming EPC functions/events (Schütte, 1998). If 
a naming convention is used, it is clear what a 
lexical term expresses.  

For example, a typical suggested naming 
convention for an EPC function is the template Task 
followed by a Process Object that specifies the 
semantics of natural language expressions such as 
“Define Project Plan”; “Define” has the semantics 
of a task, the lexical term “Project Plan” indicates 
the semantics of a process object. We analyzed 
about 5,000 EPC functions/events in engineering 
domains. We experienced that the suggested 
recommendations do not fully cover the semantics of 
used natural language expressions. These 
investigations addionally triggers the neccessity of a 
formal notation that enables to express or specify a 
guideline. Formalized guidelines enable verifying 
natural language expressions against a set of 
predefined conventions.  

Based on our investigations for clarifying the 
semantics of natural language expressions used for 
naming EPC functions/events, we introduce a set of 
guidelines that extend traditional naming 
conventions. The introduced guidelines are 
expressed through semantic pattern descriptions. 
Semantic pattern descriptions represent semantic 

templates that bridge the gap between informal and 
formal representation. Formal representation refers 
to concepts specified by a reference ontology. 
Semantic pattern descriptions are either defined for 
EPC functions or for EPC events. A semantic pattern 
description has a pattern template, that is represented 
in the form Function(Context)[Task; Process 
Object; Parameter] for an EPC function. 

Context is the name of an engineering domain 
the analyzed EPC function is associated with, the 
concept Task represents the activity being performed 
on an instance of the concept Process Object, the 
concept Parameter captures an instance of a Process 
Object optionally for executing an EPC function. To 
represent the semantics of a function consists in 
instantiating a semantic pattern template by binding 
a lexical term to the variables Context, Task, Process 
Object and Parameter. For example, the instantiated 
semantic pattern template Function(Software) [Task: 
”Define”; Process Object: ”Quality Goal”] defines 
the process semantics of the EPC function “Define 
Quality Goal” in the context “Software”. 

Same or similar knowledge in EPC 
functions/events can be expressed in alternative 
ways due to the freedom of modeling (e.g. usage of 
synonyms, abbreviates etc.). Consequently, 
alternative natural language expressions may refer to 
same process semantics. For example, the EPC 
functions “Define SW Requirements” and “Define 
Requirements for Software” refer to the same 
process semantics. 

For that reason each semantic pattern description 
defines a set of lexical structures and analysis rules. 
A lexical structure is defined by a sequence of word 
classes (e.g. Verb, Noun, Preposition). The lexical 
structure LS:= [VerbTask] [NounGroupProcessObject] 
captures a natural language expression such as 
Define [VerbTask] Quality Goal 
[NounGroupProcessObject]. A lexical structure 
instantiates a semantic pattern template by applying 
analysis rules. They define how to map lexical 
structures onto the reference ontology concepts 
specified in a semantic pattern template. 

An instance of a reference ontology concept has 
an unique identifier which may have several textual 
counterparts. For example, a process object with the 
OID=123 has the textual counterparts {“Software 
Requirements”, “SW Requirements”, 
“Requirements for Software”}. 

To separate meaning from its lexical 
representation the reference ontology is split into 
two layers. Layer one represents the lexical 
knowledge base that captures commonsense 
vocabulary used in natural language expressions; 
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layer two represents the semantic domain for those 
vocabulary by providing process ontology concepts 
and relations defined in the process knowledge base. 

The paper is organized as follows: The upcoming 
section introduces the reference ontology, Section 3 
deals with the main contribution of this paper, the 
semantic annotation process. In Section 4, we 
discuss related approaches. Finally, a conclusion is 
given in Section 5. 

2 REFERENCE ONTOLOGY 

The reference ontology provides concepts and 
relations whose instances capture both the 
vocabulary (lexical knowledge) used to describe 
EPC functions/events and its process semantics 
(process knowledge). Thus it serves as knowledge 
base for the semantic annotation of EPC 
functions/events. Lexical knowledge comprises 
morphological and syntactic knowledge about used 
vocabulary. Morphological knowledge relates to 
word inflections such as single/plural form of a 
noun, past tense of verbs. Syntactic knowledge 
comprises word class information and binary 
features such as countable/uncountable. 
Additionally, the lexical knowledge base explicitly 
considers context information and the relationships 
isAcronymOf and isSynonymTo between entries. 
Context information refers to engineering domains 
such as software or hardware development. 

