
SEMANTIC ANNOTATION OF EPC MODELS IN ENGINEERING
DOMAINS BY EMPLOYING SEMANTIC PATTERNS*

Andreas Bögl, Michael Schrefl
Department of Business Informatics – Data & Knowledge Engineering

Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

Gustav Pomberger
Department of Business Informatics – Software Engineering

Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

Norbert Weber
Siemens AG, Corporate Technology-SE 3, Otto-Hahn-Ring 6, Munich, Germany

Keywords: Semantic Annotation, Semantic Patterns, Semantic EPC Models, Process Ontology.

Abstract: Extracting process patterns from EPC (Event-Driven Process Chain) models requires to perform a semantic
analysis of EPC functions and events. An automated semantic analysis faces the problem that an essential
part of the EPC semantics is bound to natural language expressions in functions and events with undefined
process semantics. The semantic annotation of natural language expressions provides an adequate approach
to tackle this problem. This paper introduces a novel approach that enables an automated semantic
annotation of EPC functions and events. It employs semantic patterns to analyze the textual structure of
natural language expressions and to relate them to instances of a reference ontology. Thus, semantically
annotated EPC model elements are input for subsequent semantic analysis.

1 INTRODUCTION

Designing processes is a sophisticated and cognitive
task for process designers, usually supported by
tools, such as the ARIS Toolset. Process designs are
represented as process models in a particular
language, usually depicted by a graph of activities
and their casual dependencies. The Event-driven
Process Chain (EPC) modeling language (Keller et
al., 1992) has gained a broad acceptance and
popularity both in research and in practice.

Engineering processes are characterized by an
identifiable progression from requirements, through
specification to design and implementation. Each of
these phases comprises context specific tasks,
conducted similarly in different engineering domains
(Moore, 2000), e.g. the task “Design Architecture”

usually succeeds to task “Identify Requirements”.
Similarly conducted tasks in different engineering

domains motivate the extraction of process patterns,
tracing back to obviously existing structural analogies
in process models describing various domains in
engineering domains (Bögl et al., 2008).

A process pattern represents a common or best
practice solution to solve a particular problem in a
certain context. Hence, it might assist process
modelers for constructing high quality process
solutions. Extracting process patterns requires to
compare process models either human-driven or
automatically. Prerequisites for an automatable
comparison of conceptual models are discussed in
Pfeiffer (2005). Most emphasized prerequisites refer
to a formal semantics of modeling language and
constructs. Additionally, a reference ontology should
capture the real world semantics.

EPC models express the model element structure
in terms of the meta language constructs which are

*The research presented in this paper was funded by

Siemens AG, Corporate Technology – SE 3, Munich.

106
Bögl A., Schrefl M., Pomberger G. and Weber N. (2008).
SEMANTIC ANNOTATION OF EPC MODELS IN ENGINEERING DOMAINS BY EMPLOYING SEMANTIC PATTERNS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - AIDSS, pages 106-115
DOI: 10.5220/0001716601060115
Copyright c© SciTePress

Functions (F), Events(E) and Connectors (and, xor,
or). Natural language expressions describe the inner
process semantics of functions and events.
Depending on the sequence of words and on its
semantics, different meanings may arise. For
example, “Define Software Requirements with
Customer” has a different meaning than “Define
Software Requirements for Customer”. The former
expression means that software requirements are
defined in cooperate manner with a customer; the
latter one indicates the customer as output target of
the performed activity.

Semantic annotation of EPC models constitutes
an appropriate solution to tackle the problem of
different meanings but raises the problems to
determine the process semantics of lexical terms
used in natural language expressions and to link
them to reference ontology instances. The process
semantics of lexical terms represents process tasks
executed on process objects, for instance.

Linking lexical terms to reference ontology
instances requires the availability of corresponding
reference ontology instances. In case of non-
corresponding instances, semantic annotation also
entails to populate a reference ontology with new
instances derived from lexical terms.

Natural language expressions follow naming
conventions or standards that represent guidelines
for naming EPC functions/events (Schütte, 1998). If
a naming convention is used, it is clear what a
lexical term expresses.

For example, a typical suggested naming
convention for an EPC function is the template Task
followed by a Process Object that specifies the
semantics of natural language expressions such as
“Define Project Plan”; “Define” has the semantics
of a task, the lexical term “Project Plan” indicates
the semantics of a process object. We analyzed
about 5,000 EPC functions/events in engineering
domains. We experienced that the suggested
recommendations do not fully cover the semantics of
used natural language expressions. These
investigations addionally triggers the neccessity of a
formal notation that enables to express or specify a
guideline. Formalized guidelines enable verifying
natural language expressions against a set of
predefined conventions.

Based on our investigations for clarifying the
semantics of natural language expressions used for
naming EPC functions/events, we introduce a set of
guidelines that extend traditional naming
conventions. The introduced guidelines are
expressed through semantic pattern descriptions.
Semantic pattern descriptions represent semantic

templates that bridge the gap between informal and
formal representation. Formal representation refers
to concepts specified by a reference ontology.
Semantic pattern descriptions are either defined for
EPC functions or for EPC events. A semantic pattern
description has a pattern template, that is represented
in the form Function(Context)[Task; Process
Object; Parameter] for an EPC function.

Context is the name of an engineering domain
the analyzed EPC function is associated with, the
concept Task represents the activity being performed
on an instance of the concept Process Object, the
concept Parameter captures an instance of a Process
Object optionally for executing an EPC function. To
represent the semantics of a function consists in
instantiating a semantic pattern template by binding
a lexical term to the variables Context, Task, Process
Object and Parameter. For example, the instantiated
semantic pattern template Function(Software) [Task:
”Define”; Process Object: ”Quality Goal”] defines
the process semantics of the EPC function “Define
Quality Goal” in the context “Software”.

Same or similar knowledge in EPC
functions/events can be expressed in alternative
ways due to the freedom of modeling (e.g. usage of
synonyms, abbreviates etc.). Consequently,
alternative natural language expressions may refer to
same process semantics. For example, the EPC
functions “Define SW Requirements” and “Define
Requirements for Software” refer to the same
process semantics.

For that reason each semantic pattern description
defines a set of lexical structures and analysis rules.
A lexical structure is defined by a sequence of word
classes (e.g. Verb, Noun, Preposition). The lexical
structure LS:= [VerbTask] [NounGroupProcessObject]
captures a natural language expression such as
Define [VerbTask] Quality Goal
[NounGroupProcessObject]. A lexical structure
instantiates a semantic pattern template by applying
analysis rules. They define how to map lexical
structures onto the reference ontology concepts
specified in a semantic pattern template.

An instance of a reference ontology concept has
an unique identifier which may have several textual
counterparts. For example, a process object with the
OID=123 has the textual counterparts {“Software
Requirements”, “SW Requirements”,
“Requirements for Software”}.

To separate meaning from its lexical
representation the reference ontology is split into
two layers. Layer one represents the lexical
knowledge base that captures commonsense
vocabulary used in natural language expressions;

SEMANTIC ANNOTATION OF EPC MODELS IN ENGINEERING DOMAINS BY EMPLOYING SEMANTIC
PATTERNS

107

layer two represents the semantic domain for those
vocabulary by providing process ontology concepts
and relations defined in the process knowledge base.

The paper is organized as follows: The upcoming
section introduces the reference ontology, Section 3
deals with the main contribution of this paper, the
semantic annotation process. In Section 4, we
discuss related approaches. Finally, a conclusion is
given in Section 5.

2 REFERENCE ONTOLOGY

The reference ontology provides concepts and
relations whose instances capture both the
vocabulary (lexical knowledge) used to describe
EPC functions/events and its process semantics
(process knowledge). Thus it serves as knowledge
base for the semantic annotation of EPC
functions/events. Lexical knowledge comprises
morphological and syntactic knowledge about used
vocabulary. Morphological knowledge relates to
word inflections such as single/plural form of a
noun, past tense of verbs. Syntactic knowledge
comprises word class information and binary
features such as countable/uncountable.
Additionally, the lexical knowledge base explicitly
considers context information and the relationships
isAcronymOf and isSynonymTo between entries.
Context information refers to engineering domains
such as software or hardware development.

Process knowledge represents the semantic
domain for natural language expressions. The
process semantics is expressed by instances of
process ontology concepts such as task, process
object and its semantic relationships such as
isPartOf or isSubclassOf. Figure 1 sketches the
overall architecture. Natural language expressions
are used for naming EPC functions/events. The
process semantics implicitly described in an EPC
function/event is captured in the process knowledge
base, its textual representation is captured in the
lexical knowledge base.

2.1 Lexical Knowledge Base

The rationale behind the lexical knowledge base is
to provide a lightweight, controlled domain
vocabulary for semantically annotated EPC
functions/events.

Figure 1: Coherence between Reference Ontology and
EPC Functions/Events.

Publicly available resources such as WordNet
(W3C, 2006) may provide commonsense
vocabulary, but cannot be considered fully suitable
for capturing domain specific vocabulary. In
general, such resources are open world dictionaries,
comprising several hundred thousand open world
entities and semantic relationships. It is an
unreasonable demand for a process designer to
maintain this vocabulary. A domain specific
controlled vocabulary within an engineering domain
usually comprises several hundred entities that can
be maintained easier. Nevertheless, WordNet plays a
vital role for the semantic annotation of EPC
functions/events. Its purpose is further discussed in
section 3 of this paper.

The conceptual design of the lexical knowledge
base relies on the analysis of natural expressions
used for naming EPC functions/events. Figure 2
illustrates the structure of a natural language
expression.

Figure 2: Structure of Natural Language Expressions.

A natural language expression used for naming is
a composition of words each belonging to a word
class. The sequence of word classes specifies the
lexical structure of the natural language expression.
In general, a lexical term represents a cluster of
words belonging to equal word classes. For example,
the word “Define” belongs to the word class verb,
since there is only one occurrence of this word class,
the lexical term only consists of the word “Define”.
Besides this general rule, an “and” conjunction used
in a natural language expression requires special
attention. An “and” conjunction results in a
separation of lexical terms. For example, let us
replace the preposition “of” with an “and”
conjunction in Figure 2. In this case, the natural
language expression would comprise the two

ICEIS 2008 - International Conference on Enterprise Information Systems

108

additional lexical terms “Requirements” and
“Software”.