Process knowledge represents the semantic 
domain for natural language expressions. The 
process semantics is expressed by instances of 
process ontology concepts such as task, process 
object and its semantic relationships such as 
isPartOf or isSubclassOf. Figure 1 sketches the 
overall architecture. Natural language expressions 
are used for naming EPC functions/events. The 
process semantics implicitly described in an EPC 
function/event is captured in the process knowledge 
base, its textual representation is captured in the 
lexical knowledge base.  

2.1 Lexical Knowledge Base 

The rationale behind the lexical knowledge base is 
to provide a lightweight, controlled domain 
vocabulary for semantically annotated EPC 
functions/events.  

 
Figure 1: Coherence between Reference Ontology and 
EPC Functions/Events. 

Publicly available resources such as WordNet 
(W3C, 2006) may provide commonsense 
vocabulary, but cannot be considered fully suitable 
for capturing domain specific vocabulary. In 
general, such resources are open world dictionaries, 
comprising several hundred thousand open world 
entities and semantic relationships. It is an 
unreasonable demand for a process designer to 
maintain this vocabulary. A domain specific 
controlled vocabulary within an engineering domain 
usually comprises several hundred entities that can 
be maintained easier. Nevertheless, WordNet plays a 
vital role for the semantic annotation of EPC 
functions/events. Its purpose is further discussed in 
section 3 of this paper. 

The conceptual design of the lexical knowledge 
base relies on the analysis of natural expressions 
used for naming EPC functions/events. Figure 2 
illustrates the structure of a natural language 
expression. 

 
Figure 2: Structure of Natural Language Expressions. 

A natural language expression used for naming is 
a composition of words each belonging to a word 
class. The sequence of word classes specifies the 
lexical structure of the natural language expression. 
In general, a lexical term represents a cluster of 
words belonging to equal word classes. For example, 
the word “Define” belongs to the word class verb, 
since there is only one occurrence of this word class, 
the lexical term only consists of the word “Define”. 
Besides this general rule, an “and” conjunction used 
in a natural language expression requires special 
attention. An “and” conjunction results in a 
separation of lexical terms. For example, let us 
replace the preposition “of” with an “and” 
conjunction in Figure 2. In this case, the natural 
language expression would comprise the two 
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additional lexical terms “Requirements” and 
“Software”.  

The lexical knowledge base consists of lexical 
entries. A lexical entry is either single or multi-
structured. A single structured lexical entry is 
represented by exactly one word; a multi-structured 
lexical entry consists of several words. One may 
recognize the analogy to a lexical term. Hence, a 
lexical entry represents a lexical term captured in the 
lexical knowledge base. 

Let us consider Figure 3 that provides an 
example for the multi-structured lexical entry 
“Software Requirements” and for the lexical 
mapping between lexical and process knowledge 
base. The right section illustrates a part of a process 
ontology that captures the semantics of the lexical 
entry “Software Requirements” realized by a lexical 
mapping between a lexical entry and a process 
ontology instance. The meaning of this entry can be 
interpreted as follows: “Software Requirements” is a 
process object and it is a specialization of the 
process object “Requirements” (<OID 3>). 

 

Figure 3: Example for Multi-Structured Lexical Entry. 

2.2 Process Knowledge Base 

The concepts and relations of process knowledge 
result from the analysis of natural language terms 
describing EPC functions/events and its associated 
meanings. Figure 4 depicts the process ontology 
concepts for capturing the semantics of EPC 
functions/Events. 

The top level concept EPC Entity classifies a 
lexical term either into a Task(T), or a Process 
Object(PO) or a State(S) concept. A Process Object 
represents a real or an abstract thing being of interest 
within a (business process) domain. According to 
Rosemann (1995, 177 et seq), the concept for 
describing a Process Object has the semantic 
relations isPartOf (e.g. Project Handbook isPartOf 
Development Project), isSublcassOf (e.g. Software 
Project isSubClassOf Project) and migratesTo (e.g. 