The lexical knowledge base consists of lexical
entries. A lexical entry is either single or multi-
structured. A single structured lexical entry is
represented by exactly one word; a multi-structured
lexical entry consists of several words. One may
recognize the analogy to a lexical term. Hence, a
lexical entry represents a lexical term captured in the
lexical knowledge base.

Let us consider Figure 3 that provides an
example for the multi-structured lexical entry
“Software Requirements” and for the lexical
mapping between lexical and process knowledge
base. The right section illustrates a part of a process
ontology that captures the semantics of the lexical
entry “Software Requirements” realized by a lexical
mapping between a lexical entry and a process
ontology instance. The meaning of this entry can be
interpreted as follows: “Software Requirements” is a
process object and it is a specialization of the
process object “Requirements” (<OID 3>).

Figure 3: Example for Multi-Structured Lexical Entry.

2.2 Process Knowledge Base

The concepts and relations of process knowledge
result from the analysis of natural language terms
describing EPC functions/events and its associated
meanings. Figure 4 depicts the process ontology
concepts for capturing the semantics of EPC
functions/Events.

The top level concept EPC Entity classifies a
lexical term either into a Task(T), or a Process
Object(PO) or a State(S) concept. A Process Object
represents a real or an abstract thing being of interest
within a (business process) domain. According to
Rosemann (1995, 177 et seq), the concept for
describing a Process Object has the semantic
relations isPartOf (e.g. Project Handbook isPartOf
Development Project), isSublcassOf (e.g. Software
Project isSubClassOf Project) and migratesTo (e.g.

Software Requirements migratesTo Software
Architecture). A Task can be performed manually by
a human or electronically by a service (e.g. Web
Service) for achieving a desired (business) objective.
It can be specified at different levels of abstraction,
refinements or specializations that are expressed by
the semantic relationship hasSubTask.

Figure 4: Process Ontology for Capturing the Semantics of
EPC Functions/Events.

A State always refers to a Process Object
indicating the state that results from performing a
Task on a Process Object. Parameters are process
objects that are relevant for a task execution or a
state description. The process ontology comprises
the four parameter types Source Direction
Parameter, Target Direction Parameter, Means
Parameter and Dependency Parameter.

A Source Direction Parameter defines a source
process object, e.g. “Derive Quality Goal from
Specification Document” indicates “Specification
Document” as a Source Direction Parameter. A
Target Direction Parameter denotes a recipient
process object within a function execution, e.g. the
function “Rework Specification for Project Plan”
specifies “Project Plan” as a Target Direction
Parameter. A Means Parameter semantically
describes a process object as an input requirement
for task execution. For example, “Rework
Specification with Software Goals” indicates
“Software Goals” as a Means Parameter. A
Dependency Parameter indicates that executing a
task on a process object depends on an additional
process object, e.g. the function “Decide Quality
Measure Upon Review Status” specifies “Review
Status” as a Dependency Parameter.

Additionally, a function/event may contain a
composition of parameters, expressed by the concept
CompositeParameter. For example, “Rework
Specification with Software Goals for Project
Handbook” is a composition of the two parameters

SEMANTIC ANNOTATION OF EPC MODELS IN ENGINEERING DOMAINS BY EMPLOYING SEMANTIC
PATTERNS

109

“Software Goals” (Means Parameter) and “Project
Handbook” (Target Direction Parameter).

3 SEMANTIC ANNOTATION
PROCESS

Input are natural language expressions used for
naming EPC functions/events. The semantic
annotation process comprises the four stages as
depicted in Figure 5 that are discussed in the
following subsections.

Figure 5: Stages for Automatic Semantic Annotation.

Figure 6 sketches the output of the semantic
annotation process which comprises (1) a semantic
linkage between EPC functions/events and instances
of process ontology concepts and (2) updated
instances of reference ontology concepts.

Figure 6: Example for semantically annotated EPC
Function.

3.1 Term Extractor

The semantic annotation process starts with the
extraction of used words by parsing natural language
expressions for each EPC function/event. Extracted
words are input for the term normalizer.

3.2 Term Normalizer

The term normalizer component addresses the
problems of word classification and of naming
conflicts. This step reduces the number of potential
naming conflicts to synonyms and abbreviations. It
neglects homonyms since it is assumed a non
ambiguous meaning of used vocabulary in
engineering domains.

Determination of word classes (e.g. noun, verb,
etc.) requires finding a match between words in
natural language expressions (extracted from the
Term Extractor) and associated words to lexical
entries in the lexical knowledge base. A match
procedure considers semantic relationships (e.g.
isAbbreviationTo) associated to a lexical entry (e.g.
SW is an abbreviation of Software). If a search for is
successful, the word class derives from the concept
name the matched word is instance of. In case of
naming conflicts, the term normalizer follows the
rule to deliver the base word. For instance, SW has
been identified as an abbreviation of software,
consequently, the term normalizer delivers the term
“Software” as a noun.