Software Requirements migratesTo Software 
Architecture). A Task can be performed manually by 
a human or electronically by a service (e.g. Web 
Service) for achieving a desired (business) objective. 
It can be specified at different levels of abstraction, 
refinements or specializations that are expressed by 
the semantic relationship hasSubTask. 

 
Figure 4: Process Ontology for Capturing the Semantics of 
EPC Functions/Events. 

A State always refers to a Process Object 
indicating the state that results from performing a 
Task on a Process Object. Parameters are process 
objects that are relevant for a task execution or a 
state description. The process ontology comprises 
the four parameter types Source Direction 
Parameter, Target Direction Parameter, Means 
Parameter and Dependency Parameter.  

A Source Direction Parameter defines a source 
process object, e.g. “Derive Quality Goal from 
Specification Document” indicates “Specification 
Document” as a Source Direction Parameter. A 
Target Direction Parameter denotes a recipient 
process object within a function execution, e.g. the 
function “Rework Specification for Project Plan” 
specifies “Project Plan” as a Target Direction 
Parameter. A Means Parameter semantically 
describes a process object as an input requirement 
for task execution. For example, “Rework 
Specification with Software Goals” indicates 
“Software Goals” as a Means Parameter. A 
Dependency Parameter indicates that executing a 
task on a process object depends on an additional 
process object, e.g. the function “Decide Quality 
Measure Upon Review Status” specifies “Review 
Status” as a Dependency Parameter. 

Additionally, a function/event may contain a 
composition of parameters, expressed by the concept 
CompositeParameter. For example, “Rework 
Specification with Software Goals for Project 
Handbook” is a composition of the two parameters 
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“Software Goals” (Means Parameter) and “Project 
Handbook” (Target Direction Parameter). 

3 SEMANTIC ANNOTATION 
PROCESS 

Input are natural language expressions used for 
naming EPC functions/events. The semantic 
annotation process comprises the four stages as 
depicted in Figure 5 that are discussed in the 
following subsections. 

 
Figure 5: Stages for Automatic Semantic Annotation. 

Figure 6 sketches the output of the semantic 
annotation process which comprises (1) a semantic 
linkage between EPC functions/events and instances 
of process ontology concepts and (2) updated 
instances of reference ontology concepts. 

 
Figure 6: Example for semantically annotated EPC 
Function. 

3.1 Term Extractor 

The semantic annotation process starts with the 
extraction of used words by parsing natural language 
expressions for each EPC function/event. Extracted 
words are input for the term normalizer. 

3.2 Term Normalizer 

The term normalizer component addresses the 
problems of word classification and of naming 
conflicts. This step reduces the number of potential 
naming conflicts to synonyms and abbreviations. It 
neglects homonyms since it is assumed a non 
ambiguous meaning of used vocabulary in 
engineering domains. 

Determination of word classes (e.g. noun, verb, 
etc.) requires finding a match between words in 
natural language expressions (extracted from the 
Term Extractor) and associated words to lexical 
entries in the lexical knowledge base. A match 
procedure considers semantic relationships (e.g. 
isAbbreviationTo) associated to a lexical entry (e.g. 
SW is an abbreviation of Software). If a search for is 
successful, the word class derives from the concept 
name the matched word is instance of. In case of 
naming conflicts, the term normalizer follows the 
rule to deliver the base word. For instance, SW has 
been identified as an abbreviation of software, 
consequently, the term normalizer delivers the term 
“Software” as a noun. 

If a query for a word in the lexical knowledge 
base delivers an empty result, an automatically 
driven word classification is not feasible. In this 
case, the publicly available dictionary WordNet is 
employed for word classification and synonym 
detection. According to Lui and Sing (2004), it is 
particularly suited for this task as it is “optimized for 
lexical categorization and word-similarity 
determination”. WordNet originates from the 
Cognitive Science Laboratory of Princeton. Its 
schema comprises the three main classes synset, 
wordSense and word. A synset groups words with a 
synonymous meaning, such as {car, auto, machine}. 
Due to different senses of words, a synset contains 
one or more wordsenses and each wordsense 
belongs to exactly one synset (W3C, 2006). A synset 
either contains the word classes nouns, verbs, 
adjectives or adverbs. There are seventeen relations 
between synsets (e.g. hyponymy, entailment, 
meronymy, etc.) and five between word senses (e.g. 
antonym, see also).  

The term normalizer tries to retrieve semantic 
information by consulting WordNet. A WordNet 
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query delivers either a set of word classes and 
synonyms (associated to the queried lexical term) or 
an empty set. In case of delivering an empty set the 
term normalizer component requires an interaction 
with the analyst in order to get a human 
classification entry. In our introduced example in 
Figure 5, the term normalizer identifies the lexical 
terms “Define” as a verb, “Requirements” as a noun, 
“For” as a preposition and “Software Prototype” as 
a noun group. 

3.3 Semantic Pattern Analyzer 

The term normalizer component determines word 
classes and resolves word conflicts as described in 
previous section. The semantic pattern analyzer 
instantiates semantic patterns by employing 
associated analysis rules.  

Semantic pattern descriptions enable to formalize 
and to specify naming conventions. Naming 
conventions represent guidelines for naming EPC 
functions/events as proposed by the ARIS method 
and by the guidelines of modeling (Schütte, 1998).  

These conventions suggest for naming EPC 
functions to make use of a verb to express a task 
followed by a noun that refers to a process object 
(e.g. Define: [Task] Development Plan: [Process 
Object]). The naming conventions for EPC events 
suggest expressing state information by a passive 
verb followed by an associated process object (e.g. 
Development Plan: [Process Object] Defined: 
[State]). The singular noun form is propagated since 
a process object can be regarded as a class type. 
Hence, the conventions proposed in data or class 
modeling are advocated.  

A semantic pattern description is given as a tuple  
S = (T, LA) where T defines the semantic pattern 
template, LA is a set of pairs ({li,aj}| (L={l1,…ln}, 
A={a1,…an}) where li∈L and aj∈A) where L is a set 
of lexical structures and A is a set of analysis rules. 

A semantic pattern template is a tuple P=(E,C,O) 
where E∈{Function, Event} defines the semantic 
pattern type, C defines the context of a template 
instance, O is the set of addressed process ontology 
concepts (e.g. task, state). As an example for a 
semantic pattern description, following pattern 
template Function(Context)[Task; Process Object] 
is introduced. It is used to discuss the other parts of 
the semantic pattern in the further subsections. 

3.3.1 Lexical Structures 

The lexical structure is a tuple (I, C) where I is an 
unique identifier and C is an ordered set of word 

classes whereas the following set of predefined word 
classes is available: {Noun [N], NounGroup [NG], 
Verb [V], Passive Verb[PV], Preposition[P], 
Conjunction[C]}. 

The introduced example for a semantic pattern 
description  defines the following two lexical 
structures L1:= [VTask] [NProcessObject] and  
L2:= [VTask] [NGProcessObject].  

3.3.2 Analysis Rules 

Analysis rules evaluate natural language expressions 
against predefined lexical structures and instantiates 
one or several semantic pattern templates. If the 
lexical structure of a natural language expression 
corresponds to a lexical structure associated to a 
semantic pattern template, a semantic pattern 
template is instantiated by the assignment of lexical 
terms to the addressed process ontology concepts of 
the semantic pattern template. Consider the natural 
language expression “[Verb]: Define [Noun]: 
Requirements” used for naming an EPC function. It 
matches with the lexical structure [VerbTask] 
[NounProcessObject] of to the semantic pattern template 
Function(Context)[Task; Process Object]). A 
defined analysis rule for this semantic pattern 
template maps the lexical terms “Define” to the 
process ontology concept Task and “Requirements” 
to the process ontology concept Process Object and 
instantiates the semantic pattern template 
Function(Software)[Task: “Define” Process Object: 
“Requirements”]. 