If a query for a word in the lexical knowledge
base delivers an empty result, an automatically
driven word classification is not feasible. In this
case, the publicly available dictionary WordNet is
employed for word classification and synonym
detection. According to Lui and Sing (2004), it is
particularly suited for this task as it is “optimized for
lexical categorization and word-similarity
determination”. WordNet originates from the
Cognitive Science Laboratory of Princeton. Its
schema comprises the three main classes synset,
wordSense and word. A synset groups words with a
synonymous meaning, such as {car, auto, machine}.
Due to different senses of words, a synset contains
one or more wordsenses and each wordsense
belongs to exactly one synset (W3C, 2006). A synset
either contains the word classes nouns, verbs,
adjectives or adverbs. There are seventeen relations
between synsets (e.g. hyponymy, entailment,
meronymy, etc.) and five between word senses (e.g.
antonym, see also).

The term normalizer tries to retrieve semantic
information by consulting WordNet. A WordNet

ICEIS 2008 - International Conference on Enterprise Information Systems

110

query delivers either a set of word classes and
synonyms (associated to the queried lexical term) or
an empty set. In case of delivering an empty set the
term normalizer component requires an interaction
with the analyst in order to get a human
classification entry. In our introduced example in
Figure 5, the term normalizer identifies the lexical
terms “Define” as a verb, “Requirements” as a noun,
“For” as a preposition and “Software Prototype” as
a noun group.

3.3 Semantic Pattern Analyzer

The term normalizer component determines word
classes and resolves word conflicts as described in
previous section. The semantic pattern analyzer
instantiates semantic patterns by employing
associated analysis rules.

Semantic pattern descriptions enable to formalize
and to specify naming conventions. Naming
conventions represent guidelines for naming EPC
functions/events as proposed by the ARIS method
and by the guidelines of modeling (Schütte, 1998).

These conventions suggest for naming EPC
functions to make use of a verb to express a task
followed by a noun that refers to a process object
(e.g. Define: [Task] Development Plan: [Process
Object]). The naming conventions for EPC events
suggest expressing state information by a passive
verb followed by an associated process object (e.g.
Development Plan: [Process Object] Defined:
[State]). The singular noun form is propagated since
a process object can be regarded as a class type.
Hence, the conventions proposed in data or class
modeling are advocated.

A semantic pattern description is given as a tuple
S = (T, LA) where T defines the semantic pattern
template, LA is a set of pairs ({li,aj}| (L={l1,…ln},
A={a1,…an}) where li∈L and aj∈A) where L is a set
of lexical structures and A is a set of analysis rules.

A semantic pattern template is a tuple P=(E,C,O)
where E∈{Function, Event} defines the semantic
pattern type, C defines the context of a template
instance, O is the set of addressed process ontology
concepts (e.g. task, state). As an example for a
semantic pattern description, following pattern
template Function(Context)[Task; Process Object]
is introduced. It is used to discuss the other parts of
the semantic pattern in the further subsections.

3.3.1 Lexical Structures

The lexical structure is a tuple (I, C) where I is an
unique identifier and C is an ordered set of word

classes whereas the following set of predefined word
classes is available: {Noun [N], NounGroup [NG],
Verb [V], Passive Verb[PV], Preposition[P],
Conjunction[C]}.

The introduced example for a semantic pattern
description defines the following two lexical
structures L1:= [VTask] [NProcessObject] and
L2:= [VTask] [NGProcessObject].

3.3.2 Analysis Rules

Analysis rules evaluate natural language expressions
against predefined lexical structures and instantiates
one or several semantic pattern templates. If the
lexical structure of a natural language expression
corresponds to a lexical structure associated to a
semantic pattern template, a semantic pattern
template is instantiated by the assignment of lexical
terms to the addressed process ontology concepts of
the semantic pattern template. Consider the natural
language expression “[Verb]: Define [Noun]:
Requirements” used for naming an EPC function. It
matches with the lexical structure [VerbTask]
[NounProcessObject] of to the semantic pattern template
Function(Context)[Task; Process Object]). A
defined analysis rule for this semantic pattern
template maps the lexical terms “Define” to the
process ontology concept Task and “Requirements”
to the process ontology concept Process Object and
instantiates the semantic pattern template
Function(Software)[Task: “Define” Process Object:
“Requirements”].

An analysis rule is specified by a precondition
and a body separated by a “→”. The precondition
consists of the operator Match whose parameters
represent (1) a predefined lexical structure,
(2) logical expressions (e. g. Preposition=”for”) and
(3) a list of lexical terms (E={T1…Tn} or
F={T1…Tn}) extracted by the term normalizer. The
body denotes an action that generates one or several
instantiated semantic pattern templates.

Analysis rules are also used to determine the
semantics of parameters. The semantics of a
parameter depends on the preposition associated to a
noun. For instance, the rule R: IF MATCH([VTask]
[NprocessObject] [Parameter =”For”] [NProcessObject],
E={T1…Tn}]) → GENERATE(Function (Context)
[Task:V; Process Object: N; Target Direction
Parameter:N]) generates an instantiated semantic
pattern having a Target Direction Parameter. A
Source Direction Parameter is determined by the
prepositions “FROM” or “OF”, a Target Direction
Parameter by the prepositions “FOR”, or “IN”, a
Means Parameter by the prepositions “WITH”, a

SEMANTIC ANNOTATION OF EPC MODELS IN ENGINEERING DOMAINS BY EMPLOYING SEMANTIC
PATTERNS

111

Dependency Parameter by the preposition
“UPON”.