An analysis rule is specified by a precondition 
and a body separated by a “→”. The precondition 
consists of the operator Match whose parameters 
represent (1) a predefined lexical structure,  
(2) logical expressions (e. g. Preposition=”for”) and 
(3) a list of lexical terms (E={T1…Tn} or 
F={T1…Tn}) extracted by the term normalizer. The 
body denotes an action that generates one or several 
instantiated semantic pattern templates. 

Analysis rules are also used to determine the 
semantics of parameters. The semantics of a 
parameter depends on the preposition associated to a 
noun. For instance, the rule R: IF MATCH([VTask] 
[NprocessObject] [Parameter =”For”] [NProcessObject], 
E={T1…Tn}]) → GENERATE(Function (Context) 
[Task:V; Process Object: N; Target Direction 
Parameter:N]) generates an instantiated semantic 
pattern having a Target Direction Parameter. A 
Source Direction Parameter is determined by the 
prepositions “FROM” or “OF”, a Target Direction 
Parameter by the prepositions “FOR”, or “IN”, a 
Means Parameter by the prepositions “WITH”, a 
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Dependency Parameter by the preposition 
“UPON”. 

Another feature denotes the setting of state 
information required for a semantic analysis of EPC 
events. State information indicates an attribute for a 
process object with an assigned attribute value. For 
example, the state information “Quality Goals 
Defined” assigns the attribute “Defined” to the 
process object “Quality Goal” with the boolean 
value true. This is realized by the rule R: IF 
MATCH([NProcessObject] [PVState], E={T1…Tn}) → 
GENERATE( Event (Context) [State:PV; State 
Value: “True”; Process Object: N]). 

Analysis rules also play a vital role in resolving 
the semantics of natural language expressions that 
address (1) more than one task or state or (2) more 
than one process object or (3) more than one 
parameter or (4) a combination of them. To illustrate 
this situation, let us consider the following example: 
F(Identify And Analyze Quality Goal). This function 
specifies the two tasks “Identify” and “Analyze”, 
connected via an “And” conjunction that are 
executed on the process object “Quality Goal”. For 
capturing the process semantics of this function in 
the process ontology, two semantic pattern instances 
are generated by applying the analysis rule R: IF 
MATCH([V1Task] [Con=”AND”] [V2Task] 
[NGProcessObject], F={T1…Tn}) → {GENERATE( 
Function(Software)[Task:V1; Process Object:NG] , 
F={T1…Tn}), {GENERATE (Function (Software) 
[Task:V2; Process Object:NG], F). This analysis rule 
results in the two instantiated semantic patterns 
templates Function (Software) [T:”Identify”; 
PO:”Quality Goal”] and Function (Software) 
[T:”Analyze”; PO:”Quality Goal”]. 

3.3.3 Common Semantic Patterns 

By manually performed analyzes of about 5,000 
EPC functions/events in engineering domains we 
gained the insight that the suggested naming 
conventions do not fully cover the implicit process 
semantics of natural language expressions used for 
naming EPC functions/events. As an additional 
contribution of this paper, we introduce a set of 
semantic pattern descriptions resulting from our 
investigations. The Figures 7-10 summarize these 
semantic pattern descriptions for EPC 
functions/events. They use the following set of 
abbreviations: {V:=Verb, N:=Noun, NG:=Noun 
Group, PO:=Process Object, T:=Task, 
Con:=Conjunction, P:=Preposition, F:=Function, 
C:=Context, TDP:=Target Direction Parameter, 

SDP:=Source Direction Parameter, MP:=Means 
Parameter, DP:=Dependency Parameter}. 