Another feature denotes the setting of state
information required for a semantic analysis of EPC
events. State information indicates an attribute for a
process object with an assigned attribute value. For
example, the state information “Quality Goals
Defined” assigns the attribute “Defined” to the
process object “Quality Goal” with the boolean
value true. This is realized by the rule R: IF
MATCH([NProcessObject] [PVState], E={T1…Tn}) →
GENERATE(Event (Context) [State:PV; State
Value: “True”; Process Object: N]).

Analysis rules also play a vital role in resolving
the semantics of natural language expressions that
address (1) more than one task or state or (2) more
than one process object or (3) more than one
parameter or (4) a combination of them. To illustrate
this situation, let us consider the following example:
F(Identify And Analyze Quality Goal). This function
specifies the two tasks “Identify” and “Analyze”,
connected via an “And” conjunction that are
executed on the process object “Quality Goal”. For
capturing the process semantics of this function in
the process ontology, two semantic pattern instances
are generated by applying the analysis rule R: IF
MATCH([V1Task] [Con=”AND”] [V2Task]
[NGProcessObject], F={T1…Tn}) → {GENERATE(
Function(Software)[Task:V1; Process Object:NG] ,
F={T1…Tn}), {GENERATE (Function (Software)
[Task:V2; Process Object:NG], F). This analysis rule
results in the two instantiated semantic patterns
templates Function (Software) [T:”Identify”;
PO:”Quality Goal”] and Function (Software)
[T:”Analyze”; PO:”Quality Goal”].

3.3.3 Common Semantic Patterns

By manually performed analyzes of about 5,000
EPC functions/events in engineering domains we
gained the insight that the suggested naming
conventions do not fully cover the implicit process
semantics of natural language expressions used for
naming EPC functions/events. As an additional
contribution of this paper, we introduce a set of
semantic pattern descriptions resulting from our
investigations. The Figures 7-10 summarize these
semantic pattern descriptions for EPC
functions/events. They use the following set of
abbreviations: {V:=Verb, N:=Noun, NG:=Noun
Group, PO:=Process Object, T:=Task,
Con:=Conjunction, P:=Preposition, F:=Function,
C:=Context, TDP:=Target Direction Parameter,

SDP:=Source Direction Parameter, MP:=Means
Parameter, DP:=Dependency Parameter}.

Lexical Structure:
LS1 := [V] [N]

Analysis Rule:
IF MATCH([V] [N], F) →
GENERATE(F(C)[T:V; PO:N]

Example:
F (Define Goal):

Pattern Template Instance:

SP1 := Function(Software)
[T:”Define”; PO: “Goal”]

Lexical Structure:
LS2 := [V] [NG]

Analysis Rule:
IF MATCH([V] [NG] , F) →
GENERATE(F(C)[T:V; PO:NG]

Example:
F (Define Quality Goal):

Pattern Template Instance:

SP1 := Function(Software)
[T:”Define”; PO: “Quality Goal”]

Example:
F (Identify And Analyze Goal):

Pattern Template Instance:
SP1 := Function(Software)
[T:”Identify”; PO: “Quality Goal”]

SP2 := Function(Software)
[T:”Analyze”; PO: “Goal”]

Lexical Structure:
LS4 := [V] [NG1] [C] [NG2]

Analysis Rule:
IF MATCH([V] [NG1] [Con=”AND”] [NG2] , F) →
{ GENERATE (F(C)[T:V; PO:NG1],

GENERATE (F(C)[T:V; PO:NG2]}

Example:
F (Define Quality Goal And Quality

Measure):

Pattern Template Instance:
SP1 := Function(Software)
[T:”Define”; PO: “Quality Goal”]

SP2 := Function(Software)
[T:”Define”; PO: “Quality Measure”]

Lexical Structure:
LS3 := [V1] [C] [V2] [N]

Analysis Rule:
IF MATCH([V1] [Con=”AND”] [V2] [N] , F) → {
GENERATE (F(C)[T:V1; PO:N],
GENERATE (F(C)[T:V2; PO:N]}

Figure 7: Semantic Pattern Description for the Template
Function(Context)[Task; Process Object].

Lexical Structure:
LS4 := [V] [NG1] [P] [NG2]

Analysis Rule:
IF MATCH([V] [NG1] [P=(”FROM” | ”OF”)]
[NG2] , F) → {
GENERATE (F(C)[T:V; PO:NG1; SDP:NG2]}

Example:
F (Derive Quality Goal From
Specification Document)

Pattern Template Instance:
SP1 := Function(Software)
[T:”Derive”; PO: “Quality Goal”,
SDP: “Specification Document”]

Lexical Structure:
LS4 := [V] [NG1] [P] [NG2]

Analysis Rule:
IF MATCH([V] [NG1] [P=(”FOR” | ”ON” | “IN”) ,
F] [NG2]) → {
GENERATE (F(C)[T:V; PO:NG1; TDP:NG2]}

Example:
F (Define Quality Goal For Project
Plan)

Pattern Template Instance:
SP1 := Function(Software)
[T:”Define”; PO: “Quality Goal”,
TDP: “Project Plan”]

Example:
F(Rework Specification With
Customer)
Pattern Template Instance:
SP1 := Function(Software)
[T:”Rework”; PO: “Specification”,
MP: “Customer”]

Lexical Structure:
LS4 := [V] [NG1] [P] [NG2]

Analysis Rule:
IF MATCH([V] [NG1] [P=”UPON”] [NG2] , F) →
{GENERATE (F(C)[T:V; PO:NG1; DP:NG2]}

Example:
F(Decide Quality Measure Upon
Review Status)

Pattern Template Instance:
SP1 := Function(Software)
[T:” Decide”; PO: “Quality Measure”,
DP: “Review Status”]

Lexical Structure:
LS4 := [V] [N1] [P] [N2]

Analysis Rule:
IF MATCH([V] [N1] [P=”WITH”] [N2] , F) → {
GENERATE (F(C)[T:V; PO:N1; MP:N2]}

Figure 8: Semantic Pattern Description for the Template
Function(Context)[Task; Process Object; Parameter].

ICEIS 2008 - International Conference on Enterprise Information Systems

112

Lexical Structure:
LS1 := [N] [PV]

Analysis Rule:
IF MATCH([N] [PV] , E) →
GENERATE(E(C)[PO:N; S:PV]

Example:
E (Goal Defined):

Pattern Template Instance:

SP1 := Event(Software)
[PO: “Goal”; S:”Defined”]

Lexical Structure:
LS2 := [NG] [PV]

Analysis Rule:
IF MATCH([NG] [PV], E) →
GENERATE(E(C)[PO:NG; S:PV],

Example:
E (Quality Goal Defined):

Pattern Template Instance:

SP1 := Event(Software)
[PO: “Quality Goal”; S:”Defined”]

Example:
E (Goal Identified And Analyzed):

Pattern Template Instance:
SP1 := Event(Software)
[PO: “Goal”; S:”Identified”]

SP2 := Event(Software)
[PO: “Goal”; S:”Analyzed”]

Lexical Structure:
LS4 := [NG1] [C] [NG2] [PV]

Analysis Rule:
IF MATCH([NG1] [Con=”AND”] [NG2] [PV], E)
→ {GENERATE(E(C)[PO:NG1; S:PV],

GENERATE(E(C)[PO:NG2; S:PV;]}

Example:
E (Quality Goal And Quality
Measure Defined):

Pattern Template Instance:
SP1 := Event(Software)
[PO: “Quality Goal”; S:”Defined”]

SP2 := Event(Software)
[PO: “Quality Measure”; S:”Defined”]

Lexical Structure:
LS3 := [N] [PV1] [C] [PV2]

Analysis Rule:
IF MATCH([N] [PV1] [Con=”AND”] [PV2], E) → {
GENERATE (E(C)[S:PV1; PO:N],
GENERATE (E(C)[S:PV2; PO:N]}

Figure 9: Semantic Pattern Description for the Template
Event(Context)[Process Object; State].

Lexical Structure:
LS4 := [NG1] [P] [NG2] [PV]

Analysis Rule:
IF MATCH([NG1] [P=(”FROM” | ”OF”)] [NG2]
[PV], E) → {
GENERATE (E(C)[PO:NG1; SDP:NG2; S:PV]}

Example:
E (Quality Goal From Specification
Document Derived)

Pattern Template Instance:
SP1 := Event(Software)
[PO: “Quality Goal”,
SDP: “Specification Document”;
S:”Derived”]

Lexical Structure:
LS4 := [NG1] [P] [NG2] [PV]

Analysis Rule:
IF MATCH([NG1] [P=(”FOR” | ”ON” | “IN”)]
[NG2] [PV] , E) → {
GENERATE (E(C)[PO:NG1; TDP:NG2; S:PV]}

Example:
E (Quality Goal For Project Plan
Defined)

Pattern Template Instance:
SP1 := Event(Software)
[PO: “Quality Goal”,
TDP: “Project Plan”; S:”Defined”]

Example:
E(Specification With Customer
Reworked)

Pattern Template Instance:
SP1 := Event(Software)
[PO: “Specification”,
MP: “Customer”; S:”Reworked”]

Lexical Structure:
LS4 := [NG1] [P] [NG2] [PV]

Analysis Rule:
IF MATCH([NG1] [P=”UPON”] [NG2] [PV], E) →
{GENERATE (E(C)[PO:NG1; DP:NG2; S:PV]}

Example:
E(Quality Measure Upon Review

Status Decided)

Pattern Template Instance:
SP1 := Event(Software)
[PO: “Quality Measure”,
DP: “Review Status”; S:” Decided”]

Lexical Structure:
LS4 := [N1] [P] [N2] [PV]

Analysis Rule:
IF MATCH([N1] [P=”WITH”] [N2] [PV] , E) → {
GENERATE (E(C)[PO:N1; MP:N2; S:PV]}

Figure 10: Semantic Pattern Description for the Template
Event(Context)[Process Object; State; Parameter].