Lexical Structure:
LS1 := [V] [N]

Analysis Rule:
IF MATCH([V] [N], F) → 
GENERATE( F(C)[T:V; PO:N]

Example: 
F (Define Goal):

Pattern Template Instance:

SP1 := Function(Software) 
[T:”Define”; PO: “Goal”]

Lexical Structure:
LS2 := [V] [NG]

Analysis Rule:
IF MATCH([V] [NG] , F) → 
GENERATE(F(C)[T:V; PO:NG]

Example: 
F (Define Quality Goal):

Pattern Template Instance:

SP1 := Function(Software) 
[T:”Define”; PO: “Quality Goal”]

Example:
F (Identify And Analyze Goal):

Pattern Template Instance:
SP1 := Function(Software) 
[T:”Identify”; PO: “Quality Goal”]

SP2 := Function(Software) 
[T:”Analyze”; PO: “Goal”]

Lexical Structure:
LS4 := [V] [NG1] [C] [NG2]

Analysis Rule:
IF MATCH([V] [NG1] [Con=”AND”] [NG2] , F) → 
{ GENERATE (F(C)[T:V; PO:NG1], 

GENERATE (F(C)[T:V; PO:NG2]}

Example:
F (Define Quality Goal And Quality 

Measure):

Pattern Template Instance:
SP1 := Function(Software) 
[T:”Define”; PO: “Quality Goal”]

SP2 := Function(Software) 
[T:”Define”; PO: “Quality Measure”]

Lexical Structure:
LS3 := [V1] [C] [V2] [N]

Analysis Rule:
IF MATCH([V1] [Con=”AND”] [V2] [N] , F) → {
GENERATE (F(C)[T:V1; PO:N], 
GENERATE (F(C)[T:V2; PO:N]} 

 
Figure 7: Semantic Pattern Description for the Template 
Function(Context)[Task; Process Object]. 

Lexical Structure:
LS4 := [V] [NG1] [P] [NG2]

Analysis Rule:
IF MATCH([V] [NG1] [P=(”FROM” | ”OF”)] 
[NG2] , F) → {
GENERATE ( F(C)[T:V; PO:NG1; SDP:NG2]}

Example: 
F (Derive Quality Goal From 
Specification Document)

Pattern Template Instance:
SP1 := Function(Software) 
[T:”Derive”; PO: “Quality Goal”, 
SDP: “Specification Document”] 

Lexical Structure:
LS4 := [V] [NG1] [P] [NG2]

Analysis Rule:
IF MATCH([V] [NG1] [P=(”FOR” | ”ON” | “IN”) , 
F] [NG2]) → {
GENERATE ( F(C)[T:V; PO:NG1; TDP:NG2]}

Example: 
F (Define Quality Goal For Project 
Plan)

Pattern Template Instance:
SP1 := Function(Software) 
[T:”Define”; PO: “Quality Goal”, 
TDP: “Project Plan”]

Example: 
F( Rework Specification With 
Customer)
Pattern Template Instance:
SP1 := Function(Software) 
[T:”Rework”; PO: “Specification”, 
MP: “Customer”]

Lexical Structure:
LS4 := [V] [NG1] [P] [NG2]

Analysis Rule:
IF MATCH([V] [NG1] [P=”UPON”] [NG2] , F) → 
{GENERATE ( F(C)[T:V; PO:NG1; DP:NG2]}

Example: 
F( Decide Quality Measure Upon 
Review Status)

Pattern Template Instance:
SP1 := Function(Software) 
[T:” Decide”; PO: “Quality Measure”, 
DP: “Review Status”]

Lexical Structure:
LS4 := [V] [N1] [P] [N2]

Analysis Rule:
IF MATCH([V] [N1] [P=”WITH”] [N2] , F) → {
GENERATE ( F(C)[T:V; PO:N1; MP:N2]}

 
Figure 8: Semantic Pattern Description for the Template 
Function(Context)[Task; Process Object; Parameter]. 
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Lexical Structure:
LS1 := [N] [PV]

Analysis Rule:
IF MATCH([N] [PV] , E) → 
GENERATE( E(C)[PO:N; S:PV]

Example: 
E (Goal Defined):

Pattern Template Instance:

SP1 := Event(Software) 
[PO: “Goal”; S:”Defined”]

Lexical Structure:
LS2 := [NG] [PV]

Analysis Rule:
IF MATCH([NG] [PV], E) → 
GENERATE( E(C)[ PO:NG; S:PV], 

Example: 
E (Quality Goal Defined):

Pattern Template Instance:

SP1 := Event(Software) 
[PO: “Quality Goal”; S:”Defined”]