3.4 Ontology Instance Generator

The ontology instance generator populates the
reference ontology by adding or updating instances
of predefined concepts and relations in the lexical
and in the process knowledge base. Instantiated
semantic patterns generated by the semantic pattern
analyzer are input for the ontology instance
generator. This step concludes with the
establishment of the semantic linkage between EPC
functions/events and concerned reference ontology
instances.

4 RELATED WORK

The work presented in this paper refers to research
activities involving semantic Business Process
Management and Natural Language Processing.
Enhancing Business Process Management (BPM)
with semantic web technologies to overcome
obstacles in automated processing has triggered a
new wave in research and practice (e.g. Hepp et al.,
2005, Hepp et al., 2007). Process ontology design is
a well-established field of research consisting of
many distinguished approaches. The most important
are: Business Process Management Ontology
(BPMO) is a fully-fledged semantic business
process modeling framework (Yan et al., 2007).
Semantic EPC (sEPC) (Hepp et al., 2007) has
emerged from the SUPER Project (Super, 2007) and
aims at supporting the annotation of EPC models.
Thomas and Fellmann (2007) describe a similar
approach that addresses the semantic annotation of
EPC models. Plan ontologies such as the
Dolce+DnS Plan Ontology (DPPO) (Gangemi et al.,
2004) are founded on a theory of planning problems
and on semantic descriptions of plans.

The process ontology proposed in this paper
prelimary intends to capture the implicit semantics
of natural language expressions used for naming
EPC functions/events (e.g. relationships between
tasks and process objects, state information resulting
from performing a task). Further, the introduced
process ontology does not consider the control flow.

The semantic annotation of EPC models is
comparable with approaches used by Semantic Web
annotation platforms (SAPs) whose purpose is to
annotate existing and new documents on the Web.
SAPs can be classified according to the used
annotation method. The two primary categories are
Pattern-based and Machine Learning-based. In
Pattern-based approaches, “an initial set of entities
is defined and the corpus is scanned to find the

SEMANTIC ANNOTATION OF EPC MODELS IN ENGINEERING DOMAINS BY EMPLOYING SEMANTIC
PATTERNS

113

patterns in which the entities exist.” Reeve and Han
(2005). Machine learning-based SAPS utilize
probability and induction methods.

The approach presented in this paper follows the
paradigm of a pattern-based analysis of natural
language expressions used to describe EPC
functions/events by employing semantic patterns.
The idea using semantic patterns is inspired by
Rolland and Achour (1998). They employ semantic
patterns to extract a use case model from ambigous
textual use case descriptions. Further, the usage of
patterns traces back to Hearst (1992). The
underlying clue is the use of patterns whose purpose
is to explicitly grasp a certain relation between
words. (Biemann, 2005), (Cimiano et al., 2006).

In this work, instantiated semantic patterns
bridge the gap between informal and formal
representations. Instances of predefined semantic
patterns establish the semantic linkage between EPC
functions/events and instances of process ontology
concepts.

5 CONCLUSIONS

The introduced approach shows how to perform an
automated semantic annotation of EPC
functions/events. It employs semantic pattern
descriptions to bridge the gap between semi-formal
process representations and formal reference
ontologies. Semantic pattern descriptions allow the
specification of semantic pattern templates
(naming conventions for EPC functions/events),
lexical structures (grammar of natural language
expressions) and analysis rules (instantiation of
semantic pattern templates).

Our proposal for an automated semantic
annotation is limited for resolving the semantics of
natural language expressions used for a description
of EPC functions/events. These natural language
expressions must obey basic naming conventions as
suggested by the EPC modeling language. A task
within an EPC function is expressed by means of a
verb, state information is indicated by a passive
verb. Despite these limitations, the declarative
nature of semantic pattern descriptions enables to
define an arbitrary set of naming conventions. The
definition of semantic pattern descriptions provides
a mechanism to standardize the naming of EPC
functions/events in a distributed modeling
environment. The proposed common semantic
patterns in section 3.3.3 resulted from practical
experiences gained on a human driven analysis of
about 5,000 EPC functions/events in engineering

domains. The identified semantic pattern
descriptions are a first approach for an additional
standardization concerning the naming EPC
functions/events.

A semantic annotation of EPC models yields
several advantages. A resulting reference ontology
represents a necessary prerequisite for the
identification of patterns (structural analogies) in
process models as proposed by Schütte (1998, 237).
The frequency of occurrence of process patterns
enables an objective measure to evaluate candidates
for common or best practice solutions. The
dependencies between patterns can provide
information on larger structures (reference models,
Schermann et al., 2007) or process variants
(configurable and generic adaptation of reference
models, Becker et al., 2007).

ACKNOWLEDGEMENTS

Thanks to Mathias Goller for the fruitful discussions
and for proofreading this paper.

REFERENCES

Becker, J. et al. (2007). Adaptive Reference Modeling:
Integrating Configurative and Generic Adaptation
Techniques for Information Models. In: Becker J.;
Delfmann, P. (Ed.): Reference Modeling: Efficient
Information Systems Design Through Reuse of
Information Models. Physica, Heidelberg, p. 27-58.

Biemann, C. (2005). Ontology Learning from Text: A
Survey of Methods. LDV-Forum 20 (2), 75-93.

Bögl, A. et al. (2008). Knowledge Acquisition from EPC
Models for Extraction of Process Patterns in
Engineering Domains. In Proceedings der
Multikonferenz Wirtschaftsinformatik, (MKWI 2008),
München, Deutschland.

Cimiano, P. et al. (2006). Ontologies on Demand? – A
Description of the State-of-the-Art, Applications,
Challenges and Trends for Ontology Learning from
Text. Information, Wissenschaft und Praxis 58 (6-7):
315-320. October 2006.

Gangemi, A. et al. (2005). Task Taxonomies for
Knowledge Content D07, www.loa-
cnr.it/Papers/D07_v21a.pdf, 13.09.2007.

Hearst, M. A. (1992). Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th
International Conference on Computational
Linguistics (COLING 1992), Volume 2, Nantes,
France, pp. 539-545.

Hepp, M. et al. (2005). Semantic Business Process
Management: A Vision Towards Using Semantic Web
Services for Business Process Management. IEEE

ICEIS 2008 - International Conference on Enterprise Information Systems

114

International Conference on e-Business Engineering.
Beijing, China, p. 535-540.

Hepp, M. et al. (ed.) (2007). Proceedings on Semantic
Business Process and Product Lifecycle Management,
3rd European Semantic Web Conference. Innsbruck,
Austria.

Keller, G. et al. (1992). Semantische Prozessmodellierung
auf der Grundlage „Ereignisgesteuerter Prozeßketten
(EPK)“ In: Scheer, A-W. (Hrsg.): Veröffentlichungen
des Instituts für Wirtschaftsinformatik, Heft 89,
Saarbrücken, http://www.iwi.uni-
sb.de/Download/iwihefte/heft89.pdf, 20.08.2007

Liu, H.; Singh, P. (2004). ConceptNet – A Practical
Commonsense Reasoning Tool-Kit, BT Technology
Journal, (22) 4, p. 211-226.

Moore, J. et al. (2000). Combining and Adapting Process
Patterns for Flexible Workflow. 11th International
Conference on Database and Expert Systems
Applications, London, United Kingdom, p. 797-801.

Pfeiffer, D.; Gehlert, A. (2005). A Framework for
Comparing Conceptual Models. Workshop on
Enterprise Modelling and Information Systems
Architectures. Klagenfurt, Austria, p. 108-122.

Reeve, L.; Han, H. (2005). Survey of semantic annotation
platforms. In Proceedings of the 2005 ACM
Symposium on Applied Computing, Santa Fe, New
Mexico, March 13 - 17, 2005.

Roberto Basili et al. (2005). Language Learning and
Ontology Engineering: an Integrated Model for the
Semantic Web. 2nd Meaning Workshop, Trento, Italy,
February 2005.

Rolland, C.; Achour Ben, C. (1998). Guiding the
construction of textual use case specifications, in the
Data & Knowledge Engineering Journal, 25(1-2)
Special Jubilee issue, March 1998, 125-160.

Rosemann, M. (1996). Komplexitätsmanagement in
Prozeßmodellen. Methodenspezifische
Gestaltungsempfehlungen für die
Informationsmodellierung. Gabler, Wiesbaden.

Schermann, M. et al. (2007). Fostering the Evaluation of
Reference Models: Application and Extension of the
Concept of IS Design Theories. 8th International
Conference Wirtschaftsinformatik. Karlsruhe,
Germany, p. 181-198.

Schütte, R. and T. Totthowe, T. (1998). The Guidelines of
Modeling as an approach to enhance the quality of
information models. In: Conceptual Modeling - ER
'98. 17th International ER-Conference, Singapore,
November 16-19, 1998. T. W. Ling, S. Ram, M. L.
Lee (Eds.), pages 240-254. Berlin.

Schütte, R. (1998). Grundsätze ordnungsgemäßiger
Referenzmodellierung: Konstruktion konfigurations-
und anpassungsorientierter Modelle. Gabler,
Wiesbaden.

Super, Integrated Project Semantics Utilized for Process
Management within and between Enterprises.
http://www.ip-super.org, 13.09.2007.

Thomas, F., Fellmann, M. (2007). Semantic Business
Process Management: Ontology Based Process
Modeling Using Event-Driven Process Chains.

International Journal of Interoperability in Business
Information Systems, (2) 1, p. 29-44..

W3C (2006). RDF/OWL Representation of WordNet,
W3C Working Draft June 2006,
http://www.w3.org/TR/wordnet-rdf/, 13.09.2007.

Yan, Z. et al. (2007). BPMO : Semantic Business Process
Modeling and WSMO Extension. International
Conference on Web Services. Salt Lake City, USA,
p. 1185-1186.

SEMANTIC ANNOTATION OF EPC MODELS IN ENGINEERING DOMAINS BY EMPLOYING SEMANTIC
PATTERNS

115