Example:
E (Goal Identified And Analyzed):

Pattern Template Instance:
SP1 := Event(Software) 
[PO: “Goal”; S:”Identified”]

SP2 := Event(Software) 
[PO: “Goal”; S:”Analyzed”]

Lexical Structure:
LS4 := [NG1] [C] [NG2] [PV]

Analysis Rule:
IF MATCH([NG1] [Con=”AND”] [NG2] [PV], E) 
→ {GENERATE( E(C)[PO:NG1; S:PV], 

GENERATE( E(C)[PO:NG2; S:PV;]}

Example:
E (Quality Goal And Quality 
Measure Defined):

Pattern Template Instance:
SP1 := Event(Software) 
[PO: “Quality Goal”; S:”Defined”]

SP2 := Event(Software) 
[PO: “Quality Measure”; S:”Defined”]

Lexical Structure:
LS3 := [N] [PV1] [C] [PV2] 

Analysis Rule:
IF MATCH([N] [PV1] [Con=”AND”] [PV2], E) → {
GENERATE (E(C)[S:PV1; PO:N], 
GENERATE (E(C)[S:PV2; PO:N]} 

 
Figure 9: Semantic Pattern Description for the Template 
Event(Context)[Process Object; State]. 

Lexical Structure:
LS4 := [NG1] [P] [NG2] [PV]

Analysis Rule:
IF MATCH([NG1] [P=(”FROM” | ”OF”)] [NG2] 
[PV], E) → {
GENERATE ( E(C)[PO:NG1; SDP:NG2; S:PV]}

Example: 
E (Quality Goal From Specification 
Document Derived)

Pattern Template Instance:
SP1 := Event(Software) 
[PO: “Quality Goal”, 
SDP: “Specification Document”; 
S:”Derived”] 

Lexical Structure:
LS4 := [NG1] [P] [NG2] [PV]

Analysis Rule:
IF MATCH([NG1] [P=(”FOR” | ”ON” | “IN”)] 
[NG2] [PV] , E) → {
GENERATE ( E(C)[PO:NG1; TDP:NG2; S:PV]}

Example: 
E (Quality Goal For Project Plan 
Defined)

Pattern Template Instance:
SP1 := Event(Software) 
[PO: “Quality Goal”, 
TDP: “Project Plan”; S:”Defined”]

Example:
E(Specification With Customer 
Reworked)

Pattern Template Instance:
SP1 := Event(Software) 
[PO: “Specification”, 
MP: “Customer”; S:”Reworked”]

Lexical Structure:
LS4 := [NG1] [P] [NG2] [PV]

Analysis Rule:
IF MATCH([NG1] [P=”UPON”] [NG2] [PV], E) → 
{GENERATE ( E(C)[PO:NG1; DP:NG2; S:PV]}

Example:
E(Quality Measure Upon Review 

Status Decided)

Pattern Template Instance:
SP1 := Event(Software) 
[PO: “Quality Measure”, 
DP: “Review Status”; S:” Decided”]

Lexical Structure:
LS4 := [N1] [P] [N2] [PV]

Analysis Rule:
IF MATCH([N1] [P=”WITH”] [N2] [PV] , E) → {
GENERATE ( E(C)[PO:N1; MP:N2; S:PV]}

 
Figure 10: Semantic Pattern Description for the Template 
Event(Context)[Process Object; State; Parameter]. 

 

 

3.4 Ontology Instance Generator 

The ontology instance generator populates the 
reference ontology by adding or updating instances 
of predefined concepts and relations in the lexical 
and in the process knowledge base. Instantiated 
semantic patterns generated by the semantic pattern 
analyzer are input for the ontology instance 
generator. This step concludes with the 
establishment of the semantic linkage between EPC 
functions/events and concerned reference ontology 
instances. 

4 RELATED WORK 

The work presented in this paper refers to research 
activities involving semantic Business Process 
Management and Natural Language Processing. 
Enhancing Business Process Management (BPM) 
with semantic web technologies to overcome 
obstacles in automated processing has triggered a 
new wave in research and practice (e.g. Hepp et al., 
2005, Hepp et al., 2007). Process ontology design is 
a well-established field of research consisting of 
many distinguished approaches. The most important 
are: Business Process Management Ontology 
(BPMO) is a fully-fledged semantic business 
process modeling framework (Yan et al., 2007). 
Semantic EPC (sEPC) (Hepp et al., 2007) has 
emerged from the SUPER Project (Super, 2007) and 
aims at supporting the annotation of EPC models. 
Thomas and Fellmann (2007) describe a similar 
approach that addresses the semantic annotation of 
EPC models. Plan ontologies such as the 
Dolce+DnS Plan Ontology (DPPO) (Gangemi et al., 
2004) are founded on a theory of planning problems 
and on semantic descriptions of plans.  

The process ontology proposed in this paper 
prelimary intends to capture the implicit semantics 
of natural language expressions used for naming 
EPC functions/events (e.g. relationships between 
tasks and process objects, state information resulting 
from performing a task). Further, the introduced 
process ontology does not consider the control flow. 

The semantic annotation of EPC models is 
comparable with approaches used by Semantic Web 
annotation platforms (SAPs) whose purpose is to 
annotate existing and new documents on the Web.  
SAPs can be classified according to the used 
annotation method. The two primary categories are 
Pattern-based and Machine Learning-based. In 
Pattern-based approaches, “an initial set of entities 
is defined and the corpus is scanned to find the 
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patterns in which the entities exist.” Reeve and Han 
(2005). Machine learning-based SAPS utilize 
probability and induction methods. 

The approach presented in this paper follows the 
paradigm of a pattern-based analysis of natural 
language expressions used to describe EPC 
functions/events by employing semantic patterns. 
The idea using semantic patterns is inspired by 
Rolland and Achour (1998). They employ semantic 
patterns to extract a use case model from ambigous 
textual use case descriptions. Further, the usage of 
patterns traces back to Hearst (1992). The 
underlying clue is the use of patterns whose purpose 
is to explicitly grasp a certain relation between 
words. (Biemann, 2005), (Cimiano et al., 2006).  

In this work, instantiated semantic patterns 
bridge the gap between informal and formal 
representations. Instances of predefined semantic 
patterns establish the semantic linkage between EPC 
functions/events and instances of process ontology 
concepts.   

5 CONCLUSIONS 

The introduced approach shows how to perform an 
automated semantic annotation of EPC 
functions/events. It employs semantic pattern 
descriptions to bridge the gap between semi-formal 
process representations and formal reference 
ontologies. Semantic pattern descriptions allow the 
specification of semantic pattern templates  
(naming conventions for EPC functions/events), 
lexical structures (grammar of natural language 
expressions) and analysis rules (instantiation of 
semantic pattern templates). 

Our proposal for an automated semantic 
annotation is limited for resolving the semantics of 
natural language expressions used for a description 
of EPC functions/events. These natural language 
expressions must obey basic naming conventions as 
suggested by the EPC modeling language. A task 
within an EPC function is expressed by means of a 
verb, state information is indicated by a passive 
verb. Despite these limitations, the declarative 
nature of semantic pattern descriptions enables to 
define an arbitrary set of naming conventions. The 
definition of semantic pattern descriptions provides 
a mechanism to standardize the naming of EPC 
functions/events in a distributed modeling 
environment. The proposed common semantic 
patterns in section 3.3.3 resulted from practical 
experiences gained on a human driven analysis of 
about 5,000 EPC functions/events in engineering 

domains. The identified semantic pattern 
descriptions are a first approach for an additional 
standardization concerning the naming EPC 
functions/events. 

A semantic annotation of EPC models yields 
several advantages. A resulting reference ontology 
represents a necessary prerequisite for the 
identification of patterns (structural analogies) in 
process models as proposed by Schütte (1998, 237). 
The frequency of occurrence of process patterns 
enables an objective measure to evaluate candidates 
for common or best practice solutions. The 
dependencies between patterns can provide 
information on larger structures (reference models, 
Schermann et al., 2007) or process variants 
(configurable and generic adaptation of reference 
models, Becker et al., 2007).  
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